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Abstract

Let R be the set of real numbers and Y a Banach space. We prove the Hyers-Ulam stability theorem
when f,h : R — Y satisfy the following Pexider quadratic inequality

If(z+y)+ flz —y) = 2f(x) = 2h(y)] <
in a set Q C R? of Lebesgue measure m(Q2) = 0. (©2016 All rights reserved.
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1. Introduction and preliminaries

In 1940, Ulam proposed the general Ulam stability problem (see [29)]):
Let (G, ) be a group and let (G, -, d) be a metric group with the metric d. Given ¢ > 0, does there exist
€ > 0 such that if a mapping h : G — G’ satisfies the inequality

d(h(zy), h(z)h(y)) < 6
for all x,y € G, then there is a homomorphism H : G — G’ with
d(h(z), H(z)) < €

for all x € G?
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In 1941, Hyers [13] considered the case of approximately additive mappings f : E — F, where F and F'
are Banach spaces and f satisfies Hyers inequality

[f(z+y) = flz) = fy)l <e

for all x,y € E and € > 0. He proved that there exists a unique additive mapping T : £ — F' satisfying

[f(2) = T(x)]] <€

for all x € E. Aoki [I] and Bourgin [3] considered the stability problem with unbounded Cauchy differences.
In 1978, Th. M. Rassias [23] provided a generalization of Hyers theorem which allows the Cauchy difference
to be unbounded.

Theorem 1.1. Let f : E — F be a mapping from a real normed vector space E into a Banach space F
satisfying the inequality
1f (@ +y) = f(@) = fW)ll < ()" + [lyl")

for all x,y € E\{0}, where 0 and p are constants with > 0 and p # 1. Then there exists a unique additive
mapping T : E — F such that

1f () = T(z)| <

p

for all x € E\{0}.

Theorem [1.1] is due to Aoki [1] for 0 < p < 1 (see also [23]); Gajda [12] for p > 1; Hyers [13] for p = 0
and Th. M. Rassias [24] for p < 0 (see [27, page 326], and [3]).
The functional equation

flz+y) + fle—y)=2f(x) +2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation
was proved by Skof [28], for mappings f : E — F, where F is a normed space and F' is a Banach space.
Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain F is replaced by an Abelian
group. Czerwik [7] proved the Hyers-Ulam stability of the quadratic functional equation. The stability
problems of several functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [2] 10, 1T, 14} 15, 17HI9, 21, 25] 26]).
We say that a function f : R — R satisfies the Drygas equation if

flx+y)+ flx—y)=2f(z) + f(y) + f(~y), z,yeR (1.2)

The above equation was introduced in [§] in order to obtain a characterization of the quasi-inner-product
spaces. Ebanks, Kannappan and Sahoo [9] have obtained the general solution of the Eq. (1.2) as

f(z) = Alx) + Q(x), z€R,

where A : R — R is an additive mapping and @ : R — R is a quadratic mapping.
The stability in the Hyers-Ulam sense of the Drygas equation has been investigated by Jung and Sahoo
in [16].

Theorem 1.2 ([I6]). Let f,g : E — F be a mapping from a real normed vector space E into a Banach
space F' satisfying the inequality

[f(x+y)+ flz—y)—2f(x) —g2y)|| <€, z,y€ E
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for same € > 0, then there exist a unique additive function A : E — F and a unique quadratic function
Q : E — F such that

17(2) — Af2) - 2Q(2) — FO)] < %2,
and 13
lo@) - Q@) < 5

for allx € E. If, in particular, f satisfies the inequality

[f(z+y)+ fle—y)—2f(x) = fly) = (=9l <€ z,y€E,

then there exist a unique additive function A : E — F and a unique quadratic function Q : E — F such that

If () — A(z) = Q)| < —=

for allx € E.

Piszczek and Szczawinska [22] obtained the stability of the equation on a restricted domain. In
2013, Chung [5] investigated the stability of a conditional Cauchy equation on a set of measure zero.

In 2014, Chung and J. M. Rassias [6] proved the stability of the quadratic functional equation in
a set of measure zero.

Throughout this paper, let X be a normed space and Y a Banach space.

Our aim is to prove the Hyers-Ulam stability on a set Lebesgue measure 0 of the Pexider quadratic
functional equation

flx+y)+ f(x —y) =2f(x) + 2h(y), (1.3)

where f,h : X — Y are functions. Using the result, we obtain an asymptotic behavior of the equation.

2. Stability of the Eq. (1.3 in set of measure zero

Throughout this section, we assume that Q C X? satisfies the following conditions: for given =,y € X
there exist ¢, € X such that

(Cl) {(.%' + y7t)7 (:U - y7t)v (x,y + t)? (.CE, Y= t): (07y + t)a (an - t)v (y7t)7 (_yat)} - Q;
(C2) {(tlvx + y)> (t/>$ - y)v (t/ + x?@/)a (t, - ZL‘,y), (t/7$)} C .

We prove the Ulam-Hyers stability of (1.3 in Q.

Theorem 2.1. Suppose that f,h : X = Y satisfy the following Pexider quadratic functional inequality

If(@+y)+ fle—y) —2f(x) = 2h(y)| < e (2.1)

for all (z,y) € Q and some constant € > 0. Then there exist a unique additive mapping A: X —'Y and a
unique quadratic mapping @ : X — Y such that

1/ () = A(z) = Q(z) = fO)]] < =€,

and

€

3
Ih@) - Q)] < 5

for all x € X.

Proof. Let D(z,y) = f(z+y) + f(x —y) = 2f(2) = 2h(y), Di(z,y) = f(z +y) + f(x —y) = 2f(x) = f(y) -
f(=y) +2f(0) and f,h: X — Y be functions satisfying for all (z,y) € Q. Since Q satisfies (C1), for
given x,y € X, there exists t € X such that
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2D1(z,y) =2f(x +y) +2h(t) — flz+y+1) - flz+y—1)

+2f(x—y)+2h{t)— flx—y+1t)— flz —y —1)
+f@+ty+t)+ fr—y—1t)—2f(x) - 2h(y +1)
+f@+ty—t)+ fx—y+t)—2f(z) - 2h(y — 1)
+2h(y +1) +2f(0) — fly+1t) — f(—y—1t)
+2h(y —1) +2f(0) — fly—t) — f(—y+1)
+fly+t)+ fly—1t) —2f(y) — 2h(t)

+ =y + )+ f=y—1) = 2f(=y) — 2h(t)
:—D(.'L‘+y,t)—Dl(.T—y,t)+D(IE,y+t>+D1(]),y—t)
_D(O7y+t)_D1<07y_t)+D(y7t)+D<_y7t)7
and
[1D(z+y,t)l <€ |D—y i) <e [D@y+i)l<e [D@y—1t)<e
DO,y + )| <€, [[DO,y—=t)[[<e, [Dy,t)]<e [D(=yt)]<e

Thus, using the triangle inequality, we have
[D1(z, y)|| < 4e
for all z,y € X. Now, by Theorem there exist a unique additive mapping A : X — Y and a unique
quadratic mapping @1 : X — Y such that
100
1£ () = f(0) — A(z) — Qu(2)]| < —~e (22)

for all z € X.
Let Do(x,y) = h(z 4+ y) + h(z — y) — 2h(z) — 2h(y). Since Q satisfies (C2), for given z,y € X, there
exists t' € X such that

2Dy(z,y) = —-D({t',x+y) — D(t',z —y) + DX + z,y) + D(t' — x,y) + 2D(t', z),
and
IDE,z+y)ll <e [DE,z—y)l<e [DE+zy)l<e [|DE -2y <e
12D(t, z)|| < 2e.
Thus, using the triangle inequality, we have
[ D2(z,y)|| < 3e (2.3)

for all ,y € X. Now, by [6l Theorem 1.1}, there exists a unique quadratic mapping Q2 : X — Y such that

1)~ Qa(@)]| < e (24)

for all x € X. It remains to prove that 1 = Q2. From condition (C1), for given y € X, there exists t € X
such that

2f(y) +2f(—y) —4f(0) —4f(y) =f(y + 1) + f(—y — t) = 2f(0) — 2h(y + 1)
+ fly —t)+f(—y+t)—2f(0)—2h( —t)
+ 2h(y +t) + 2h(y — t) — 4h(y) — 4h(t)
—fly+t) = fly—1t)+2f(y) + 2h(t)
—f(=y+1t)— f(=y —t) +2f(y) + 2h(?).
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It flows from (2.1 and (2.3) that
1f(y) + f(=y) —2f(0) — 2h(y)| < 5e (2.5)
for all y € X. Using inequalities (2.2)), (2.4 and (2.5)), we have

12Q1(z) = 2Q2(2)|| <[|Q1(2) + A(z) + f(0) = f(@)]| + [|Q1(z) + A(—z) + f(0) — f(—2)]
+ || = 2Q2(2) + 2h(2)|| + [|f(x) + f(—x) — 2f(0) — 2h(z)||
<224
_76,
and using the bi-additivity of )1 and @2, we have Q1 = Q2. This completes the proof. O

Corollary 2.2. Suppose that f,h: X — Y satisfy
fl@+y)+ fle—y) —2f(x) —2h(y) =0 (2.6)

for all (z,y) € Q. Then Eq. (2.6) holds for all x,y € X.

3. Applications

In this section, we construct some sets {2 of measure zero satisfying the conditions (C1) and (C2) when
X = R. The following lemma is a crucial key of the construction given in |20, Theorem 1.6].

Lemma 3.1. The set R of real numbers can be partitioned as
R=FUL,

where F is of first Baire category, that is, F' is a countable union of nowhere dense subsets of R, and L is
of Lebesgue measure 0.

Lemma 3.2 ([6]). Let L be a subset of R of measure 0 such that L¢ := R\ L is of first Baire category. Then,
for any countable subsets S C R, T'C R\{0} and d > 0, there exists A > d such that

S+AN'={s+Ar:s5e€S,7€T} C L. (3.1)

Theorem 3.3. Let Q = e *5 (L x L) be the rotation of L x L by =*. Then Q satisfies the conditions (C1)
and (C2) which has two-dimensional Lebesque measure 0.

Proof. Let Q = e "3 (L x L), that is,
V3 V3

1 1
Q={(p,q)eR?: =p—~"qe L, ~~p+—-qe L}
{(p,q) 5P~ 54 5 Pt 54 }

Then (2 satisfies all the conditions (C1) and (C2). Let z,y,t,t' € R and let

P%yﬂf = {(x + yat)7 ((E - yat)v (.%’,y + t)? (‘T’y - t)? (07y + t)? (07 Yy— t)v (y,t), (_ya t)},

and
Quy ={(,x+y), (", x —y), ' +z,y), " —z,y), ', 2)}

Then by the construction of Q, (C1) is equivalent to the condition that for every x,y € R there exists
t € R such that

5P, CLxL. (3.2)
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Equation (3.2)) is equivalent to
1 V3 V3 1

By = {ip_ 5 ¢ 71?4' 54" (p,q) € Prys} C L.

The set By is contained in a set of form S + tT', where

1 3 1 V3 1 V3 V3 1 V3 1
== ve (=), (=), — Ly Y Sy Ty 42
S {2(w+y),2(w+y),2(fv y),Q(x y),2x 5 Y 5 SuESY, 2@/},
1
T:{f,ié}.

2779

By Lemma for given z,y € R and d > 0, there exists ¢ > d such that

By CS+1tT C L. (3.3)
Thus 2 satisfies (C1).
Similarly,
1 V3 V3 1
By = {519 5 729‘1‘ 54" (P,q) € Quyr} CS+ t'T C L (3.4)
for some t’ € R, where
V3 1 V3 1 1 V3 V3 1 1 V3
g =1_Y° hl V) ). — Y2y N Sy o V2
=5 @+y), 5@+y), -5 (@-y). 5@ —y), 50— Sy S o+ gy, —50 -,
V3 1 3 1
Tyttt Ty yh
1 V3
T={=-,—}
G2
Then  satisfies (C2). This completes the proof. O

Corollary 3.4. Let a > 0 and Q4 := {(p,q) € Q: |p|+ |q| > a}. Then Q4 satisfies the conditions (C1) and
(C2).

Proof. In view of the proof of Theorem (3.3) and (3.4) imply that for every z,y € R and d > 0 there
exist t,t > d such that

Pryi CQ and @y C €L (3.5)
For given z,y € R, if we take d = a+ |z| + |y| and if ¢, > d, then we have
Pryt C{(p;q) : |pl+ gl > a} and Quyv C {(p,q) : Pl + |g| > a}. (3.6)
It follows from and that for every =,y € R there exist t,¢ € R such that
Pryt CQq and Qg yyp C Qg
Thus €, satisfies (C'1) and (C2). This completes the proof. O

Remark 3.5. As a consequence of Theorem [2.1] and Corollary we obtain the asymptotic behavior of f, h
satisfying

1f(x+y) + f(z —y) —2f(z) = 2h(y)]| = 0, (3.7)

as (z,y) € Q, |z| + |y| = oo.
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Corollary 3.6. Suppose that f,h : R — R satisfy the condition (3.7). Then there exist a unique additive
mapping A : R = R and a unique quadratic mapping @ : R — R such that

f(z) = A(z) + Q(z) + f(0) and h(z) = Q(x)
for all x € R.
Proof. By (83.7)), for each n € N*, there exists a,, > 0

S

|f(z+y) + flx—y) —2f(x) — 2h(y)| <

for all (z,y) € Q, |z|+]y| > an. Note that Qq, = {(p,q) € Q@ : [p|+]g| > an}. By Corollary 3.4} Q2 satisfies
conditions (C'1) and (C2). Thus, by Theorem there exist a unique additive mapping A4,, : R — R and a
unique quadratic mapping 5, : R — R such that

£(@) ~ An(e) ~ Qule) — FO) < 5 (33)
and
h(z) — Qu(x)| < o (39)
" ~ 2n '
for all z € R. Replacing n € N* by m € N* in (3.9)) and using the triangle inequality, we have
3 3
m(Z) — &n S+ < 1
Qn(@) = Qul@) < =+ 5 <3 (3.10)
for all m,n € N* and = € R. For every x € R and k € N*, we have
1 3
Q@) = Qn(@)] = 15|Qm(kz) = Qn(kz)] < 15 (3.11)

Letting k — oo in (3.11]), we get @, = Q. Replacing n € N* by m € N* in (3.8) and using the inequality
(3.10f), we have

100 100 209
Anp(x) — Ay <—4+—+43< —
An(@) = An(a)| < 3o+ 50 +3 < g
for all m,n € N* and « € R. For every x € R and k£ € N*, we have
1 2
() — An(e)| = 1| Am (ko) — Au(k)] < 27 (3.12)
Letting £ — oo in (3.12), we get A,, = A,,. Now, letting n — oo in (3.8) and (3.9), we obtain the
result. O

Remark 3.7. If we define Q C R?" as an appropriate rotation of 2n-product L?” of L, then  has 2n-
dimensional measure 0 and satisfies the conditions (C1) and (C2). Consequently, we obtain the following
theorem.

Theorem 3.8. Suppose that f,h : R™ — Y (Y is a Banach space) satisfy the Pexider quadratic functional
imequality
1f(z+y) + flx—y) —2f(x) = 2h(y)| <€

for all (xz,y) € Q and some constant € > 0. Then there exist a unique additive mapping A : R™ —'Y and a
unique quadratic mapping @ : R™ =Y such that

[f(z) = Alz) = Q(z) = FO)]| < ==,

and

3
1h(z) = Q) < 5

€

for all x € R™.
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Now, we give some corollaries, which are particular cases of Theorem

Corollary 3.9. Suppose that f : X — Y satisfies the Drygas functional inequality

1f(@+y)+ fle—y) =2f(z) = fly) = f(=y) <e

for all (z,y) € Q and some constant € > 0. Then there exist a unique additive mapping A : X — Y and a
unique quadratic mapping @@ : X — Y such that

1f(x) = A(z) = Q(z) — fO)]| < ——e
forx € X.
Proof. Letting 2h(x) = f(z) + f(—z) in Theorem [2.1] we get the desired result. O
Corollary 3.10. Suppose that f : X — Y satisfies
[f(@+y)+ flz—y) —2f(z) = 2f(y)ll <€

for all (z,y) € Q and € > 0 is some constant. Then there exists a unique quadratic mapping Q : X — Y
such that

3
£(2) - Q)| < oe
forx € X.
Proof. Letting h(x) = f(z) in Theorem [2.1] we get the desired result. O

Corollary 3.11. Suppose that f : X — Y satisfies

[f(x+y)+ flz—y)—2f(z)]| < e

for all (z,y) € Q and some constant € > 0. Then there exists a unique additive mapping A : X — Y such
that

209
I7(2) — Ala) — 1(0)] < 2
forx € X.
Proof. Letting h(z) = 0 in Theorem [2.1} we get the desired result. O
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