Stability of Pexiderized quadratic functional equation on a set of measure zero

Iz-iddine EL-Fassia ${ }^{\text {a,* }}$, Abdellatif Chahbia ${ }^{\text {a }}$, Samir Kabbaja ${ }^{\text {a }}$, Choonkil Park ${ }^{\text {b,* }}$
${ }^{a}$ Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco.
${ }^{b}$ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.

Abstract

Let \mathbb{R} be the set of real numbers and Y a Banach space. We prove the Hyers-Ulam stability theorem when $f, h: \mathbb{R} \rightarrow Y$ satisfy the following Pexider quadratic inequality $$
\|f(x+y)+f(x-y)-2 f(x)-2 h(y)\| \leq \epsilon,
$$ in a set $\Omega \subset \mathbb{R}^{2}$ of Lebesgue measure $m(\Omega)=0$. © 2016 All rights reserved. Keywords: Pexider quadratic functional equation, Hyers-Ulam stability, first category Lebesgue measure, Baire category theorem. 2010 MSC: 39B52, 39B82.

1. Introduction and preliminaries

In 1940, Ulam proposed the general Ulam stability problem (see [29]):
Let (G, \cdot) be a group and let $\left(G^{\prime}, \cdot, d\right)$ be a metric group with the metric d. Given $\delta>0$, does there exist $\epsilon>0$ such that if a mapping $h: G \rightarrow G^{\prime}$ satisfies the inequality

$$
d(h(x y), h(x) h(y)) \leq \delta
$$

for all $x, y \in G$, then there is a homomorphism $H: G \rightarrow G^{\prime}$ with

$$
d(h(x), H(x)) \leq \epsilon
$$

for all $x \in G$?

[^0]In 1941, Hyers [13] considered the case of approximately additive mappings $f: E \rightarrow F$, where E and F are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$ and $\epsilon>0$. He proved that there exists a unique additive mapping $T: E \rightarrow F$ satisfying

$$
\|f(x)-T(x)\| \leq \epsilon
$$

for all $x \in E$. Aoki [1] and Bourgin [3] considered the stability problem with unbounded Cauchy differences. In 1978, Th. M. Rassias [23] provided a generalization of Hyers theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. Let $f: E \rightarrow F$ be a mapping from a real normed vector space E into a Banach space F satisfying the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E \backslash\{0\}$, where θ and p are constants with $\theta>0$ and $p \neq 1$. Then there exists a unique additive mapping $T: E \rightarrow F$ such that

$$
\|f(x)-T(x)\| \leq \frac{\theta}{\left|1-2^{p-1}\right|}\|x\|^{p}
$$

for all $x \in E \backslash\{0\}$.
Theorem 1.1 is due to Aoki [1] for $0<p<1$ (see also [23]); Gajda [12] for $p>1$; Hyers [13] for $p=0$ and Th. M. Rassias [24] for $p<0$ (see [27, page 326], and [3]).

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [28], for mappings $f: E \rightarrow F$, where E is a normed space and F is a Banach space. Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain E is replaced by an Abelian group. Czerwik [7] proved the Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors and

We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Drygas equation if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+f(y)+f(-y), \quad x, y \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

The above equation was introduced in [8] in order to obtain a characterization of the quasi-inner-product spaces. Ebanks, Kannappan and Sahoo [9] have obtained the general solution of the Eq. (1.2) as

$$
f(x)=A(x)+Q(x), \quad x \in \mathbb{R}
$$

where $A: \mathbb{R} \rightarrow \mathbb{R}$ is an additive mapping and $Q: \mathbb{R} \rightarrow \mathbb{R}$ is a quadratic mapping.
The stability in the Hyers-Ulam sense of the Drygas equation has been investigated by Jung and Sahoo in [16].

Theorem $1.2([16])$. Let $f, g: E \rightarrow F$ be a mapping from a real normed vector space E into a Banach space F satisfying the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-g(2 y)\| \leq \epsilon, \quad x, y \in E
$$

for same $\epsilon>0$, then there exist a unique additive function $A: E \rightarrow F$ and a unique quadratic function $Q: E \rightarrow F$ such that

$$
\|f(x)-A(x)-2 Q(x)-f(0)\| \leq \frac{37 \epsilon}{6}
$$

and

$$
\|g(x)-Q(x)\| \leq \frac{13 \epsilon}{3}
$$

for all $x \in E$. If, in particular, f satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-f(y)-f(-y)\| \leq \epsilon, \quad x, y \in E
$$

then there exist a unique additive function $A: E \rightarrow F$ and a unique quadratic function $Q: E \rightarrow F$ such that

$$
\|f(x)-A(x)-Q(x)\| \leq \frac{25 \epsilon}{3}
$$

for allx $\in E$.
Piszczek and Szczawińska [22] obtained the stability of the equation (1.2) on a restricted domain. In 2013, Chung [5] investigated the stability of a conditional Cauchy equation on a set of measure zero.

In 2014, Chung and J. M. Rassias [6] proved the stability of the quadratic functional equation (1.1) in a set of measure zero.

Throughout this paper, let X be a normed space and Y a Banach space.
Our aim is to prove the Hyers-Ulam stability on a set Lebesgue measure 0 of the Pexider quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 h(y) \tag{1.3}
\end{equation*}
$$

where $f, h: X \rightarrow Y$ are functions. Using the result, we obtain an asymptotic behavior of the equation.

2. Stability of the Eq. (1.3) in set of measure zero

Throughout this section, we assume that $\Omega \subset X^{2}$ satisfies the following conditions: for given $x, y \in X$ there exist $t, t^{\prime} \in X$ such that
(C1) $\{(x+y, t),(x-y, t),(x, y+t),(x, y-t),(0, y+t),(0, y-t),(y, t),(-y, t)\} \subset \Omega$;
(C2) $\left\{\left(t^{\prime}, x+y\right),\left(t^{\prime}, x-y\right),\left(t^{\prime}+x, y\right),\left(t^{\prime}-x, y\right),\left(t^{\prime}, x\right)\right\} \subset \Omega$.
We prove the Ulam-Hyers stability of 1.3 in Ω.
Theorem 2.1. Suppose that $f, h: X \rightarrow Y$ satisfy the following Pexider quadratic functional inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 h(y)\| \leq \epsilon \tag{2.1}
\end{equation*}
$$

for all $(x, y) \in \Omega$ and some constant $\epsilon \geq 0$. Then there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-A(x)-Q(x)-f(0)\| \leq \frac{100}{3} \epsilon
$$

and

$$
\|h(x)-Q(x)\| \leq \frac{3}{2} \epsilon
$$

for all $x \in X$.
Proof. Let $D(x, y)=f(x+y)+f(x-y)-2 f(x)-2 h(y), D_{1}(x, y)=f(x+y)+f(x-y)-2 f(x)-f(y)-$ $f(-y)+2 f(0)$ and $f, h: X \rightarrow Y$ be functions satisfying (2.1) for all $(x, y) \in \Omega$. Since Ω satisfies ($C 1$), for given $x, y \in X$, there exists $t \in X$ such that

$$
\begin{aligned}
2 D_{1}(x, y)= & 2 f(x+y)+2 h(t)-f(x+y+t)-f(x+y-t) \\
& +2 f(x-y)+2 h(t)-f(x-y+t)-f(x-y-t) \\
& +f(x+y+t)+f(x-y-t)-2 f(x)-2 h(y+t) \\
& +f(x+y-t)+f(x-y+t)-2 f(x)-2 h(y-t) \\
& +2 h(y+t)+2 f(0)-f(y+t)-f(-y-t) \\
& +2 h(y-t)+2 f(0)-f(y-t)-f(-y+t) \\
& +f(y+t)+f(y-t)-2 f(y)-2 h(t) \\
& +f(-y+t)+f(-y-t)-2 f(-y)-2 h(t) \\
= & -D(x+y, t)-D_{1}(x-y, t)+D(x, y+t)+D_{1}(x, y-t) \\
& -D(0, y+t)-D_{1}(0, y-t)+D(y, t)+D(-y, t)
\end{aligned}
$$

and

$$
\begin{aligned}
& \|D(x+y, t)\| \leq \epsilon, \quad\|D(x-y, t)\| \leq \epsilon, \quad\|D(x, y+t)\| \leq \epsilon, \quad\|D(x, y-t)\| \leq \epsilon \\
& \|D(0, y+t)\| \leq \epsilon, \quad\|D(0, y-t)\| \leq \epsilon, \quad\|D(y, t)\| \leq \epsilon, \quad\|D(-y, t)\| \leq \epsilon
\end{aligned}
$$

Thus, using the triangle inequality, we have

$$
\left\|D_{1}(x, y)\right\| \leq 4 \epsilon
$$

for all $x, y \in X$. Now, by Theorem 1.2 , there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $Q_{1}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f(x)-f(0)-A(x)-Q_{1}(x)\right\| \leq \frac{100}{3} \epsilon \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
Let $D_{2}(x, y)=h(x+y)+h(x-y)-2 h(x)-2 h(y)$. Since Ω satisfies $(C 2)$, for given $x, y \in X$, there exists $t^{\prime} \in X$ such that

$$
2 D_{2}(x, y)=-D\left(t^{\prime}, x+y\right)-D\left(t^{\prime}, x-y\right)+D\left(t^{\prime}+x, y\right)+D\left(t^{\prime}-x, y\right)+2 D\left(t^{\prime}, x\right)
$$

and

$$
\begin{aligned}
& \left\|D\left(t^{\prime}, x+y\right)\right\| \leq \epsilon, \quad\left\|D\left(t^{\prime}, x-y\right)\right\| \leq \epsilon, \quad\left\|D\left(t^{\prime}+x, y\right)\right\| \leq \epsilon, \quad\left\|D\left(t^{\prime}-x, y\right)\right\| \leq \epsilon \\
& \left\|2 D\left(t^{\prime}, x\right)\right\| \leq 2 \epsilon
\end{aligned}
$$

Thus, using the triangle inequality, we have

$$
\begin{equation*}
\left\|D_{2}(x, y)\right\| \leq 3 \epsilon \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$. Now, by [6, Theorem 1.1], there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|h(x)-Q_{2}(x)\right\| \leq \frac{3}{2} \epsilon \tag{2.4}
\end{equation*}
$$

for all $x \in X$. It remains to prove that $Q_{1}=Q_{2}$. From condition (C1), for given $y \in X$, there exists $t \in X$ such that

$$
\begin{aligned}
2 f(y)+2 f(-y)-4 f(0)-4 f(y)= & f(y+t)+f(-y-t)-2 f(0)-2 h(y+t) \\
& +f(y-t)+f(-y+t)-2 f(0)-2 h(y-t) \\
& +2 h(y+t)+2 h(y-t)-4 h(y)-4 h(t) \\
& -f(y+t)-f(y-t)+2 f(y)+2 h(t) \\
& -f(-y+t)-f(-y-t)+2 f(y)+2 h(t) .
\end{aligned}
$$

It flows from (2.1) and (2.3) that

$$
\begin{equation*}
\|f(y)+f(-y)-2 f(0)-2 h(y)\| \leq 5 \epsilon \tag{2.5}
\end{equation*}
$$

for all $y \in X$. Using inequalities (2.2), 2.4) and (2.5), we have

$$
\begin{aligned}
\left\|2 Q_{1}(x)-2 Q_{2}(x)\right\| \leq & \left\|Q_{1}(x)+A(x)+f(0)-f(x)\right\|+\left\|Q_{1}(x)+A(-x)+f(0)-f(-x)\right\| \\
& +\left\|-2 Q_{2}(x)+2 h(x)\right\|+\|f(x)+f(-x)-2 f(0)-2 h(x)\| \\
\leq & \frac{224}{3} \epsilon
\end{aligned}
$$

and using the bi-additivity of Q_{1} and Q_{2}, we have $Q_{1}=Q_{2}$. This completes the proof.
Corollary 2.2. Suppose that $f, h: X \rightarrow Y$ satisfy

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(x)-2 h(y)=0 \tag{2.6}
\end{equation*}
$$

for all $(x, y) \in \Omega$. Then $E q$. (2.6) holds for all $x, y \in X$.

3. Applications

In this section, we construct some sets Ω of measure zero satisfying the conditions $(C 1)$ and ($C 2$) when $X=\mathbb{R}$. The following lemma is a crucial key of the construction given in [20, Theorem 1.6].

Lemma 3.1. The set \mathbb{R} of real numbers can be partitioned as

$$
\mathbb{R}=F \cup L
$$

where F is of first Baire category, that is, F is a countable union of nowhere dense subsets of \mathbb{R}, and L is of Lebesgue measure 0.

Lemma $3.2([6])$. Let L be a subset of \mathbb{R} of measure 0 such that $L^{c}:=\mathbb{R} \backslash L$ is of first Baire category. Then, for any countable subsets $S \subset \mathbb{R}, T \subset \mathbb{R} \backslash\{0\}$ and $d>0$, there exists $\lambda \geq d$ such that

$$
\begin{equation*}
S+\lambda T=\{s+\lambda \tau: s \in S, \tau \in T\} \subset L \tag{3.1}
\end{equation*}
$$

Theorem 3.3. Let $\Omega=e^{-i \frac{\pi}{3}}(L \times L)$ be the rotation of $L \times L$ by $\frac{-\pi}{3}$. Then Ω satisfies the conditions $(C 1)$ and (C2) which has two-dimensional Lebesgue measure 0.
Proof. Let $\Omega=e^{-i \frac{\pi}{3}}(L \times L)$, that is,

$$
\Omega=\left\{(p, q) \in \mathbb{R}^{2}: \frac{1}{2} p-\frac{\sqrt{3}}{2} q \in L, \frac{\sqrt{3}}{2} p+\frac{1}{2} q \in L\right\}
$$

Then Ω satisfies all the conditions (C1) and (C2). Let $x, y, t, t^{\prime} \in \mathbb{R}$ and let

$$
P_{x, y, t}=\{(x+y, t),(x-y, t),(x, y+t),(x, y-t),(0, y+t),(0, y-t),(y, t),(-y, t)\}
$$

and

$$
Q_{x, y, t^{\prime}}=\left\{\left(t^{\prime}, x+y\right),\left(t^{\prime}, x-y\right),\left(t^{\prime}+x, y\right),\left(t^{\prime}-x, y\right),\left(t^{\prime}, x\right)\right\}
$$

Then by the construction of $\Omega,(C 1)$ is equivalent to the condition that for every $x, y \in \mathbb{R}$ there exists $t \in \mathbb{R}$ such that

$$
\begin{equation*}
e^{i \frac{\pi}{3}} P_{x, y, t} \subset L \times L \tag{3.2}
\end{equation*}
$$

Equation (3.2) is equivalent to

$$
B_{1}:=\left\{\frac{1}{2} p-\frac{\sqrt{3}}{2} q, \frac{\sqrt{3}}{2} p+\frac{1}{2} q:(p, q) \in P_{x, y, t}\right\} \subset L .
$$

The set B_{1} is contained in a set of form $S+t T$, where

$$
\begin{aligned}
S & =\left\{\frac{1}{2}(x+y), \frac{\sqrt{3}}{2}(x+y), \frac{1}{2}(x-y), \frac{\sqrt{3}}{2}(x-y), \frac{1}{2} x-\frac{\sqrt{3}}{2} y, \frac{\sqrt{3}}{2} x+\frac{1}{2} y, \pm \frac{\sqrt{3}}{2} y, \pm \frac{1}{2} y\right\} \\
T & =\left\{ \pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right\} .
\end{aligned}
$$

By Lemma 3.2, for given $x, y \in \mathbb{R}$ and $d>0$, there exists $t \geq d$ such that

$$
\begin{equation*}
B_{1} \subset S+t T \subset L . \tag{3.3}
\end{equation*}
$$

Thus Ω satisfies ($C 1$).
Similarly,

$$
\begin{equation*}
B_{2}:=\left\{\frac{1}{2} p-\frac{\sqrt{3}}{2} q, \frac{\sqrt{3}}{2} p+\frac{1}{2} q:(p, q) \in Q_{x, y, t^{\prime}}\right\} \subset S+t^{\prime} T \subset L \tag{3.4}
\end{equation*}
$$

for some $t^{\prime} \in \mathbb{R}$, where

$$
\begin{aligned}
& S=\{ -\frac{\sqrt{3}}{2}(x+y), \frac{1}{2}(x+y),-\frac{\sqrt{3}}{2}(x-y), \frac{1}{2}(x-y), \frac{1}{2} x-\frac{\sqrt{3}}{2} y, \frac{\sqrt{3}}{2} x+\frac{1}{2} y,-\frac{1}{2} x-\frac{\sqrt{3}}{2} y, \\
&\left.-\frac{\sqrt{3}}{2} x+\frac{1}{2} y,-\frac{\sqrt{3}}{2} x, \frac{1}{2} x\right\}, \\
& T=\left\{\frac{1}{2}, \frac{\sqrt{3}}{2}\right\} .
\end{aligned}
$$

Then Ω satisfies ($C 2$). This completes the proof.
Corollary 3.4. Let $\alpha>0$ and $\Omega_{\alpha}:=\{(p, q) \in \Omega:|p|+|q| \geq \alpha\}$. Then Ω_{α} satisfies the conditions (C1) and (C2).

Proof. In view of the proof of Theorem (3.3, (3.3) and (3.4) imply that for every $x, y \in \mathbb{R}$ and $d>0$ there exist $t, t^{\prime} \geq d$ such that

$$
\begin{equation*}
P_{x, y, t} \subset \Omega \text { and } Q_{x, y, t^{\prime}} \subset \Omega . \tag{3.5}
\end{equation*}
$$

For given $x, y \in \mathbb{R}$, if we take $d=\alpha+|x|+|y|$ and if $t, t^{\prime} \geq d$, then we have

$$
\begin{equation*}
P_{x, y, t} \subset\{(p, q):|p|+|q| \geq \alpha\} \text { and } Q_{x, y, t^{\prime}} \subset\{(p, q):|p|+|q| \geq \alpha\} . \tag{3.6}
\end{equation*}
$$

It follows from (3.5) and (3.6) that for every $x, y \in \mathbb{R}$ there exist $t, t^{\prime} \in \mathbb{R}$ such that

$$
P_{x, y, t} \subset \Omega_{\alpha} \text { and } Q_{x, y, t^{\prime}} \subset \Omega_{\alpha} .
$$

Thus Ω_{α} satisfies (C1) and (C2). This completes the proof.
Remark 3.5. As a consequence of Theorem 2.1 and Corollary 3.4, we obtain the asymptotic behavior of f, h satisfying

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 h(y)\| \rightarrow 0 \tag{3.7}
\end{equation*}
$$

as $(x, y) \in \Omega,|x|+|y| \rightarrow \infty$.

Corollary 3.6. Suppose that $f, h: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the condition 3.7). Then there exist a unique additive mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ and a unique quadratic mapping $Q: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=A(x)+Q(x)+f(0) \text { and } h(x)=Q(x)
$$

for all $x \in \mathbb{R}$.
Proof. By (3.7), for each $n \in \mathbb{N}^{*}$, there exists $\alpha_{n}>0$

$$
|f(x+y)+f(x-y)-2 f(x)-2 h(y)| \leq \frac{1}{n}
$$

for all $(x, y) \in \Omega,|x|+|y| \geq \alpha_{n}$. Note that $\Omega_{\alpha_{n}}:=\left\{(p, q) \in \Omega:|p|+|q| \geq \alpha_{n}\right\}$. By Corollary 3.4, $\Omega_{\alpha_{n}}$ satisfies conditions $(C 1)$ and $(C 2)$. Thus, by Theorem 2.1, there exist a unique additive mapping $A_{n}: \mathbb{R} \rightarrow \mathbb{R}$ and a unique quadratic mapping $Q_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left|f(x)-A_{n}(x)-Q_{n}(x)-f(0)\right| \leq \frac{100}{3 n} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h(x)-Q_{n}(x)\right| \leq \frac{3}{2 n} \tag{3.9}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Replacing $n \in \mathbb{N}^{*}$ by $m \in \mathbb{N}^{*}$ in (3.9) and using the triangle inequality, we have

$$
\begin{equation*}
\left|Q_{m}(x)-Q_{n}(x)\right| \leq \frac{3}{2 n}+\frac{3}{2 m} \leq 3 \tag{3.10}
\end{equation*}
$$

for all $m, n \in \mathbb{N}^{*}$ and $x \in \mathbb{R}$. For every $x \in \mathbb{R}$ and $k \in \mathbb{N}^{*}$, we have

$$
\begin{equation*}
\left|Q_{m}(x)-Q_{n}(x)\right|=\frac{1}{k^{2}}\left|Q_{m}(k x)-Q_{n}(k x)\right| \leq \frac{3}{k^{2}} \tag{3.11}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in (3.11), we get $Q_{m}=Q_{n}$. Replacing $n \in \mathbb{N}^{*}$ by $m \in \mathbb{N}^{*}$ in (3.8) and using the inequality (3.10), we have

$$
\left|A_{m}(x)-A_{n}(x)\right| \leq \frac{100}{3 m}+\frac{100}{3 n}+3 \leq \frac{209}{3}
$$

for all $m, n \in \mathbb{N}^{*}$ and $x \in \mathbb{R}$. For every $x \in \mathbb{R}$ and $k \in \mathbb{N}^{*}$, we have

$$
\begin{equation*}
\left|A_{m}(x)-A_{n}(x)\right|=\frac{1}{k}\left|A_{m}(k x)-A_{n}(k x)\right| \leq \frac{209}{3 k} \tag{3.12}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in (3.12), we get $A_{m}=A_{n}$. Now, letting $n \rightarrow \infty$ in (3.8) and (3.9), we obtain the result.

Remark 3.7. If we define $\Omega \subset \mathbb{R}^{2 n}$ as an appropriate rotation of $2 n$-product $L^{2 n}$ of L, then Ω has $2 n$ dimensional measure 0 and satisfies the conditions $(C 1)$ and $(C 2)$. Consequently, we obtain the following theorem.

Theorem 3.8. Suppose that $f, h: \mathbb{R}^{n} \rightarrow Y$ (Y is a Banach space) satisfy the Pexider quadratic functional inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 h(y)\| \leq \epsilon
$$

for all $(x, y) \in \Omega$ and some constant $\epsilon \geq 0$. Then there exist a unique additive mapping $A: \mathbb{R}^{n} \rightarrow Y$ and a unique quadratic mapping $Q: \mathbb{R}^{n} \rightarrow Y$ such that

$$
\|f(x)-A(x)-Q(x)-f(0)\| \leq \frac{100}{3} \epsilon
$$

and

$$
\|h(x)-Q(x)\| \leq \frac{3}{2} \epsilon
$$

for all $x \in \mathbb{R}^{n}$.

Now, we give some corollaries, which are particular cases of Theorem 2.1.
Corollary 3.9. Suppose that $f: X \rightarrow Y$ satisfies the Drygas functional inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-f(y)-f(-y)\| \leq \epsilon
$$

for all $(x, y) \in \Omega$ and some constant $\epsilon \geq 0$. Then there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-A(x)-Q(x)-f(0)\| \leq \frac{100}{3} \epsilon
$$

for $x \in X$.
Proof. Letting $2 h(x)=f(x)+f(-x)$ in Theorem 2.1, we get the desired result.
Corollary 3.10. Suppose that $f: X \rightarrow Y$ satisfies

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \epsilon
$$

for all $(x, y) \in \Omega$ and $\epsilon \geq 0$ is some constant. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{3}{2} \epsilon
$$

for $x \in X$.
Proof. Letting $h(x)=f(x)$ in Theorem 2.1, we get the desired result.
Corollary 3.11. Suppose that $f: X \rightarrow Y$ satisfies

$$
\|f(x+y)+f(x-y)-2 f(x)\| \leq \epsilon
$$

for all $(x, y) \in \Omega$ and some constant $\epsilon \geq 0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)-f(0)\| \leq \frac{209}{6} \epsilon
$$

for $x \in X$.
Proof. Letting $h(x)=0$ in Theorem 2.1, we get the desired result.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. 1 . 1
[2] L. R. Berrone, P-means and the solution of a functional equation involving Cauchy differences, Results Math., 68 (2015), 375-393. 1
[3] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223-237. 11
[4] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86. 1
[5] J.-Y. Chung, Stability of a conditional Cauchy equation on a set of measure zero, Aequationes Math., 87 (2014), 391-400. 1
[6] J.-Y. Chung, J. M. Rassias, Quadratic functional equations in a set of Lebesgue measure zero, J. Math. Anal. Appl., 419 (2014), 1065-1075. 1, 2, 3.2
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. 1
[8] H. Drygas, Quasi-inner products and their applications, in: Advances in multivariate statistical analysis: Pillai Memorial Volume, Springer Netherlands, (1987), 13-30. 1
[9] B. R. Ebanks, Pl. Kannappan, P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull., 35 (1992), 321-327. 1
[10] Iz. El-Fassi, S. Kabbaj, Hyers-Ulam-Rassias stability of orthogonal quadratic functional equation in modular space, General Math. Notes, 26 (2015), 61-73. 1
[11] Iz. El-Fassi, S. Kabbaj, On the generalized orthogonal stability of the Pexiderized quadratic functional equation in modular space, Math. Slovaca, (to appear). 1
[12] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434. 1
[13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), $222-224$. 1. 1
[14] K.-W. Jun, H.-M. Kim, On the stability of an n-dimensional quadratic and additive functional equation, Math. Inequal. Appl., 9 (2006), 153-165. 1
[15] S.-M. Jung, Z.-H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl., 2008 (2008), 11 pages. 1
[16] S.-M. Jung, P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math., 64 (2002), 263-273. 1. 1.2
[17] H. Khadaei, On the stability of additive, quadratic, cubic and quartic set-valued functional equations, Results Math., 68 (2015), 1-10. 1
[18] M. Mirzavaziri, M. S. Moslehian, A fixed point approach to stability of quadratic equation, Bull. Brazil. Math. Soc., 37 (2006), 361-376.
[19] S. A. Mohiuddine, H. Sevli, Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space, J. Comput. Appl. Math., 235 (2011), 2137-2146. 1
[20] J. C. Oxtoby, Measure and Category, A survey of the analogies between topological and measure spaces: Second edition, Springer-Verlag, New York-Berlin, (1980). 3
[21] C. Park, T. M. Rassias, Fixed points and generalized Hyers-Ulam stability of quadratic functional equations, J. Math. Inequal., 1 (2007), 515-528. 1
[22] M. Piszczek, J. Szczawińska, Stability of the Drygas functional equation on restricted domain, Results Math., 68 (2015), 11-24. 1
[23] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 1, 1
[24] T. M. Rassias, On a modified HyersUlam sequence, J. Math. Anal. Appl., 158 (1991), 106-113. 1
[25] T. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babe-Bolyai Math., 43 (1998), 89-124. 1
[26] T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-130. 1
[27] T. M. Rassias, P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989-993. 1
[28] F. Skof, Propriet locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano, 53 (1983), 113-129. 1 ,
[29] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, (1961). 1

[^0]: *Corresponding author
 Email addresses: lzidd-math@hotmail.fr (Iz-iddine EL-Fassi), ab_1980@live.fr (Abdellatif Chahbi), samkabbaj@yahoo.fr (Samir Kabbaj), baak@hanyang.ac.kr (Choonkil Park)

 Received 2015-12-14

