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Abstract

Let R be the set of real numbers and Y a Banach space. We prove the Hyers-Ulam stability theorem
when f, h : R→ Y satisfy the following Pexider quadratic inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2h(y)‖ ≤ ε,

in a set Ω ⊂ R2 of Lebesgue measure m(Ω) = 0. c©2016 All rights reserved.
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1. Introduction and preliminaries

In 1940, Ulam proposed the general Ulam stability problem (see [29]):
Let (G, ·) be a group and let (G′, ·, d) be a metric group with the metric d. Given δ > 0, does there exist

ε > 0 such that if a mapping h : G→ G′ satisfies the inequality

d(h(xy), h(x)h(y)) ≤ δ

for all x, y ∈ G, then there is a homomorphism H : G→ G′ with

d(h(x), H(x)) ≤ ε

for all x ∈ G?
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In 1941, Hyers [13] considered the case of approximately additive mappings f : E → F, where E and F
are Banach spaces and f satisfies Hyers inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E and ε > 0. He proved that there exists a unique additive mapping T : E → F satisfying

‖f(x)− T (x)‖ ≤ ε

for all x ∈ E. Aoki [1] and Bourgin [3] considered the stability problem with unbounded Cauchy differences.
In 1978, Th. M. Rassias [23] provided a generalization of Hyers theorem which allows the Cauchy difference
to be unbounded.

Theorem 1.1. Let f : E → F be a mapping from a real normed vector space E into a Banach space F
satisfying the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ E\{0}, where θ and p are constants with θ > 0 and p 6= 1. Then there exists a unique additive
mapping T : E → F such that

‖f(x)− T (x)‖ ≤ θ

|1− 2p−1|
‖x‖p

for all x ∈ E\{0}.

Theorem 1.1 is due to Aoki [1] for 0 < p < 1 (see also [23]); Gajda [12] for p > 1; Hyers [13] for p = 0
and Th. M. Rassias [24] for p < 0 (see [27, page 326], and [3]).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation
was proved by Skof [28], for mappings f : E → F , where E is a normed space and F is a Banach space.
Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain E is replaced by an Abelian
group. Czerwik [7] proved the Hyers-Ulam stability of the quadratic functional equation. The stability
problems of several functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [2, 10, 11, 14, 15, 17–19, 21, 25, 26]).

We say that a function f : R→ R satisfies the Drygas equation if

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ R. (1.2)

The above equation was introduced in [8] in order to obtain a characterization of the quasi-inner-product
spaces. Ebanks, Kannappan and Sahoo [9] have obtained the general solution of the Eq. (1.2) as

f(x) = A(x) +Q(x), x ∈ R,

where A : R→ R is an additive mapping and Q : R→ R is a quadratic mapping.
The stability in the Hyers-Ulam sense of the Drygas equation has been investigated by Jung and Sahoo

in [16].

Theorem 1.2 ([16]). Let f, g : E → F be a mapping from a real normed vector space E into a Banach
space F satisfying the inequality

‖f(x+ y) + f(x− y)− 2f(x)− g(2y)‖ ≤ ε, x, y ∈ E
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for same ε > 0, then there exist a unique additive function A : E → F and a unique quadratic function
Q : E → F such that

‖f(x)−A(x)− 2Q(x)− f(0)‖ ≤ 37ε

6
,

and

‖g(x)−Q(x)‖ ≤ 13ε

3

for allx ∈ E. If, in particular, f satisfies the inequality

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖ ≤ ε, x, y ∈ E,

then there exist a unique additive function A : E → F and a unique quadratic function Q : E → F such that

‖f(x)−A(x)−Q(x)‖ ≤ 25ε

3

for allx ∈ E.

Piszczek and Szczawińska [22] obtained the stability of the equation (1.2) on a restricted domain. In
2013, Chung [5] investigated the stability of a conditional Cauchy equation on a set of measure zero.

In 2014, Chung and J. M. Rassias [6] proved the stability of the quadratic functional equation (1.1) in
a set of measure zero.

Throughout this paper, let X be a normed space and Y a Banach space.
Our aim is to prove the Hyers-Ulam stability on a set Lebesgue measure 0 of the Pexider quadratic

functional equation
f(x+ y) + f(x− y) = 2f(x) + 2h(y), (1.3)

where f, h : X → Y are functions. Using the result, we obtain an asymptotic behavior of the equation.

2. Stability of the Eq. (1.3) in set of measure zero

Throughout this section, we assume that Ω ⊂ X2 satisfies the following conditions: for given x, y ∈ X
there exist t, t′ ∈ X such that

(C1) {(x+ y, t), (x− y, t), (x, y + t), (x, y − t), (0, y + t), (0, y − t), (y, t), (−y, t)} ⊂ Ω;

(C2) {(t′, x+ y), (t′, x− y), (t′ + x, y), (t′ − x, y), (t′, x)} ⊂ Ω.

We prove the Ulam-Hyers stability of (1.3) in Ω.

Theorem 2.1. Suppose that f, h : X → Y satisfy the following Pexider quadratic functional inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2h(y)‖ ≤ ε (2.1)

for all (x, y) ∈ Ω and some constant ε ≥ 0. Then there exist a unique additive mapping A : X → Y and a
unique quadratic mapping Q : X → Y such that

‖f(x)−A(x)−Q(x)− f(0)‖ ≤ 100

3
ε,

and

‖h(x)−Q(x)‖ ≤ 3

2
ε

for all x ∈ X.

Proof. Let D(x, y) = f(x+ y) + f(x− y)− 2f(x)− 2h(y), D1(x, y) = f(x+ y) + f(x− y)− 2f(x)− f(y)−
f(−y) + 2f(0) and f, h : X → Y be functions satisfying (2.1) for all (x, y) ∈ Ω. Since Ω satisfies (C1), for
given x, y ∈ X, there exists t ∈ X such that
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2D1(x, y) =2f(x+ y) + 2h(t)− f(x+ y + t)− f(x+ y − t)
+ 2f(x− y) + 2h(t)− f(x− y + t)− f(x− y − t)
+ f(x+ y + t) + f(x− y − t)− 2f(x)− 2h(y + t)

+ f(x+ y − t) + f(x− y + t)− 2f(x)− 2h(y − t)
+ 2h(y + t) + 2f(0)− f(y + t)− f(−y − t)
+ 2h(y − t) + 2f(0)− f(y − t)− f(−y + t)

+ f(y + t) + f(y − t)− 2f(y)− 2h(t)

+ f(−y + t) + f(−y − t)− 2f(−y)− 2h(t)

=−D(x+ y, t)−D1(x− y, t) +D(x, y + t) +D1(x, y − t)
−D(0, y + t)−D1(0, y − t) +D(y, t) +D(−y, t),

and
‖D(x+ y, t)‖ ≤ ε, ‖D(x− y, t)‖ ≤ ε, ‖D(x, y + t)‖ ≤ ε, ‖D(x, y − t)‖ ≤ ε,

‖D(0, y + t)‖ ≤ ε, ‖D(0, y − t)‖ ≤ ε, ‖D(y, t)‖ ≤ ε, ‖D(−y, t)‖ ≤ ε.

Thus, using the triangle inequality, we have

‖D1(x, y)‖ ≤ 4ε

for all x, y ∈ X. Now, by Theorem 1.2, there exist a unique additive mapping A : X → Y and a unique
quadratic mapping Q1 : X → Y such that

‖f(x)− f(0)−A(x)−Q1(x)‖ ≤ 100

3
ε (2.2)

for all x ∈ X.
Let D2(x, y) = h(x + y) + h(x − y) − 2h(x) − 2h(y). Since Ω satisfies (C2), for given x, y ∈ X, there

exists t′ ∈ X such that

2D2(x, y) = −D(t′, x+ y)−D(t′, x− y) +D(t′ + x, y) +D(t′ − x, y) + 2D(t′, x),

and

‖D(t′, x+ y)‖ ≤ ε, ‖D(t′, x− y)‖ ≤ ε, ‖D(t′ + x, y)‖ ≤ ε, ‖D(t′ − x, y)‖ ≤ ε,
‖2D(t′, x)‖ ≤ 2ε.

Thus, using the triangle inequality, we have

‖D2(x, y)‖ ≤ 3ε (2.3)

for all x, y ∈ X. Now, by [6, Theorem 1.1], there exists a unique quadratic mapping Q2 : X → Y such that

‖h(x)−Q2(x)‖ ≤ 3

2
ε (2.4)

for all x ∈ X. It remains to prove that Q1 = Q2. From condition (C1), for given y ∈ X, there exists t ∈ X
such that

2f(y) + 2f(−y)− 4f(0)− 4f(y) =f(y + t) + f(−y − t)− 2f(0)− 2h(y + t)

+ f(y − t) + f(−y + t)− 2f(0)− 2h(y − t)
+ 2h(y + t) + 2h(y − t)− 4h(y)− 4h(t)

− f(y + t)− f(y − t) + 2f(y) + 2h(t)

− f(−y + t)− f(−y − t) + 2f(y) + 2h(t).
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It flows from (2.1) and (2.3) that

‖f(y) + f(−y)− 2f(0)− 2h(y)‖ ≤ 5ε (2.5)

for all y ∈ X. Using inequalities (2.2), (2.4) and (2.5), we have

‖2Q1(x)− 2Q2(x)‖ ≤‖Q1(x) +A(x) + f(0)− f(x)‖+ ‖Q1(x) +A(−x) + f(0)− f(−x)‖
+ ‖ − 2Q2(x) + 2h(x)‖+ ‖f(x) + f(−x)− 2f(0)− 2h(x)‖

≤224

3
ε,

and using the bi-additivity of Q1 and Q2, we have Q1 = Q2. This completes the proof.

Corollary 2.2. Suppose that f, h : X → Y satisfy

f(x+ y) + f(x− y)− 2f(x)− 2h(y) = 0 (2.6)

for all (x, y) ∈ Ω. Then Eq. (2.6) holds for all x, y ∈ X.

3. Applications

In this section, we construct some sets Ω of measure zero satisfying the conditions (C1) and (C2) when
X = R. The following lemma is a crucial key of the construction given in [20, Theorem 1.6].

Lemma 3.1. The set R of real numbers can be partitioned as

R = F ∪ L,

where F is of first Baire category, that is, F is a countable union of nowhere dense subsets of R, and L is
of Lebesgue measure 0.

Lemma 3.2 ([6]). Let L be a subset of R of measure 0 such that Lc := R\L is of first Baire category. Then,
for any countable subsets S ⊂ R, T ⊂ R\{0} and d > 0, there exists λ ≥ d such that

S + λT = {s+ λτ : s ∈ S, τ ∈ T} ⊂ L. (3.1)

Theorem 3.3. Let Ω = e−i
π
3 (L× L) be the rotation of L× L by −π3 . Then Ω satisfies the conditions (C1)

and (C2) which has two-dimensional Lebesgue measure 0.

Proof. Let Ω = e−i
π
3 (L× L), that is,

Ω = {(p, q) ∈ R2 :
1

2
p−
√

3

2
q ∈ L,

√
3

2
p+

1

2
q ∈ L}.

Then Ω satisfies all the conditions (C1) and (C2). Let x, y, t, t′ ∈ R and let

Px,y,t = {(x+ y, t), (x− y, t), (x, y + t), (x, y − t), (0, y + t), (0, y − t), (y, t), (−y, t)},

and
Qx,y,t′ = {(t′, x+ y), (t′, x− y), (t′ + x, y), (t′ − x, y), (t′, x)}.

Then by the construction of Ω, (C1) is equivalent to the condition that for every x, y ∈ R there exists
t ∈ R such that

ei
π
3 Px,y,t ⊂ L× L. (3.2)
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Equation (3.2) is equivalent to

B1 := {1

2
p−
√

3

2
q,

√
3

2
p+

1

2
q : (p, q) ∈ Px,y,t} ⊂ L.

The set B1 is contained in a set of form S + tT , where

S = {1

2
(x+ y),

√
3

2
(x+ y),

1

2
(x− y),

√
3

2
(x− y),

1

2
x−
√

3

2
y,

√
3

2
x+

1

2
y,±
√

3

2
y,±1

2
y},

T = {±1

2
,±
√

3

2
}.

By Lemma 3.2, for given x, y ∈ R and d > 0, there exists t ≥ d such that

B1 ⊂ S + tT ⊂ L. (3.3)

Thus Ω satisfies (C1).
Similarly,

B2 := {1

2
p−
√

3

2
q,

√
3

2
p+

1

2
q : (p, q) ∈ Qx,y,t′} ⊂ S + t′T ⊂ L (3.4)

for some t′ ∈ R, where

S = {−
√

3

2
(x+ y),

1

2
(x+ y),−

√
3

2
(x− y),

1

2
(x− y),

1

2
x−
√

3

2
y,

√
3

2
x+

1

2
y,−1

2
x−
√

3

2
y,

−
√

3

2
x+

1

2
y,−
√

3

2
x,

1

2
x},

T = {1

2
,

√
3

2
}.

Then Ω satisfies (C2). This completes the proof.

Corollary 3.4. Let α > 0 and Ωα := {(p, q) ∈ Ω : |p|+ |q| ≥ α}. Then Ωα satisfies the conditions (C1) and
(C2).

Proof. In view of the proof of Theorem 3.3, (3.3) and (3.4) imply that for every x, y ∈ R and d > 0 there
exist t, t′ ≥ d such that

Px,y,t ⊂ Ω and Qx,y,t′ ⊂ Ω. (3.5)

For given x, y ∈ R, if we take d = α+ |x|+ |y| and if t, t′ ≥ d, then we have

Px,y,t ⊂ {(p, q) : |p|+ |q| ≥ α} and Qx,y,t′ ⊂ {(p, q) : |p|+ |q| ≥ α}. (3.6)

It follows from (3.5) and (3.6) that for every x, y ∈ R there exist t, t′ ∈ R such that

Px,y,t ⊂ Ωα and Qx,y,t′ ⊂ Ωα.

Thus Ωα satisfies (C1) and (C2). This completes the proof.

Remark 3.5. As a consequence of Theorem 2.1 and Corollary 3.4, we obtain the asymptotic behavior of f, h
satisfying

‖f(x+ y) + f(x− y)− 2f(x)− 2h(y)‖ → 0, (3.7)

as (x, y) ∈ Ω, |x|+ |y| → ∞.
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Corollary 3.6. Suppose that f, h : R → R satisfy the condition (3.7). Then there exist a unique additive
mapping A : R→ R and a unique quadratic mapping Q : R→ R such that

f(x) = A(x) +Q(x) + f(0) and h(x) = Q(x)

for all x ∈ R.

Proof. By (3.7), for each n ∈ N∗, there exists αn > 0

|f(x+ y) + f(x− y)− 2f(x)− 2h(y)| ≤ 1

n

for all (x, y) ∈ Ω, |x|+|y| ≥ αn. Note that Ωαn := {(p, q) ∈ Ω : |p|+|q| ≥ αn}. By Corollary 3.4, Ωαn satisfies
conditions (C1) and (C2). Thus, by Theorem 2.1, there exist a unique additive mapping An : R→ R and a
unique quadratic mapping Qn : R→ R such that

|f(x)−An(x)−Qn(x)− f(0)| ≤ 100

3n
, (3.8)

and

|h(x)−Qn(x)| ≤ 3

2n
(3.9)

for all x ∈ R. Replacing n ∈ N∗ by m ∈ N∗ in (3.9) and using the triangle inequality, we have

|Qm(x)−Qn(x)| ≤ 3

2n
+

3

2m
≤ 3 (3.10)

for all m,n ∈ N∗ and x ∈ R. For every x ∈ R and k ∈ N∗, we have

|Qm(x)−Qn(x)| = 1

k2
|Qm(kx)−Qn(kx)| ≤ 3

k2
. (3.11)

Letting k →∞ in (3.11), we get Qm = Qn. Replacing n ∈ N∗ by m ∈ N∗ in (3.8) and using the inequality
(3.10), we have

|Am(x)−An(x)| ≤ 100

3m
+

100

3n
+ 3 ≤ 209

3
for all m,n ∈ N∗ and x ∈ R. For every x ∈ R and k ∈ N∗, we have

|Am(x)−An(x)| = 1

k
|Am(kx)−An(kx)| ≤ 209

3k
. (3.12)

Letting k → ∞ in (3.12), we get Am = An. Now, letting n → ∞ in (3.8) and (3.9), we obtain the
result.

Remark 3.7. If we define Ω ⊂ R2n as an appropriate rotation of 2n-product L2n of L, then Ω has 2n-
dimensional measure 0 and satisfies the conditions (C1) and (C2). Consequently, we obtain the following
theorem.

Theorem 3.8. Suppose that f, h : Rn → Y (Y is a Banach space) satisfy the Pexider quadratic functional
inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2h(y)‖ ≤ ε

for all (x, y) ∈ Ω and some constant ε ≥ 0. Then there exist a unique additive mapping A : Rn → Y and a
unique quadratic mapping Q : Rn → Y such that

‖f(x)−A(x)−Q(x)− f(0)‖ ≤ 100

3
ε,

and

‖h(x)−Q(x)‖ ≤ 3

2
ε

for all x ∈ Rn.
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Now, we give some corollaries, which are particular cases of Theorem 2.1.

Corollary 3.9. Suppose that f : X → Y satisfies the Drygas functional inequality

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖ ≤ ε

for all (x, y) ∈ Ω and some constant ε ≥ 0. Then there exist a unique additive mapping A : X → Y and a
unique quadratic mapping Q : X → Y such that

‖f(x)−A(x)−Q(x)− f(0)‖ ≤ 100

3
ε

for x ∈ X.

Proof. Letting 2h(x) = f(x) + f(−x) in Theorem 2.1, we get the desired result.

Corollary 3.10. Suppose that f : X → Y satisfies

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε

for all (x, y) ∈ Ω and ε ≥ 0 is some constant. Then there exists a unique quadratic mapping Q : X → Y
such that

‖f(x)−Q(x)‖ ≤ 3

2
ε

for x ∈ X.

Proof. Letting h(x) = f(x) in Theorem 2.1, we get the desired result.

Corollary 3.11. Suppose that f : X → Y satisfies

‖f(x+ y) + f(x− y)− 2f(x)‖ ≤ ε

for all (x, y) ∈ Ω and some constant ε ≥ 0. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)− f(0)‖ ≤ 209

6
ε

for x ∈ X.

Proof. Letting h(x) = 0 in Theorem 2.1, we get the desired result.
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