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1. Introduction

The Banach contraction principle which shows that every contractive mapping has a unique fixed point
in a complete metric space has been extended in many directions ([1–16, 18–22]). One of the branches
of this theory is devoted to the study of common fixed points. In 1966, Jungck [12] initially investigated
common fixed points for commuting mappings in metric spaces. The concept of commuting mappings has
been weakened in various directions and in several ways over the years. One such notion which is weaker
than commuting is the concept of compatibility introduced by Jungck [13]. Subsequently, several authors
have obtained coincidence and common fixed point results for mappings, utilizing this concept and its
generalizations, see [1, 4, 7, 11, 14, 19] and references therein.

On the other hand, there are a lot of fixed and common fixed point results in different types of spaces.
For example, cone metric spaces [10], fuzzy metric spaces [2], uniform spaces [21], noncommutative Banach
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spaces [22], and so on. In 2007, Huang and Zhang [10] introduced cone metric spaces which generalized
metric spaces, and obtained various fixed point theorems for contractive mappings. The existence of a
common fixed point on cone metric spaces was investigated recently in [1, 6, 11, 14]. Very recently, Ma et
al. in [16] introduced a concept of C∗-algebra-valued metric spaces and presented some fixed point results
for mappings under contractive or expansive conditions in these spaces.

In this paper, we will continue to study common fixed points in the frame of C∗-algebra-valued metric
spaces. More precisely, we prove some common fixed point theorems for two mappings under a different
contractive conditions. The presented theorems extend and improve some recent results given in [16].
In addition, we establish the existence and uniqueness theorem of a common solution for some integral
equations.

Throughout this paper, the letter A will denote a unital C∗-algebra. Set Ah = {a ∈ A : a = a∗}. We
call an element a ∈ A a positive element, denote it by 0A � a, if a = a∗ and σ(a) ⊆ [0,+∞), where 0A is
the zero element in A and σ(a) is the spectrum of a. There is a natural partial ordering on Ah given by
a � b if and only if 0A � b− a. From now on, A+ and A′ will denote the set {a ∈ A : 0A � a} and the set
{a ∈ A : ab = ba,∀b ∈ A}, respectively.

Let us recall the following definitions and results which will be needed in what follows. For more details,
one can see [16].

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X ×X → A is defined with the
following properties:

(1) 0A � d(x, y) for all x and y in X;

(2) d(x, y) = 0A if and only if x = y;

(3) d(x, y) = d(y, x) for all x and y in X;

(4) d(x, y) � d(x, z) + d(z, y) for all x, y and z in X.

Then d is said to be a C∗-algebra-valued metric on X, and (X,A, d) is said to be a C∗-algebra-valued metric
space.

Definition 1.2. Suppose that (X,A, d) is a C∗-algebra-valued metric space. Let {xn}∞n=1 be a sequence in

X and x ∈ X. If d(xn, x)
‖·‖A−→ 0A (n → ∞), then it is said that {xn} converges to x, and we denote it by

lim
n→∞

xn = x. If for any p ∈ N, d(xn+p, xn)
‖·‖A−→ 0A (n→∞), then {xn} is called a Cauchy sequence in X.

If every Cauchy sequence is convergent in X, then (X,A, d) is called a complete C∗-algebra-valued metric
space.

It is obvious that any Banach space must be a complete C∗-algebra-valued metric space. Moreover,
C∗-algebra-valued metric spaces generalize normed linear spaces and metric spaces.

Definition 1.3. Let Y be a subset of X. If (Y,A, d) is a complete C∗-algebra-valued metric space, then we
say that Y is complete in X.

Example 1.4. Let X = R and A = M2(C), the set of bounded linear operators on a Hilbert space C2.

Define d : X ×X → A by d(x, y) =

[
|x− y| 0

0 k|x− y|

]
, where k > 0 is a constant. Then, (X,A, d) is a

complete C∗-algebra-valued metric space. If we choose Y = [0, 1] ⊆ X, we can show Y is complete in X. If
Y = (−∞, 0) ∪ (0,+∞), then Y is not complete in X. Indeed, taking {xn} ⊆ Y such that xn = 1

n , we get

d(xn, 0) =

[
1
n 0

0 k
n

]
‖·‖A−→ 0A, which means xn → 0 /∈ Y (n→∞).

Lemma 1.5.

(1) If {bn}∞n=1 ⊆ A and lim
n→∞

bn = 0A, then for any a ∈ A, lim
n→∞

a∗bna = 0A.

(2) If a, b ∈ Ah and c ∈ A′+, then a � b deduces ca � cb, where A′+ = A+ ∩ A′.
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(3) Let {xn}∞n=1 be a sequence in X. If {xn} converges to x and y, respectively, then x = y. That is, the
limit of a convergent sequence in a C∗-algebra-valued metric space is unique.

Proof.

(1) By the following relation ‖a∗bna− 0A‖ 6 ‖a‖2‖bn‖, we can get the desired result.

(2) a � b implies b− a ∈ A+, and then there is d ∈ A+ such that b− a = d2. Again, c ∈ A′+, then c = e2

for some e ∈ A′+. Note that

cb− ca = c(b− a) = e2d2 = eded = (ed)∗ed ∈ A+,

which shows ca � cb.

(3) Using the triangle inequality, we get

d(x, y) � d(xn, x) + d(xn, y),

which, together with lim
n→∞

xn = x and lim
n→∞

xn = y, deduces d(x, y)
‖·‖A−→ 0A (n→∞). Hence d(x, y) =

0A, and then x = y.

Remark 1.6. In Lemma 1.5 (2), the element c ∈ A′+ is necessary. For example, let a =

[
0 3
3 1

]
, b =[

1 1
1 6

]
and c =

[
1 1
1 1

]
. One can show that

(i) a, b ∈ Ah, with a � b since b− a =

[
1 −2
−2 5

]
∈ A+.

(ii) c ∈ A+ but c /∈ A′.

(iii) Since cb− ca =

[
−1 3
−1 3

]
, we know that cb− ca /∈ A+.

The following definition extends the concept of compatible mappings of Jungck [13], from metric spaces
to C∗-algebra-valued metric spaces.

Definition 1.7. The two mappings T and S on a C∗-algebra-valued metric space (X,A, d) is said to
be compatible, if for arbitrary sequence {xn}∞n=1 ⊆ X, such that lim

n→∞
Txn = lim

n→∞
Sxn = t ∈ X, then

d(TSxn, STxn)
‖·‖A−→ 0A (n→∞).

Definition 1.8. Let T and S be two mappings of the set X.

(1) If x = Tx = Sx for some x ∈ X, then x is called a common fixed point of T and S.

(2) If z = Tx = Sx for some z ∈ X, then x is called a coincidence point of T and S, and z is called a
point of coincidence of T and S.

(3) If T and S commute at all of their coincidence points, that is, TSx = STx for all x ∈ {x ∈ X : Tx =
Sx}, then T and S are called weakly compatible.

In metric spaces if the mappings T and S are compatible, then they are weakly compatible, while the
converse is not true [13]. The same holds for the C∗-algebra-valued metric spaces.

Lemma 1.9. If the mappings T and S on the C∗-algebra-valued metric space (X,A, d) are compatible, then
they are weakly compatible.
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Proof. Let Tx = Sx for some x ∈ X. It suffices to show that TSx = STx. Putting xn ≡ x for every n ∈ N,

we have lim
n→∞

Txn = lim
n→∞

Sxn, and then, since T and S are compatible, we have d(TSxn, STxn)
‖·‖A−→ 0A

(n → ∞), that is, ‖d(TSxn, STxn)‖ −→ 0 (n → ∞). Hence d(TSx, STx) = 0A, which means TSx =
STx.

The converse does not hold. For example, let X = [0, 4] and A = M2(C). Define d : X × X → A by

d(x, y) =

[
|x− y| 0

0 k|x− y|

]
, where k > 0 is a constant. Then (X,A, d) is a C∗-algebra-valued metric

space. Set

Tx =

{
3− x x ∈ [0, 32 ],

3 x ∈ (32 , 4],
Sx =

{
2x x ∈ (1, 2],

x x ∈ [0, 1] ∪ (2, 4].

Firstly, we can compute that the set of their coincidence points is singleton set {3}, and then we have T
and S commute at this point. Hence, T and S are weakly compatible. However, we can show they are
not compatible. In order to do this, we construct a sequence {xn} ⊆ X such that xn = 1 + 1

n ∈ X for
n ∈ N with n > 2. In this case, we have Txn = 3 − (1 + 1

n) = 2 − 1
n , and Sxn = 2(1 + 1

n) = 2 + 2
n . Then

lim
n→∞

Txn = lim
n→∞

Sxn = 2. In fact, we have

d(Txn, 2) = d(2− 1

n
, 2) =

[
1
n 0
0 k 1

n

]
‖·‖A−→ 0A (n→∞)

and

d(Sxn, 2) = d(2 +
2

n
, 2) =

[
2
n 0
0 k 2

n

]
‖·‖A−→ 0A (n→∞).

But

d(TSxn, STxn) = d(T (2 +
2

n
), S(2− 1

n
)) = d(3, 4− 2

n
) =

[
|1− 2

n | 0
0 k|1− 2

n |

]
‖·‖A−→

[
1 0
0 k

]
,

which means that d(TSxn, STxn)
‖·‖A9 0A.

The following lemma can be seen in [1].

Lemma 1.10. Let T and S be weakly compatible mappings of a set X. If T and S have a unique point of
coincidence, then it is the unique common fixed point of T and S.

2. Main results

In this section, we give some common fixed point theorems for two mappings satisfying various contractive
conditions in complete C∗-algebra-valued metric spaces.

Theorem 2.1. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that two mappings
T, S : X → X satisfy

d(Tx, Sy) � a∗d(x, y)a for any x, y ∈ X, (2.1)

where a ∈ A with ‖a‖ < 1. Then T and S have a unique common fixed point in X.

Proof. Let x0 ∈ X and construct a sequence {xn}∞n=0 ⊆ X by the way: x2n+1 = Tx2n, x2n+2 = Sx2n+1.
From (2.1), we get

d(x2n+2, x2n+1) =d(Sx2n+1, Tx2n)

�a∗d(x2n+1, x2n)a
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�(a∗)2d(x2n, x2n−1)a
2

...

�(a∗)2n+1d(x1, x0)a
2n+1,

where we use the property: if b, c ∈ Ah, then b � c implies a∗ba � a∗ca (Theorem 2.2.5 in [17]).
Similarly,

d(x2n+1, x2n) = d(Tx2n, Sx2n−1)

� a∗d(x2n, x2n−1)a

...

� (a∗)2nd(x1, x0)a
2n.

Now, we can obtain for any n ∈ N

d(xn+1, xn) � (a∗)nd(x1, x0)a
n,

then for any p ∈ N, the triangle inequality tells that

d(xn+p, xn) �d(xn+p, xn+p−1) + d(xn+p−1, xn+p−2) + · · ·+ d(xn+1, xn)

�
n+p−1∑
k=n

(a∗)kd(x1, x0)a
k

�
n+p−1∑
k=n

(bak)∗bak

�
n+p−1∑
k=n

|bak|2

�
n+p−1∑
k=n

‖|bak|2‖1A

�‖b‖21A
n+p−1∑
k=n

‖ak‖2 → 0A (n→∞),

where 1A is the unit element in A and d(x1, x0) = b2 for some b ∈ A+, this can be done since d(x1, x0) ∈ A+

(Theorem 2.2.1 in [17]).
From Definition 1.2, we get that {xn}∞n=1 is a Cauchy sequence in X. The completion of X implies that

there exists x ∈ X such that lim
n→∞

xn = x.

Now, using the triangle inequality and (2.1),

d(x, Sx) � d(x, x2n+1) + d(x2n+1, Sx)

� d(x, x2n+1) + d(Tx2n, Sx)

� d(x, x2n+1) + a∗d(x2n, x)a.

Taking n → ∞, the right hand side of the above inequality approaches 0A (Lemma 1.5 (1)), and then
Sx = x. Again, noting that

0A � d(Tx, x) = d(Tx, Sx) � a∗d(x, x)a = 0A,
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we have d(Tx, x) = 0A, which means Tx = x.
In the following we will show the uniqueness of common fixed points in X. For this purpose, assume

that there is another point y ∈ X such that Ty = Sy = y. From (2.1), we know

d(x, y) = d(Tx, Sy) � a∗d(x, y)a,

which together with ‖a‖ < 1 yields that

0 6 ‖d(x, y)‖ 6 ‖a‖2‖d(x, y)‖ < ‖d(x, y)‖.

Thus, ‖d(x, y)‖ = 0 and d(x, y) = 0A, which gives y = x. Hence, T and S have a unique common fixed
point in X.

If one checks the proof of Theorem 2.1, one can easily obtain the following result.

Corollary 2.2. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that the mappings
T, S : X → X satisfy

‖d(Tx, Sy)‖ 6 ‖a‖‖d(x, y)‖ for any x, y ∈ X,

where a ∈ A with ‖a‖ < 1. Then, T and S have a unique common fixed point in X.

Corollary 2.3. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that the mapping
T : X → X satisfies

d(Tmx, Tny) � a∗d(x, y)a for any x, y ∈ X,

where a ∈ A with ‖a‖ < 1, and m and n are fixed positive integers. Then T has a unique fixed point in X.

Proof. By setting T = Tm and S = Tn in (2.1), we know Tm and Tn has a common unique fixed point x
from Theorem 2.1. Notice that

Tm(Tx) = T (Tmx) = Tx and Tn(Tx) = T (Tnx) = Tx,

which show Tx is also a common fixed point of Tm and Tn. By the uniqueness of common fixed points for
Tm and Tn, we obtain that Tx = x. Again, since the fixed point of T is also the fixed point of Tm and Tn,
the fixed point of T is unique.

Remark 2.4. In Theorem 2.1, if S = T , (2.1) becomes

d(Tx, Ty) � a∗d(x, y)a for any x, y ∈ X, (2.2)

where a ∈ A with ‖a‖ < 1. In this case, we have the following corollary, which can also be found in [16].

Corollary 2.5. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that the mapping
T : X → X satisfies (2.2), then T has a unique fixed point in X.

Theorem 2.6. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that two mappings
T, S : X → X satisfy

d(Tx, Ty) � a∗d(Sx, Sy)a for any x, y ∈ X, (2.3)

where a ∈ A with ‖a‖ < 1. If R(T ) is contained in R(S) and R(S) is complete in X, then T and S have a
unique point of coincidence in X. Furthermore, if T and S are weakly compatible, T and S have a unique
common fixed point in X.

Proof. Let x0 ∈ X. Choose x1 ∈ X such that Sx1 = Tx0, which can be done since R(T ) ⊆ R(S). Let x2 ∈ X
such that Sx2 = Tx1. Repeating the process, we get a sequence {xn}∞n=1 in X satisfying Sxn = Txn−1.
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Then from (2.3),

d(Sxn+1, Sxn) =d(Txn, Txn−1)

�a∗d(Sxn, Sxn−1)a

...

�(a∗)nd(Sx1, Sx0)a
n,

which shows that {Sxn}∞n=1 is a Cauchy sequence in R(S). Since R(S) is complete in X, there exists q ∈ X
such that lim

n→∞
Sxn = Sq.

d(Sxn, T q) = d(Txn−1, T q) � a∗d(Sxn−1, Sq)a.

From lim
n→∞

Sxn = Sq and Lemma 1.5 (1), we get a∗d(Sxn−1, Sq)a→ 0A as n→∞, and then lim
n→∞

Sxn = Tq.

It follows from Lemma 1.5 (3) that Tq = Sq. If there is a point w in X such that Tw = Sw, equation (2.3)
shows

d(Sq, Sw) = d(Tq, Tw) � a∗d(Sq, Sw)a.

The same reasoning that in Theorem 2.1 tells us that Sq = Sw. Hence, T and S have a unique point of
coincidence in X. It follows from Lemma 1.10 that T and S have a unique common fixed point in X.

Example 2.7. In Theorem 2.6, the condition that “R(S) is complete in X” is essential. For example, Let

X = R and A = M2(C). Define d : X × X → A by d(x, y) =

[
|x− y| 0

0 k|x− y|

]
, where k > 0 is a

constant. Then (X,A, d) is a complete C∗-algebra-valued metric space. Define two mappings T and S by
the following way

Tx =

{
k
2x x 6= 0,

1 x = 0,
and Sx =

{
kx x 6= 0,

2 x = 0.

One can verify that

d(Tx, Ty) � a∗d(Sx, Sy)a,

where a =

[ √
2
2 0

0
√
2
2

]
∈ A and ‖a‖ =

√
2
2 ∈ (0, 1). And, R(T ) ⊆ R(S). But R(S) is not complete in X.

We can compute that T and S do not have a point of coincidence in X.

Theorem 2.8. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that two mappings
T, S : X → X satisfy

d(Tx, Ty) � ad(Tx, Sx) + ad(Ty, Sy) for any x, y ∈ X, (2.4)

where a ∈ A′+ with ‖a‖ < 1
2 . If R(T ) is contained in R(S) and R(S) is complete in X, then T and S have

a unique coincidence point in X. Furthermore, if T and S are weakly compatible, T and S have a unique
common fixed point in X.

Proof. Similar to Theorem 2.6, construct a sequence {xn}∞n=1 in X such that Sxn = Txn−1. Then from
(2.4),

d(Sxn+1, Sxn) =d(Txn, Txn−1)

�ad(Txn, Sxn) + ad(Txn−1, Sxn−1)

=ad(Sxn+1, Sxn) + ad(Sxn, Sxn−1),
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which implies that
(1A − a)d(Sxn+1, Sxn) � ad(Sxn, Sxn−1).

Since ‖a‖ < 1
2 , then 1A − a is invertible, and can be expressed as (1A − a)−1 =

∞∑
n=0

an, which together with

a ∈ A′+ can yields (1A − a)−1 ∈ A′+. By Lemma 1.5 (2), we know

d(Sxn+1, Sxn) � bd(Sxn, Sxn−1),

where b = (1A − a)−1a ∈ A′+ with ‖b‖ < 1. Now, by induction and Lemma 1.5 (2), we can get

d(Sxn+1, Sxn) � bnd(Sx1, Sx0).

For n > m,

d(Sxn, Sxm) �d(Sxn, Sxn−1) + d(Sxn−1, Sxn−2) · · · d(Sxm+1, Sxm)

�(bn−1 + bn−2 + · · ·+ bm)d(Sx1, Sx0)

�‖bn−1 + bn−2 + · · ·+ bm‖‖d(Sx1, Sx0)‖1A
�(‖b‖n−1 + ‖b‖n−2 + · · ·+ ‖b‖m‖)d(Sx1, Sx0)‖1A

� ‖b‖
m

1− ‖b‖
‖d(Sx1, Sx0)‖1A.

Hence {Sxn}∞n=0 is a Cauchy sequence in R(S). The completion of R(S) implies there is q ∈ X such that
lim
n→∞

Sxn = Sq.

Again, by (2.4), we have

d(Sxn, T q) =d(Txn−1, T q)

�ad(Txn−1, Sxn−1) + ad(Tq, Sq)

�ad(Txn−1, T q) + ad(Sxn−1, T q) + ad(Sxn, T q) + ad(Sxn, Sq)

�2ad(Sxn, T q) + ad(Sxn−1, T q) + ad(Sxn, Sq),

which shows that
(1A − 2a)d(Sxn, T q) � ad(Sxn−1, T q) + ad(Sxn, Sq).

Since ‖a‖ < 1
2 , then 1A − 2a is invertible, which together with a ∈ A′+ can yields (1A − 2a)−1 ∈ A′+. By

Lemma 1.5 (2), we know

d(Sxn, T q) � (1A − 2a)−1ad(Sxn−1, T q) + (1A − 2a)−1ad(Sxn, Sq),

and then, lim
n→∞

Sxn = Tq. The uniqueness of a limit in C∗-algebra-valued metric spaces tells us that Tq = Sq

(Lemma 1.5 (3)). Hence T and S have a coincidence point in X. In the following we will show the uniqueness
of coincidence points. To do this, we assume that there is p ∈ X such that Tp = Sp. Using (2.4), we obtain

d(Sp, Sq) = d(Tp, Tq) � ad(Tp, Sp) + ad(Tq, Sq),

which shows that ‖d(Sp, Sq)‖ = 0, and then Sp = Sq. It follows from Lemma 1.10 that T and S have a
unique common fixed point in X.

Theorem 2.9. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that two mappings
T, S : X → X satisfy

d(Tx, Ty) � ad(Tx, Sy) + ad(Sx, Ty) for any x, y ∈ X, (2.5)

where a ∈ A′+ with ‖a‖ < 1
2 . If R(T ) is contained in R(S) and R(S) is complete in X, then T and S have

a unique point of coincidence in X. Furthermore, if T and S are weakly compatible, T and S have a unique
common fixed point in X.
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Proof. Similar to Theorem 2.6, construct a sequence {xn}∞n=1 in X such that Sxn = Txn−1. Then from
(2.5),

d(Sxn+1, Sxn) =d(Txn, Txn−1)

�ad(Txn, Sxn−1) + ad(Sxn, Txn−1)

=ad(Sxn+1, Sxn−1) + ad(Sxn, Sxn)

�ad(Sxn+1, Sxn) + ad(Sxn, Sxn−1),

which implies that
d(Sxn+1, Sxn) � bd(Sxn, Sxn−1),

where b = (1A − a)−1a ∈ A′+ with ‖b‖ < 1. According to the same argument in Theorem 2.8, we know T
and S have a coincidence point Tq in X. In the following we will show the uniqueness of coincidence points.
To do this, we assume that there is p ∈ X such that Tp = Sp. Using (2.5), we obtain

d(Sp, Sq) = d(Tp, Tq) � ad(Tp, Sq) + ad(Sp, Tq) = 2ad(Sp, Sq),

which together with ‖2a‖ < 1 yields that ‖d(Sp, Sq)‖ = 0, and then Sp = Sq. It follows from Lemma 1.10
that T and S have a unique common fixed point in X.

In Theorem 2.9, we choose S = idX , then R(S) = X, and T is weakly compatible with S. Moreover, we
have the following consequence, which can also be seen in [16].

Corollary 2.10. Let (X,A, d) be a complete C∗-algebra-valued metric space. Suppose that the mapping
T : X → X satisfies

d(Tx, Ty) � ad(Tx, y) + ad(Ty, x) for any x, y ∈ X,

where a ∈ A′+ with ‖a‖ < 1
2 , then T have a unique point in X.

Fixed point theorems for operators in metric spaces are widely investigated and have found various
applications in differential and integral equations [3, 9]. As an application, let us consider the following
system of integral equations

x(t) =

∫
E
K1(t, s, x(s))ds+ g(t), t ∈ E,

x(t) =

∫
E
K2(t, s, x(s))ds+ g(t), t ∈ E,

(2.6)

where E is a Lebesgue measurable set and m(E) <∞.

Theorem 2.11. Assume that the following hypotheses hold

(1) K1 : E × E × R→ R, K2 : E × E × R→ R are integrable, and g ∈ L∞(E);

(2) there exist k ∈ (0, 1) and a continuous function ϕ : E × E → R+ such that

|K1(t, s, u)−K2(t, s, v)| ≤ kϕ(t, s)|u− v|

for t, s ∈ E and u, v ∈ R;

(3) sup
t∈E

∫
E ϕ(t, s)ds ≤ 1.

Then, the integral equations (2.6) have a unique common solution in L∞(E).
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Proof. Let X = L∞(E) be the set of essentially bounded measurable functions on E and B(L2(E)) be
the set of bounded linear operators on a Hilbert space L2(E). Consider d : X × X → B(L2(E)) defined
by d(f, g) = M|f−g|, where M|f−g| is the multiplication operator on L2(E). Then (X,B(L2(E)), d) is a
complete C∗-algebra-valued metric space.

Define T, S : X → X by

T (x(t)) =

∫
E
K1(t, s, x(s))ds+ g(t), t ∈ E,

S(x(t)) =

∫
E
K2(t, s, x(s))ds+ g(t), t ∈ E.

Notice that

‖d(Tx, Sy)‖ = sup
‖ϕ‖=1

(M|Tx−Sy|ϕ,ϕ)

=
∑
‖ϕ‖=1

∫
E
|
∫
E

(K1(t, s, x(s))−K2(t, s, y(s)))ds|ϕ(t)ϕ(t)dt

6 sup
‖ϕ‖=1

∫
E

∫
E
|K1(t, s, x(s))−K2(t, s, y(s))|dsϕ(t)ϕ(t)dt

6 sup
‖ϕ‖=1

k

∫
E

∫
E
ϕ(t, s)|x(s)− y(s)|dsϕ(t)ϕ(t)dt

6 sup
‖ϕ‖=1

k

∫
E

∫
E
ϕ(t, s)ds|ϕ(t)|2dt‖x− y‖∞

6k sup
t∈E

∫
E
ϕ(t, s)ds sup

‖ϕ‖=1

∫
E
|ϕ(t)|2dt‖x− y‖∞

6k‖d(x, y)‖.

Thus, it is verified that the mappings T and S satisfy all the conditions of Corollary 2.2, and then T and
S have a unique common fixed point, which is equivalent to that the integral equations (2.6) have a unique
common solution in L2(E).
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