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Abstract

We define the multivalued Reich (G, ρ)-contraction mappings on a modular function space. Then we
obtain sufficient conditions for the existence of fixed points for such mappings. As an application, we
introduce a ρ-valued Bernstein operator on the set of functions f : [0, 1] → Lρ and then give the modular
analogue to Kelisky-Rivlin theorem. c©2016 All rights reserved.
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1. Introduction

Generalizing the Banach contraction principle for multivalued mapping to metric spaces, Nadler [13]
obtained the following result:

Theorem 1.1 ([13]). Let (X, d) be a complete metric space. Denote by CB(X ) the set of all nonempty closed
bounded subsets of X. Let F : X → CB(X ) be a multivalued mapping. If there exists k ∈ [0, 1) such that

H(F (x), F (y)) ≤ k d(x, y)

for all x, y ∈ X, where H is the Hausdorff-Pompeiu distance on CB(X ), then F has a fixed point in X, that
is, there exists x ∈ X such that x ∈ T (x).
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A number of extensions and generalizations of Nadler’s fixed point theorem were obtained by different
authors; see for instance [6, 10] and references cited therein. Rand and Reurings [14] extended the Banach
contraction principle to partially ordered metric spaces. Therefore, it was natural to find an extension of
Nadler’s fixed point theorem to partially ordered metric spaces. Beg and Butt [3] gave the first attempt.
But their definition of multivalued monotone mappings was not correct which had the effect that the proof
of their version of Nadler’s fixed point theorem was wrong (see for example [2]).

Let (X, d) be a metric space. The Hausdorff-Pompeiu distance H is defined by

H(A,B) = max
{

sup
b∈B

inf
a∈A

d(b, a), sup
a∈A

inf
b∈B

d(a, b)
}

for any A,B ∈ CB(X ). The following technical result is useful to explain why we only deal with the regular
metric distance instead of Hausdorff-Pompeiu distance H.

Lemma 1.2 ([13]). Let (X, d) be a metric space. For any A,B ∈ CB(X ) and ε > 0, and for any a ∈ A,
there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

Denote by C(X ) the family of all nonempty closed subsets of X. In [11], Mizoguchi and Takahashi
obtained a modified version of the following result:

Theorem 1.3. Let (X, d) be a complete metric space. Let T : X → C(X ) be a Reich contraction mapping,
that is, there exists k : (0,+∞) → [0, 1) with lim sups→t+ k(s) < 1, for any t ∈ [0,+∞), such that for any
x, y ∈ X and a ∈ T (x), there exists b ∈ T (y) such that

d(a, b) ≤ k(d(x, y)) d(x, y).

Then T has a fixed point.

The aim of this paper is to extend such a result to the case of modular function spaces endowed with a
graph. A number of related results of modular function spaces were obtained by different authors; see for
instance [1, 12]. Before giving the results, we need to lie out some definitions, notations and facts about the
background spaces. More information can be found in [9].

2. Preliminaries

Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let P be a δ-ring of subsets of
Σ, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ. Let us assume that there exists an increasing sequence
of sets Kn ∈ P such that Ω =

⋃
Kn. By E we denote the linear space of all simple functions with supports

from P. By M∞ we will denote the space of all extended Σ-measurable functions on Ω. By 1A we denote
the characteristic function of the set A. We say that a set A ∈ Σ is ρ-null if ρ(g1A) = 0 for every g ∈ E . We
say that a property holds ρ-almost everywhere if the exceptional set is ρ-null. As usual we identify any pair
of measurable sets whose symmetric difference is ρ-null as well as any pair of measurable functions differing
only on a ρ-null set. With this in mind we define

M(Ω,Σ,P, ρ) = {f ∈M∞ : |f(ω)| < +∞ ρ− a.e. ω ∈ Ω}, (2.1)

where each f ∈ M(Ω,Σ,P, ρ) is actually an equivalence class of functions equal ρ-a.e. rather than an
individual function. For simplicity, we write M instead of M(Ω,Σ,P, ρ).

Definition 2.1 ([9]). Let ρ be a regular function pseudomodular. We say that ρ is a regular function
modular if ρ(f) = 0 implies f = 0 ρ− a.e. for every f ∈M. We denote by < the class of all nonzero regular
function modulars defined on Ω.
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Definition 2.2 ([9]). Let ρ be a function modular. A modular function space is the vector space Lρ(Ω,Σ),
or briefly Lρ, defined by

Lρ = {f ∈M : ρ(λf)→ 0 as λ→ 0}.

Definition 2.3 ([9]). Let ρ ∈ <. We say that ρ satisfies the ∆2-type condition if there exists k ∈ [0,+∞)
such that

ρ(2f) ≤ k ρ(f), for every f ∈ Lρ.

Definition 2.4 ([9]). Let ρ ∈ <:

(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if ρ(fn − f)→ 0.

(b) A sequence {fn} in Lρ is called ρ-Cauchy if ρ(fn − fm)→ 0 as n,m→∞.
(c) A set B ⊂ Lρ is called ρ-closed if for every sequence of fn ∈ B and every f ∈ Lρ the convergence

fn → f (ρ) implies that f belongs to B.

Let us note that ρ-convergence does not necessarily imply ρ-Cauchy condition. Also, fn → f does not
imply in general that λfn → λf for every λ > 1.

Proposition 2.5 ([9]). Let ρ ∈ <. Then we have the following:

(i) Lρ is ρ-complete, that is, every ρ-Cauchy sequence in Lρ is ρ-convergent.

(ii) If {fn}n≥1 is a monotone increasing (resp. decreasing) ρ-Cauchy sequence in Lρ, then there exists
f ∈ Lρ such that ρ(fn − f)→ 0 and fn ≤ f ρ-a.e. (resp. f ≤ fn ρ-a.e.).

The following technical lemma is essential to prove our main result.

Lemma 2.6 ([4]). Let ρ ∈ < be convex and satisfies the ∆2-type condition. Let {fn} be a sequence in Lρ
such that

ρ(fn+1 − fn) ≤ K αn, n = 1, . . . ,

where K > 0 and α ∈ (0, 1) are arbitrary constants. Then {fn} is ρ-Cauchy.

We conclude this section with the graph theory terminology that needed throughout. A directed graph
G is an ordered triple (V (G), E(G), IG) where V (G) is a nonempty set called the set of vertices of G, E(G)
is a possibly empty set, called the set of edges of G and IG is an incidence map that associates with each
edge of G an ordered pair of vertices of G. If e is an edge of G, and IG(e) = (u, u) for some u ∈ V (G), then
e is called a loop. If E(G) contains all the loops, then G is reflexive.

As Jachymski did in [7], we introduce the following property:

Property 1. For any sequence {fn}n∈N in C ⊆ Lρ, if fn ρ-converges to f and (fn, fn+1) ∈ E(G) for n ∈ N,
then there exists a subsequence {fϕ(n)} of {fn} such that (fϕ(n), f) ∈ E(G), for every n ∈ N.

We close this section by defining the Reich (G, ρ)-contraction mapping on a modular metric space Lρ.

Definition 2.7. Let ρ ∈ < and C be a nonempty subset of Lρ. The multivalued map T : C → C(C) is said
to be Reich (G, ρ)-contraction if for every f, g ∈ C such that f 6= g and (f, g) ∈ E(G), we have:

• if u ∈ T (f), there exists v ∈ T (g) such that (u, v) ∈ E(G) and ρ(u− v) ≤ α(ρ(f − g)) ρ(f − g),

where α : (0,+∞)→ [0, 1) satisfies lim sups→t+ α(s) < 1, for any t ∈ [0,+∞).

Definition 2.8. Let T : C → C(C). f is called a fixed point of T if f ∈ T (f).

3. Results and discussions

We are now ready to state our main result of this work. In the sequel, we denote by Cρ(C) the collection
of all nonempty ρ-closed subsets of C.
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Theorem 3.1. Let ρ ∈ <, C ⊆ Lρ be nonempty ρ-closed and G a reflexive directed graph defined on C.
Assume that ρ is convex and satisfies the ∆2-type condition. Let T : C → Cρ(C) be a Reich (G, ρ)-contraction
mapping and CT := {f ∈ C; (f, g) ∈ E(G) for some g ∈ T (f)}. If C has Property 1, then T has a fixed
point provided that CT 6= ∅.

Proof. Assume CT 6= ∅. Let f0 ∈ CT . Then there exists f1 ∈ T (f0) such that (f0, f1) ∈ E(G). If f1 = f0,
then f0 is a fixed point of T . Assume f0 6= f1, then there exists f2 ∈ T (x1) such that

ρ(f1 − f2) ≤ α(ρ(f0 − f1))ρ(f0 − f1).

By induction, we construct a sequence {fn} in C such that fn 6= fn+1, fn+1 ∈ T (fn), (fn, fn+1) ∈ E(G)
and

ρ(fn − fn+1) ≤ α(ρ(fn−1 − fn)) ρ(fn−1 − fn)

for any n ≥ 1. Since α(t) < 1, for any t ∈ [0,+ inf), we conclude that {ρ(fn−fn+1)} is a decreasing sequence
of positive numbers. Let

t = lim
n→+∞

ρ(fn − fn+1) = inf
n∈N

ρ(fn − xn+1).

Since lim sups→t+ α(s) < 1, there exist k < 1 and n0 ≥ 1 such that α(ρ(fn− fn+1)) ≤ k, for any n ≥ n0.
Then, we have

ρ(fn − fn+1) ≤
i=n∏
i=n0

α(ρ(fi − fi+1)) ρ(fn0 − fn0+1) ≤ kn−n0 ρ(fn0 − fn0+1)

for any n ≥ n0. Lemma 2.6 implies that {fn} is a ρ-Cauchy sequence. Since Lρ is complete and C is
ρ-closed, {fn} ρ-converges to some point f ∈ C. Let us prove that f is a fixed point of T . By Property 1
there exists a subsequence {fϕ(n)} of {fn} such that (fϕ(n), f) ∈ E(G), for every n ∈ N. Since T is Reich
(G, ρ)-contraction, there exists gn ∈ T (f) such that

ρ(fϕ(n)+1 − gn) ≤ α(ρ(fϕ(n) − f)) ρ(fϕ(n) − f) < ρ(fϕ(n) − f)

for every n ∈ N with (fϕ(n)+1, gn) ∈ E(G). Now, from the convexity of ρ,

ρ

(
gn − f

2

)
= ρ

(
1

2
(gn − fϕ(n)+1) +

1

2
(fϕ(n)+1 − f)

)
≤ 1

2
ρ(gn − fϕ(n)+1) +

1

2
ρ(fϕ(n)+1 − g)

≤ ρ(gn − fϕ(n)+1) + ρ(fϕ(n)+1 − f)

< ρ(fϕ(n) − f) + ρ(fϕ(n)+1 − f)

for every n ≥ 1. Since {fn} ρ-converges to f , we conclude that limn→∞ ρ((gn − f)/2) = 0. The ∆2- type
condition satisfied by ρ implies that lim

n→∞
ρ(gn−f) = 0, that is, {gn} ρ-converges to f . Since T (f) is ρ-closed,

we conclude that f ∈ T (f), that is, f is a fixed point of T .

Remark 3.2.

1. Once Theorem 3.1 is established, it is easy to extend it to the case of uniformly locally contractive
mappings in the sense of Edelstein [5] with or without a graph.

2. If we assume G is such that E(G) := C × C, then clearly G is connected and our Theorem 3.1 gives
Mizoguchi-Takahashi theorem [11] and Nadler’s theorem [13] as a consequence in the case that α(s)
is constant. Moreover if T is single-valued, then we get the Reich’s extension of Banach contraction
principle [15].
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4. Application: Bernstein operator in modular function spaces

In [8], Kelisky and Rivlin investigated the behavior of the iterates of the Bernstein polynomial of degree
n ≥ 1 defined by

Bn(f)(t) :=

k=n∑
k=0

f

(
k

n

)(
n
k

)
tk(1− t)n−k

for every f ∈ C([0, 1]) and t ∈ [0, 1], where C([0, 1]) is the space of continuous functions defined on [0, 1]. In
particular, they proved that for any f ∈ C([0, 1]), we have

lim
j→+∞

Bn
j(f)(t) = f(0)(1− t) + f(1)t, 0 ≤ t ≤ 1, (KRB)

where Bn
j means the j-th iterate/power of Bn. Their proof uses the techniques of matrix algebra. Rus

[16] was the first one to notice that a proof of (KRB), of metric nature, exists. In fact, his proof inspired
Jachymski [7] to rephrase it in identically using the graph language. Our aim here is to extend the classical
Bernstein operator Bn to the modular case. Indeed, let Lρ be a modular function space. Fix n ≥ 1. For
any f : [0, 1]→ Lρ define the Bernstein operator

Bn,ρ(f)(t) :=

k=n∑
k=0

(
n
k

)
tk(1− t)n−k f

(
k

n

)
for every t ∈ [0, 1]. In this case, we have a conclusion similar to the result of Kelisky and Rivlin for modular
function spaces.

Theorem 4.1. Let ρ be a convex modular function satisfying δ2-type condition. Then for every f : [0, 1]→
Lρ, we have

lim
j→+∞

sup
t∈[0,1]

ρ
(
Bn,ρ

j(f)(t)− (1− t)f(0)− tf(1)
)

= 0,

provided sup
t∈[0,1]

ρ
(
f(t)− (1− t)f(0)− tf(1)

)
< +∞.

Proof. Let us first notice that

k=n∑
k=0

(
n
k

)
tk(1− t)n−k = 1, and

k=n∑
k=0

k

n

(
n
k

)
tk(1− t)n−k = t

for any t ∈ [0, 1]. Define the reflexive directed graphG on functions from [0, 1] into Lρ such that (f, g) ∈ E(G)
if and only if f(0) = g(0) and f(1) = g(1). Set h(t) = (1 − t)f(0) + tf(1), for t ∈ [0, 1]. Obviously
h : [0, 1]→ Lρ. We have Bn(h) = h. Since f(0) = h(0) and f(1) = h(1), we have (f, h) ∈ E(G) and

Bn(f)(t)−Bn(h)(t) =
n−1∑
k=1

(
n
k

)
tk(1− t)n−k

(
f

(
k

n

)
− h

(
k

n

))
for every t ∈ [0, 1]. Hence, by convexity of ρ, we have

ρ(Bn(f)(t)−Bn(h)(t)) ≤
n−1∑
k=1

(
n
k

)
tk(1− t)n−k ρ

(
f

(
k

n

)
− h

(
k

n

))
for every t ∈ [0, 1], which implies

sup
t∈[0,1]

(ρ(Bn(f)(t)−Bn(h)(t))) ≤
(

1− 1

2n−1

)
sup
t∈[0,1]

(ρ(f(t)− h(t))).
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Since Bn(h) = h, we get

sup
t∈[0,1]

(ρ(Bn(f)(t)− h(t))) ≤
(

1− 1

2n−1

)
sup
t∈[0,1]

(ρ(f(t)− h(t))).

By induction, we obtain

sup
t∈[0,1]

(ρ(Bj
n(f)(t)− h(t))) ≤

(
1− 1

2n−1

)j
sup
t∈[0,1]

(ρ(f(t)− h(t)))

for every j ∈ N. This clearly implies the conclusion of Theorem 4.1 as claimed.

Motivated by Sultana and Vetrivel example [17], we introduce the following Bernstein operator B′n
defined by

B′n(f)(t) :=

k=n∑
k=0

(
n
k

)
tk(1− t)n−k T

(
f

(
k

n

))
, t ∈ [0, 1], (4.1)

where T : Lρ → Lρ. Since B′n(f) = Bn(T ◦ f), we obtain the following result:

Corollary 4.2. Let ρ be a convex modular function satisfying δ2-type condition. Then for every f ∈
([0, 1], Lρ), we have

lim
j→+∞

(B′n)j(f)(t) = (1− t)T
(
f(0)

)
+ t T

(
f(1)

)
, 0 ≤ t ≤ 1,

provided sup
t∈[0,1]

ρ
(
T (f(t))− (1− t)T (f(0))− t T (f(1))

)
< +∞.

Notice that our generalized Bernstein operator Bn is Reich’s (G, ρ)-contraction map with constant α =

1− 1

2n−1
.
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