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Abstract

We prove the existence of fixed points of monotone ρ-nonexpansive mappings in ρ-uniformly convex
modular function spaces. This is the modular version of Browder and Göhde fixed point theorems for
monotone mappings. We also discuss the validity of this result in modular function spaces where the
modular is uniformly convex in every direction. This property has never been considered in the context of
modular spaces. c©2016 All rights reserved.
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1. Introduction

Fixed point theory is a powerful tool in different fields such as differential equations, economics, game
theory, dynamical systems, optimal control, and artificial intelligence. The extension of the Banach con-
traction principle [3] by Ran and Reurings [25] to partially ordered metric spaces has seen some excitement
among the mathematicians working in fixed point theory. Ran and Reurings extension was carried while
investigating the solutions to some special matrix equations. The study of these matrix equations is moti-
vated by the fact that they often arise in the analysis of ladder networks, dynamic programming, control
theory, stochastic filtering, statistics and many other applications [7]. Nieto and Rodŕıguez-López [24] im-
proved Ran and Reurings fixed point theorem and used such arguments to find periodic solutions to some
differential equations. In this paper, we investigate the existence of fixed points of monotone nonexpansive
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mappings in modular function spaces. In particular, we prove the analogue to Browder [5] and Göhde [10]
fixed point theorem for monotone mappings in modular function spaces. Moreover, we introduce for the
first time the uniform convexity in every direction in the modular sense and prove a fixed point theorem for
monotone nonexpansive mappings.

In terms of content, this paper overlaps in places with the following popular books on fixed point theory
by Goebel and Kirk [9], by Khamsi and Kirk [14], by Khamsi and Kozlowski [16] and by Kozlowski [19].

2. Preliminaries

Since the basic definitions of modular function spaces are widely found in the literature, we omit them
here and refer to the paper [4] and the book [16].

Let Σ be a nontrivial σ-algebra of subsets of a nonempty set Ω. Denote by M∞ the set of all extended
measurable functions. Let ρ :M∞ → [0,∞] be a regular function modular. Define

M = {h ∈M∞ : |h(ω)| <∞ ρ-a.e.}.

The modular function space Lρ(Ω,Σ), or briefly Lρ, is defined as

Lρ = {f ∈M : ρ(λf)→ 0 as λ→ 0}.

Throughout this paper, we will assume function modulars are convex. The Luxemburg norm in Lρ is
defined as:

‖f‖ρ = inf

{
t > 0 : ρ

(
1

t
f

)
≤ 1

}
.

The set of function modulars will be denoted by <. In the following theorem we recall some of the
needed properties of modular spaces.

Theorem 2.1 ([16, 19]). Let ρ ∈ <. The following properties hold:

1. if lim
n→+∞

ρ(λfn) = 0, for some λ > 0, then there exists a subsequence {fφ(n)} such that {fφ(n)} converges

ρ-a.e. to 0;

2. (Fatout property) if {fn} converges ρ-a.e. to f , then we have

ρ(f) ≤ lim inf
n→+∞

ρ(fn).

We say that ρ satisfies the ∆2-type condition if and only if there exists K > 0 such that ρ(2f) ≤ K ρ(f),
for any f ∈ Lρ. This property is crucial when studying modular function spaces.

Definition 2.2. Let ρ ∈ <.

(a) {fn} is said to be ρ-convergent to f if lim
n→+∞

ρ(fn − f) = 0.

(b) {fn} is said to be ρ-Cauchy if lim
n,m→+∞

ρ(fn − fm) = 0.

(c) B ⊂ Lρ is said to be ρ-closed if for any sequence {fn} in B which ρ-converges to f , we have f ∈ B.
(d) B ⊂ Lρ is said to be ρ-bounded if

diamρ(B) = sup{ρ(f − g) : f ∈ B, g ∈ B} <∞.

Since ρ fails the triangle inequality, then the ρ-convergence may not imply the ρ-Cauchy behavior. As a
consequence to Theorem 2.1, we have:

Proposition 2.3. Let ρ ∈ <. Then Lρ is ρ-complete, i.e., any ρ-Cauchy sequence is ρ-convergent. Moreover,
the ρ-balls

Bρ(f, r) = {g ∈ Lρ : ρ(f − g) ≤ r},

are ρ-closed, for any f ∈ Lρ and r ≥ 0.
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The next theorem is crucial throughout our work. Its proof follows easily from Theorem 2.1.

Theorem 2.4. Let ρ ∈ <.

(i) Let {fn} be a monotone increasing sequence, i.e., fn ≤ fn+1 ρ-a.e., for any n ∈ N. If {fn} ρ-converges
to f , then fn ≤ f ρ-a.e., for any n ∈ N.

(ii) Let {fn} be a monotone decreasing sequence, i.e., fn+1 ≤ fn ρ-a.e., for any n ∈ N. If {fn} ρ-converges
to f , then f ≤ fn ρ-a.e., for any n ∈ N.

(iii) Order intervals in Lρ are ρ-closed and convex. Recall that an order interval is any of the subsets
[f,→) = {g ∈ Lρ : f ≤ g ρ-a.e.}, (←, f ] = {g ∈ Lρ : g ≤ f ρ-a.e.} and [f, g] = {h ∈ Lρ : f ≤ h ≤
g ρ-a.e.}, for any f, g ∈ Lρ.

Next we define the type of mappings for which the fixed point problem will be considered.

Definition 2.5. Let ρ ∈ < and K be a nonempty subset of Lρ. A mapping T : K → K is monotone if
T (f) ≤ T (g) ρ-a.e. whenever f ≤ g ρ-a.e., for any f, g ∈ K. Moreover, T is called monotone ρ-nonexpansive
if T is monotone such that

ρ(T (f)− T (g)) ≤ ρ(f − g),

whenever f, g ∈ C and f ≤ g ρ-a.e. A point f ∈ C is called a fixed point of T if and only if T (f) = f .

Remark 2.6. Recall that T : C → C is said to be ρ-continuous if {T (fn)} ρ-converges to T (f) whenever {fn}
ρ-converges to f . It is not true that monotone ρ-nonexpansiveness implies ρ-continuity since this result is
not true in general when ρ is a norm.

The concept of type functions have been widely used in the proofs of many fixed point results.

Definition 2.7. Let K be a nonempty subset of Lρ.

(1) A function τ : K → [0,∞] is called a type if there exists a ρ-bounded sequence {fn} in Lρ such that

τ(f) = lim sup
n→+∞

ρ(fn − f)

for any f ∈ K.

(2) Any sequence {gn} in K which satisfies

lim
n→∞

τ(gn) = inf{τ(f) : f ∈ K},

will be called a minimizing sequence of τ in K.

Note that any type function τ is convex since ρ is convex. Next we give the definition of the modular
uniform convexity introduced in [15].

Definition 2.8. Let ρ ∈ <.

(i) We say that ρ is uniformly convex (UC) if

δ(r, ε) = inf
{

1− 1

r
ρ
(f + g

2

)
: ρ(f) ≤ r, ρ(g) ≤ r, ρ(f − g) ≥ εr

}
> 0

for every r > 0 and ε > 0.

(ii) We say that ρ satisfies (UUC) if there exists η(s, ε) > 0, for every s ≥ 0, and ε > 0 such that

δ(r, ε) > η(s, ε) > 0, for r > s.

Remark 2.9. It is known that for a wide class of modular function spaces with the ∆2 property, the uniform
convexity of the Luxemburg norm is equivalent to the uniform convexity of the modular ρ. For example, in
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Orlicz spaces this result can be traced to early papers by Luxemburg [22], Milnes [23], Akimovic [1], and
Kaminska [13]. It is also known that, under suitable assumptions, the uniform convexity of the modular
in Orlicz spaces is equivalent to the very convexity of the Orlicz function [6, 17]. Typical examples of
Orlicz functions that do not satisfy the ∆2 condition but are uniformly convex (and hence very convex)
are: ϕ1(t) = e|t| − |t| − 1 and ϕ2(t) = et

2 − 1, [21, 23]. See also [11] for the discussion of some geometrical
properties of Calderon-Lozanovskii and Orlicz-Lorentz spaces.

Definition 2.10 ([17]). Let ρ ∈ <. Lρ is said to have the property (R) if and only if for every decreasing

sequence {Kn}n≥1 of ρ-bounded, ρ-closed and convex nonempty subsets, we have
∞⋂
n=1

Kn 6= ∅.

We have the following amazing result.

Theorem 2.11 ([15]). Let ρ ∈ < be (UUC), then Lρ has property (R).

The following lemma plays a crucial role in the proof of many fixed point results in modular function
spaces.

Lemma 2.12 ([15]). Let ρ ∈ <. Assume that ρ is (UUC). Let K be a ρ-closed ρ-bounded convex nonempty
subset of Lρ. Suppose that τ is a type defined on K and {gn} is a minimizing sequence of τ , i.e.,

lim
n→+∞

τ(gn) = inf
f∈K

τ(f).

Then {gn} is ρ-convergent and its ρ-limit is independent of the sequence {gn}.

3. Main results

In this section, we establish Browder and Göhde’s fixed point theorem [5, 10] for monotone ρ-nonexpansive
mappings. Recall that the beginning of the fixed point theory in modular function spaces finds its root in
the paper [18].

Let ρ ∈ < and T : C → C be a monotone ρ-nonexpansive mapping where C ⊂ Lρ is nonempty and
convex. Let f0 ∈ C and λ ∈ (0, 1). The Krasnoselskii-Ishikawa [12, 20] iteration sequence {fn} in C is
defined by

fn+1 = (1− λ)fn + λT (fn), n ≥ 0. (3.1)

Assume that f0 and T (f0) are comparable. Assume that f0 ≤ T (f0) ρ-a.e. Since order intervals are
convex, we have f0 ≤ f1 ≤ T (f0) ρ-a.e. Hence T (f0) ≤ T (f1) ρ-a.e. since T is monotone. By the induction,
we will prove that

fn ≤ fn+1 ≤ T (fn) ≤ T (fn+1) ρ-a.e.

for any n ∈ N. Note that if T (f0) ≤ f0 ρ-a.e., then we will have

T (fn+1) ≤ T (fn) ≤ fn+1 ≤ fn ρ-a.e.

for any n ∈ N. By using the monotone ρ-nonexpansiveness of T , we get

ρ(T (fn+1)− T (fn)) ≤ ρ(fn+1 − fn)

for any n ∈ N.
The modular version of Browder and Göhde fixed point theorem for monotone mappings is given below.

Theorem 3.1. Let ρ ∈ < be (UUC) and C be a nonempty convex ρ-closed ρ-bounded subset of Lρ not
reduced to one point. Let T : C → C be a monotone ρ-nonexpansive mapping and ρ-continuous. Assume
there exists f0 ∈ C such that f0 and T (f0) are comparable. Then T has a fixed point.
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Proof. Assume that f0 ≤ T (f0) ρ-a.e. The case T (f0) ≤ f0 ρ-a.e. follows the same ideas. Consider the
Krasnoselskii-Ishikawa sequence {fn} generated by (3.1) starting at f0 with λ ∈ (0, 1). Since ρ is (UUC),
then Lρ satisfies the property (R). By using the properties of {fn}, we know that

C∞ =
⋂
n≥0

[fn,→) ∩ C =
⋂
n≥0
{g ∈ C : fn ≤ g ρ-a.e.} 6= ∅.

Let g ∈ C∞, then fn ≤ g ρ-a.e. and since T is monotone, we get fn ≤ T (fn) ≤ T (g) ρ-a.e., for
any n ≥ 0, i.e., T (C∞) ⊂ C∞. Consider the type function τ : C∞ → [0,+∞) generated by {fn}, i.e.,
τ(g) = lim sup

n→+∞
ρ(fn − g). Let {gn} be a minimizing sequence of τ in C∞. Lemma 2.12 implies that {gn} is

ρ-convergent to some g ∈ C∞ and any minimizing sequence of τ in C∞ will also ρ-converge to g. Since T is
monotone ρ-nonexpansive and gm ∈ C∞, for any m ∈ N, we get

τ(T (gm)) = lim sup
n→+∞

ρ(fn+1 − T (gm))

≤ lim sup
n→+∞

(1− λ)ρ(fn − T (gm)) + λ ρ(T (fn)− T (gm))

≤ lim sup
n→+∞

(1− λ)ρ(fn − T (gm)) + λ ρ(fn − gm)

≤ (1− λ) lim sup
n→+∞

ρ(fn − T (gm)) + λ lim sup
n→+∞

ρ(fn − gm)

≤ (1− λ) τ(T (gm)) + λ τ(gm),

which implies τ(T (gm)) ≤ τ(gm), since λ ∈ (0, 1). Therefore, the sequence {T (gm)} is also a minimizing
sequence of τ in C∞ since T (C∞) ⊂ C∞. Therefore, {T (gm)} ρ-converges to g as well. Since T is ρ-
continuous, {T (gm)} also ρ-converges to T (g). The uniqueness of the ρ-limit implies that T (g) = g, i.e., g
is a fixed point of T .

Krasnoselskĭı and Rutickĭı [21] studied the fixed points of the Hammerstein and Uryson operators which
are not defined in any of the classical Lp spaces. In fact, they showed that the proper setting for such
operators is the class of Orlicz spaces. By using the structure of the modular function spaces, we can do
more. The main reason is that the norm in Orlicz spaces is defined in a very complicated way while the
module is an integral and easy to use. In the next example, we illustrate these ideas and show how to apply
our Theorem 3.1. This example was inspired from the one used in [2]. The fundamental difference resides in
the fact that most uniformly convex spaces, like Lp, fail to satisfy the Opial property as a key assumption
in the paper [2].

Example 3.2. Let ϕ : [0,+∞)→ [0,+∞) be an increasing convex function (i.e., ϕ to some extent behaves
like the power functions f(t) = tp, p ≥ 1). We will assume that ϕ satisfies the ∆2-type condition, i.e., there
exists K ≥ 1 such that ϕ(2t) ≤ Kϕ(t), for any t ∈ [0,+∞). The Orlicz-Birnbaum space Lϕ is defined by

Lϕ = {x : [0, 1]→ R; ρϕ(x) =

∫
I
ϕ(|x(t)|)dt < +∞},

where I = [0, 1]. Next we consider the Uryson integral equation

x(t) = g(t) +

∫
I
F (t, s, x(s))ds (3.2)

for t ∈ I, where g is in Lϕ, and F (t, s, x) is measurable in both variables s and t for every x. We shall
assume that F satisfies the inequality

|F (t, s, x)| ≤ h(t, s) +M(t) |x(s)|,

where t, s ∈ I, and x ∈ Lϕ. Assume that M(t) ∈ [0, 1] and∫
I

∫
I
ϕ(h(t, s))dtds < +∞ and M0 =

∫
I
M(t)dt < +∞.
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Moreover, we will assume that F enjoys the following monotonicity condition

0 ≤ F (t, s, x)− F (t, s, y) ≤ x− y, (3.3)

where t, s ∈ I, and x, y ∈ Lϕ such that y ≤ x, i.e., y(t) ≤ x(t) for almost every t ∈ I. Let

B =
{
y ∈ Lϕ : such that ρϕ(x) ≤ R

}
,

i.e., B is the ρϕ-closed ball of Lϕ centered at 0 with radius R. Consider the operator defined by

F̃ (t)(x)(s) = F (t, s, x(s)),

and define the operator J : Lϕ → Lϕ by

(Jx)(t) = g(t) +

∫
I
F̃ (t)(x)(s)ds.

Since ϕ is convex and satisfies the ∆2-type condition, there exists K ≥ 1 such that ϕ(2t) ≤ Kϕ(t), for
t ≥ 0. Then we have

ϕ(a+ b) ≤ K

2

(
ϕ(a) + ϕ(b)

)
for any a, b ∈ [0,+∞). If M0 is small enough and R is sufficiently large, then we will have J(B) ⊂ B.
Indeed, by using the Jensen’s inequality we have:

ρϕ(Jx) =

∫
I
ϕ(Jx(t))dt

=

∫
I
ϕ
(
g(t) +

∫
I
F̃ (t)(x)(s)ds

)
dt

≤ K/2
∫
I
ϕ(|g(t)|)dt+K/2

∫
I

∫
I
ϕ
(
|F̃ (t)(x)(s)|

)
dsdt

≤ K/2
∫
I
ϕ(|g(t)|)dt+K/2

∫
I

∫
I
ϕ
(
h(t, s) +M(t)|x(s)|

)
dsdt

≤ K/2
∫
I
ϕ(|g(t)|)dt+K2/4

∫
I

∫
I
ϕ(h(t, s))dsdt

+K2/4

∫
I

∫
I
M(t) ϕ(|x(s)|)dsdt

≤ K/2
∫
I
ϕ(|g(t)|)dt+K2/4

∫
I

∫
I
ϕ(h(t, s))dsdt+M0K

2/4 ρϕ(x)

≤ K/2
∫
I
ϕ(|g(t)|)dt+K2/4

∫
I

∫
I
ϕ(h(t, s))dsdt+RM0K

2/4

for any x ∈ B. If M0K
2 < 4, choose R such that

R ≥ 2K

4−M0K2

∫
I
ϕ(|g(t)|)dt+

K2

4−M0K2

∫
I

∫
I
ϕ(h(t, s))dsdt.

Then we will get J(x) ∈ B as claimed. Next we prove that J is monotone ρϕ-nonexpansive. First, from
the condition (3.3), J is obviously monotone. Let x, y ∈ Lϕ such that y ≤ x. Since ϕ is convex, we have:

ρϕ(Jx− Jy) =

∫
I
ϕ(|Jx(t)− Jy(t)|)dt

=

∫
I
ϕ
(∣∣∣ ∫

I
(F̃ (t)(x)(s)− F̃ (t)(y)(s))ds

∣∣∣)dt
≤
∫
I

∫
I
ϕ(|x(s)− y(s)|)dsdt

= ρϕ(x− y),
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which implies that J is a monotone ρϕ-nonexpansive operator as claimed. If ϕ is very convex, then Lϕ is
ρϕ-uniformly convex [17]. Under the above assumptions and by using Theorem 3.1, we obtain the following:

(1) if g(t) +
∫
I F (t, s, 0)ds ≥ 0, for almost all t ∈ [0, 1], then the integral equation (3.2) has a positive

solution in Lϕ;

(2) if g(t) +
∫
I F (t, s, 0)ds ≤ 0, for almost all t ∈ [0, 1], then the integral equation (3.2) has a negative

solution in Lϕ.

In order to weaken the assumptions of Theorem 3.1, we will need the concept of uniform continuity of a
modular function.

Definition 3.3. Let ρ ∈ <. The function modular ρ is said to be uniformly continuous if for any ε > 0 and
R > 0 there exists η > 0 such that

|ρ(g)− ρ(f + g)| ≤ ε,

whenever ρ(f) ≤ η and ρ(g) ≤ R.

As an example of a modular which is uniformly continuous, one may consider Orlicz modulars [6, 13].

Next, we introduce a weakening of (UUC) as it was done in Banach spaces by Garkavi [8] and Zizler
[27].

Definition 3.4. Let ρ ∈ <. We say that ρ is uniformly convex in every direction (UCED) if for any r > 0
and h ∈ Lρ such that h 6= 0, we have

δ(r, h) = inf
{

1− 1

r
ρ
(
f +

h

2

)
: ρ(f) ≤ r, ρ(f + h) ≤ r

}
> 0.

We say that ρ is (UUCED) if there exists η(s, h) > 0, for every s ≥ 0, and h 6= 0 such that

δ(r, h) > η(s, h), for r > s.

It is quite easy to show that if ρ is (UC) (resp. (UUC)), then it is (UCED) (resp. (UUCED)). The
following lemma will be crucial in the proof of our next result and it is seen as an improvement to Lemma
2.12.

Lemma 3.5. Assume that ρ ∈ < is (UUCED) and is uniformly continuous. Assume that Lρ satisfies
the property (R). Let C be a ρ-closed ρ-bounded convex nonempty subset of Lρ. Let K be ρ-closed convex
nonempty subset of C. Let {fn} be in C. Consider the type τ : K → [0,+∞] defined by τ(f) = lim sup

n→+∞
ρ(f−

fn). Then τ has a unique minimum point in K.

Proof. First, note that τ(f) ≤ diamρ(C) < +∞. Hence

τ0 = inf
f∈K

τ(f) ≤ diamρ(C) < +∞.

Next consider a sequence {gm} in K which ρ-converges to g ∈ K. Let us prove that τ(g) ≤ lim inf
m→+∞

τ(gm),

i.e., τ is ρ-lower semi-continuous. Fix ε > 0 and take R = diamρ(C) is the definition of uniform continuity
of ρ. Then there exists η > 0 such that |ρ(f) − ρ(f + h)| ≤ ε, whenever ρ(f) ≤ η and ρ(h) ≤ R. Since
{gm} ρ-converges to g, there exists m0 ≥ 1 such that for any m ≥ m0 we have ρ(gm − g) < η. Since
ρ(g − fn) ≤ diamρ(C), we conclude that∣∣∣ρ(g − fn)− ρ(gm − g + g − fn)

∣∣∣ =
∣∣∣ρ(g − fn)− ρ(gm − fn)

∣∣∣ ≤ ε
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for any n ∈ N. In particular, we have ρ(g− fn) ≤ ρ(gm− fn) + ε, for any m ≥ m0 and n ∈ N, which implies
τ(g) ≤ τ(gm) + ε, for any m ≥ m0. Hence

τ(g) ≤ lim inf
m→+∞

τ(gm) + ε

for any ε > 0. Therefore, we must have τ(g) ≤ lim inf
m→+∞

τ(gm). By using this result, it is obvious that

Kr = {f ∈ K : τ(f) ≤ inf
g∈K

τ(g) + r} is ρ-closed convex and nonempty subset of K, for any r > 0, since

ρ is convex. The property (R) is satisfied by Lρ then it will imply K∞ =
⋂
n≥1

K1/n 6= ∅. Let f ∈ K∞.

Then we have τ(f) ≤ inf
g∈K

τ(g) +
1

n
, for any n ≥ 1. Hence τ(f) ≤ inf

g∈K
τ(g), which implies τ(f) = inf

g∈K
τ(g).

Therefore any point in K∞ is a minimum point of τ in K. Next we prove that K∞ is in fact reduced to one
point. Assume not. Then there exist h1, h2 ∈ K∞ such that h1 6= h2. Set h = h1 − h2, then h 6= 0. Since
τ(h1) = τ(h2) = τ0 = inf

g∈K
τ(g), then we can assume without loss of any generality that τ0 > 0. Otherwise

if τ0 = 0, the sequence {fn} will ρ-converge to both h1 and h2 which will contradict the uniqueness of the
ρ-limit. By using the definition of τ , there exists n0 ≥ 1 such that

ρ(fn − h1) ≤ τ0 + ε and ρ(fn − h2) ≤ τ0 + ε

for any n ≥ n0. Since ρ is (UUCED), there exists η(τ0, h) > 0 such that

ρ

(
fn − h1 +

h1 − h2
2

)
≤ (τ0 + ε)(1− δ(τ0 + ε, h)) ≤ (τ0 + ε)(1− η(τ0, h)).

Since ρ

(
fn − h1 +

h1 − h2
2

)
= ρ

(
fn −

h1 + h2
2

)
, we get

ρ

(
fn −

h1 + h2
2

)
≤ (τ0 + ε)(1− η(τ0, h))

for any n ≥ n0. Hence

τ0 = τ

(
h1 + h2

2

)
≤ (τ0 + ε)(1− η(τ0, h))

for any ε > 0. Therefore, we must have τ0 ≤ τ0(1 − η(τ0, h)). This contradiction forces K∞ to be reduced
to one point, i.e., τ has a unique minimum point.

Now we are ready to prove an improved version of Theorem 3.1.

Theorem 3.6. Assume that ρ ∈ < is (UUCED) and is uniformly continuous. Assume that Lρ satisfies
the property (R). Let C be a nonempty convex ρ-closed ρ-bounded subset of Lρ not reduced to one point.
Let T : C → C be a monotone ρ-nonexpansive mapping. Assume there exists f0 such that f0 and T (f0) are
comparable. Then T has a fixed point.

Proof. Without loss of generality, assume that f0 ≤ T (f0) ρ-a.e.. Consider the Krasnoselskii-Ishikawa
sequence {fn} generated by (3.1) starting at f0 with λ ∈ (0, 1). Since Lρ satisfies the property (R) and by
using the properties of {fn}, we have

C∞ =
⋂
n≥0

[fn,→) ∩ C =
⋂
n≥0
{g ∈ C; fn ≤ g ρ-a.e.} 6= ∅.

Let g ∈ C∞, then fn ≤ g ρ-a.e. and since T is monotone, we get fn ≤ T (fn) ≤ T (g) ρ-a.e., for
any n ≥ 0, i.e., T (C∞) ⊂ C∞. Consider the type function τ : C∞ → [0,+∞) generated by {fn}, i.e.,
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τ(g) = lim sup
n→+∞

ρ(fn− g). By using Lemma 3.5, we know that τ has a unique minimum point g ∈ C∞. Since

T is monotone ρ-nonexpansive, we have

τ(T (g)) = lim sup
n→+∞

ρ(fn+1 − T (g))

≤ lim sup
n→+∞

(1− λ)ρ(fn − T (g)) + λ ρ(T (fn)− T (g))

≤ lim sup
n→+∞

(1− λ)ρ(fn − T (g)) + λ ρ(fn − g)

≤ (1− λ) lim sup
n→+∞

ρ(fn − T (g)) + λ lim sup
n→+∞

ρ(fn − g)

≤ (1− λ) τ(T (g)) + λ τ(g),

which implies τ(T (g)) ≤ τ(g), since λ ∈ (0, 1). Therefore, T (g) is also a minimum point of τ in C∞ since
T (C∞) ⊂ C∞. The uniqueness of the minimum point of τ implies that T (g) = g, i.e., g is a fixed point of
T .
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[1] V. A. Akimovič, The uniform convexity and uniform smoothness of Orlicz spaces, (Russian) Teor. Funkcĭı
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