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Abstract

In this paper, the problem of the lag synchronization between two general complex dynamical networks
with mixed coupling by pinning control is studied. Based on the Lyaponov functional theory and math-
ematical analysis method, less conservative conditions of lag synchronization are obtained by adding the
controllers to part of nodes. Moreover, the coupling configuration matrices are not required to be symmetric
or irreducible. It is shown that the lag synchronization of the drive and response systems can be realized
via the linear feedback pinning control and adaptive feedback pinning control. These results remove some
restrictions on the node dynamics and the number of the pinned nodes. Numerical examples are presented
to illustrate the effectiveness of the theoretical results. c©2016 All rights reserved.
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1. Introduction

A complex dynamical network is a set of coupled nodes interconnected by edges, in which each node
represents a dynamical system. Many real systems in nature can be described as complex dynamical networks
such as social organizations, Internet, communication networks, food webs, disease transmission networks,
the World Wide Web, power grids, and so on [1, 30, 31]. This has led to much interest to the studies
of the complex networks. In particular, with the wide applications of the complex networks in fields of
neural networks [27], biological systems [23], information science [14], and secure communication [3, 19],
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synchronization of the complex network has become an important topic due to its realistic significance and
study value.

In recent years, synchronization and its control of complex dynamical networks have been widely studied.
Many synchronization methods have been proposed including linear state feedback control [25], pinning
control [8, 16, 33, 37, 38], state observer based control [11, 32], impulsive control [20, 39], and adaptive
control [9] and so on. However, most of them focus on the inner synchronization, in which all nodes in a
network achieve a coherent behavior. Different from the inner synchronization [12], there is another kind
of synchronization namely outer synchronization [28, 36], which has quickly caught much attention since
Li first proposed in 2007 [18]. In general, there are several kinds of synchronization, such as, complete
synchronization [34], phase synchronization [2], lag synchronization [21], generalized synchronization [24],
and projective synchronization [13]. Among them, lag synchronization, which requires the states of response
system to synchronize with the past states of the drive system, has been widely observed in many practical
systems like electronic circuits, lasers and neural systems [35]. It has been proved to be a reasonable scheme
from the viewpoint of engineering applications and the characteristics of channel in secure communication,
parallel image processing, and pattern storage [17]. Therefore, lag synchronization has become a hot topic
in many fields [10, 22, 29]. For example, in [6], the author investigated the issue of the lag synchronization
between two coupled networks by adding the controllers to part of nodes. Zhao et al. [40] considered the
lag synchronization problem of two different complex networks based on the approach of state observer.

However, although the approach realized the lag synchronization for complex dynamical networks, there
are still some problems which need to be studied. These include: (1) the coupling configuration matrices are
always assumed to be irreducible and their off-diagonal entries are nonnegative, and the inner connecting
matrices are diagonal positive define; (2) it is very expensive and even impractical to apply the controllers
to all or many nodes, especially for the engineering applications. For this reason, as described in [38],
to achieve low cost and easy implementation, it is significant to investigate how the drive and response
networks are synchronized by pinning only a small portion of nodes in a network; (3) in a real network,
since the speed of signal travel between nodes is limited and the network nodes may be required to have
non-local interconnections like telecommunications [15, 41], the discrete delay coupling and distributed time
coupling are inevitable in the network. Thus, the synchronization of complex networks with delayed coupling
including discrete and distributed delay coupling should be considered. Sufficient conditions for adaptive
lag synchronization of complex dynamical network with discrete delayed coupling have been provided in
[10]. To the best of our knowledge, up to now, there has been no literature concerning the problems of lag
synchronization for complex dynamical networks with mixed coupling.

Inspired by the above mentioned discussions, in this paper, a lag synchronization method between two
general complex dynamical networks with hybrid coupling by pinning control a small portion of nodes of
the network has been proposed. The main contributions of this paper are listed as follows: first, the hybrid
coupling, which is made up of non-delay coupling, discrete delay coupling and distributed delay coupling is
considered; second, by applying the Lyaponov functional theory and mathematical analysis method, suffi-
cient verifiable conditions are constructed for the lag synchronization of the drive and response networks.
These results are less conservative and easy to verify through the numerical simulation. Moreover, the cou-
pling matrices are not necessary to be symmetric and irreducible, and without assuming diagonal or positive
define of the inner linking matrices; third, in numerical simulation section, we verify that pinning only one
node can realize lag synchronization of the networks adequately and the node can be chosen according to the
high-degree of vertex or the maximum norm of synchronization error. The rest of this paper is organized as
follows: in Section 2, the complex dynamical network is introduced and some related definitions and lemmas
are given; then in Section 3, the linear feedback pinning control and the adaptive feedback pinning control
are designed and the corresponding lag synchronization theorems are derived respectively; in Section 4, two
illustrative examples are provided to examine the effectiveness of the theoretical results; finally Section 5
concludes this paper.

From now on, throughout this paper, In denotes an n-dimensional identity matrix, <n indicates the
n-dimensional Euclidean space and <n×n is the set of all n × n real matrices. For symmetric matrices X
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and Y, the notation X > Y (X ≥ Y ) means that the matrix X − Y is positive definite (nonnegative). The
symbol diag{. . .} denotes the block diagonal matrix. For a real symmetric matrix P , λmin(P ) and λmax(P )
denote the minimum and maximum eigenvalues of P . Besides, ‖ · ‖ and | · | indicate the Euclidean vector
norm and the absolute value, respectively. The superscript T denotes matrix or vector transposition. The
symmetric terms in a symmetric matrix are denoted by ∗. Matrices, if not explicitly stated, are assumed to
have compatible dimensions.

2. Problem formulation and preliminaries

Consider the following complex dynamical networks with hybrid time-varying delays coupling:

ẋi(t) = f(xi(t), xi(t− σ(t))) +
N∑
j=1

c̄
(1)
ij Γ1xj(t) +

N∑
j=1

c̄
(2)
ij Γ2xj(t− σ(t)) +

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
xj(s)ds,

i = 1, 2, . . . , N,

(2.1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ <n stands for the drive state of the ith node, f : <n × <n → <n
is a continuous nonlinear vector-valued function, σ(t) is discrete time-varying delay, and d(t) is distributed
time-varying delay. Here, Γ1, Γ2 and Γ3 ∈ <n×<n represent the inner connecting matrix, the discrete-delay

inner connecting matrix and the distributed-delay inner connecting matrix, respectively; C̄(k) = (c̄
(k)
ij ) ∈

<N×N , k = 1, 2, 3, represent the coupling configuration of the drive networks and satisfy the diffusive coupling
connections:

c̄
(k)
ii = −

∑
j=1,j 6=i

c̄
(k)
ij , i = 1, 2, . . . , N, k = 1, 2, 3, (2.2)

where c̄
(1)
ij are defined as follows: c̄

(1)
ij ≥ 0 for j 6= i, that is, C̄(1) is nonnegative diffusive.

Remark 2.1. In this paper, the coupling configuration matrices are not required to be identical, symmetric
or irreducible. Moreover, different from [6, 10, 40], in our paper the non-delayed inner connecting matrix,
the discrete-delay inner connecting matrix and the distributed-delay inner connecting matrix are arbitrary
real matrices.

Throughout this paper, we make the following assumptions on time-varying delays and nonlinear function
f .

Assumption 2.2. 0 ≤ σ(t) ≤ σ, 0 ≤ d(t) ≤ d, and σ̇(t) ≤ σ̄ < 1, ḋ(t) ≤ µ < 1, where σ, d, σ̄ and µ are
constants.

Assumption 2.3. The nonlinear function f satisfies uniform semi-Lipschitz condition, that is, there exists
positive constants α1 and α2 such that

(x− y)T (f(x, x̃)− f(y, ỹ)) ≤ α1(x− y)T (x− y) + α2(x̃− ỹ)T (x̃− ỹ) (2.3)

for any x ∈ <n, y ∈ <n, x̃ ∈ <n, ỹ ∈ <n.

It has been verified that many typical benchmark chaotic systems such as the Lorenz system, Chua’s
system and the unified chaotic system satisfy Assumption 2.3. Correspondingly, the response system is
designed by

ẏi(t) =f(yi(t), yi(t− σ(t))) +
N∑
j=1

c̄
(1)
ij Γ1yj(t) +

N∑
j=1

c̄
(2)
ij Γ2yj(t− σ(t)) +

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
yj(s)ds

+ ui, i = 1, 2, . . . , N,

(2.4)

where yi(t) = [yi1(t), yi2(t), . . . , yin(t)]T ∈ <n is the response state of the ith node, ui(i = 1, 2, . . . , N) are
the controllers to be designed later, and other notations are the same as above. The following definition and
lemmas are useful in deriving our main results:
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Definition 2.4 ([6]). The drive system (2.1) is said to be a lag synchronization with the response system
(2.4) at time τ if satisfies the following property:

lim
t→∞
‖yi(t)− xi(t− τ)‖ = 0, i = 1, 2, . . . , N, (2.5)

where τ is a given positive time delay.

Lemma 2.5 ([5]). For any constant matrix W ∈ <n×n, W T = W > 0, scalar d > 0, and vector function
ω : [0, d]→ <n such that the integrations concerned are well defined, then

d

∫ d

0
ωT (s)Wω(s)ds ≥ (

∫ d

0
ω(s)ds)TW (

∫ d

0
ω(s)ds).

Lemma 2.6 ([16]). For an n× n matrix A, the following inequality holds:

AAT ≤ ‖A‖2I.

Lemma 2.7 ([7]). Assume that A and B are n × n Hermitian matrices. Let λ1 ≥ λ2 ≥ · · · ≥ λn,
µ1 ≥ µ2 ≥ · · · ≥ µn, and ε1 ≥ ε2 ≥ · · · ≥ εn be eigenvalues of A, B and A+ B, respectively. Then one has
λi + µn ≤ εi ≤ λi + µ1, i = 1, 2, . . . , n.

Lemma 2.8 ([26]). Assume that Q = (qij)N×N ) is symmetric. Let

D = diag(d1, d2, . . . , dm, 0, 0, . . . , 0), Q−D =

(
Q11 −D∗ Q12

QT12 Qm

)
, and d = min

1≤i≤m
di,

where 1 ≤ m ≤ N , di > 0, i = 1, 2, . . . ,m, Qm is the minor matrix of Q by removing its first row-
column pairs, Q11 and Q12 are matrices with appropriate dimensions and D∗ = diag(d1, d2, . . . , dm). When
d > λmax(Q11 −Q12Q

−1
m QT12), Q−D < 0 is equivalent to Qm < 0.

3. Main results

3.1. Lag synchronization via the linear feedback pinning control

In this subsection, we use the linear feedback control to pin the lag synchronization. Without loss of
generality, we assume that the first m (1 ≤ m ≤ N) nodes are selected and pinned with the linear controllers,
which are described as {

ui =− γ1kiei(t), 1 ≤ i ≤ m,
ui =0, 1 +m ≤ i ≤ N,

(3.1)

where γ1 = ||Γ1||, ei(t) = yi(t)− xi(t− τ), ki(i = 1, 2, . . . ,m) > 0 are feedback gains.
According to (3.1), we obtain the following lag synchronization error system,



ėi(t) =f(yi(t), yi(t− σ(t)))− f(xi(t− τ), xi(t− σ(t)− τ)) +

N∑
j=1

c̄
(1)
ij Γ1ej(t) +

N∑
j=1

c̄
(2)
ij Γ2ej(t− σ(t))

+

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds− γ1kiei(t), 1 ≤ i ≤ m,

ėi(t) =f(yi(t), yi(t− σ(t)))− f(xi(t− τ), xi(t− σ(t)− τ)) +

N∑
j=1

c̄
(1)
ij Γ1ej(t) +

N∑
j=1

c̄
(2)
ij Γ2ej(t− σ(t))

+

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds, m+ 1 ≤ i ≤ N.

(3.2)

Let ||Γ2|| = γ2, ||Γ3|| = γ3, |C̄(k)| = (|c̄(k)
ij |)N×N , (k = 1, 2, 3), ρmin = λmin((Γ1 + ΓT1 )/2), Ĉ(1) =

diag(c̄
(1)
11 , c̄

(1)
22 , . . . , c̄

(1)
NN ), K = diag(k1, . . . , km, 0, . . . , 0), where ki (1 ≤ i ≤ m) are positive constants to be

determined later. Then we have the following result.
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Theorem 3.1. Suppose that the Assumptions 2.2 and 2.3 hold. The drive system (2.1) and the response
system (2.4) with linear controllers (3.1) can realize the lag synchronization if there exist matrices Hi =

diag(h
(i)
1 , h

(i)
2 , · · · , h(i)

N ) ≥ 0, (i = 1, 2) such that the following LMI holds:

Ω =

 Ω11
1
2γ2|C̄

(2)| 1
2γ3|C̄

(3)|
∗ α2IN − (1− σ̄)H1 0

∗ ∗ − 1−µ
d H2

 < 0, (3.3)

where

Ω11 = α1IN + (ρmin − γ1)Ĉ(1) + γ1
C̄(1) + (C̄(1))T

2
− γ1K +H1 + dH2.

Proof. Choose the following Lyapunov-Krasovskii functional candidate:

V (t) = V1(t) + V2(t), (3.4)

where

V1(t) =
1

2

N∑
i=1

eTi (t)ei(t),

V2(t) =

N∑
i=1

h
(1)
i

∫ t

t−σ(t)
eTi (s)ei(s)ds+

N∑
i=1

h
(2)
i

∫ 0

−d(t)

∫ t

t+θ
eTi (s)ei(s)dsdθ.

Differentiating V1(t) along the trajectory of the error system (3.2), we have

V̇1(t) =

N∑
i=1

eTi (t)[f(yi(t), yi(t− σ(t)))− f(xi(t− τ), xi(t− σ(t)− τ)) +

N∑
j=1

c̄
(1)
ij Γ1ej(t)

+
N∑
j=1

c̄
(2)
ij Γ2ej(t− σ(t)) +

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds]−

m∑
i=1

γ1kie
T
i (t)ei(t).

(3.5)

Then from Assumption 2.3, we have the following estimations:

V̇1(t) ≤
N∑
i=1

(α1||ei(t)||2 + α2||ei(t− σ(t))||2) +

N∑
i=1

N∑
j=1

eTi (t)c̄
(1)
ij Γ1ej(t)

+
N∑
i=1

N∑
j=1

eTi (t)c̄
(2)
ij Γ2ej(t− σ(t)) +

N∑
i=1

N∑
j=1

eTi (t)c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds−

m∑
i=1

γ1kie
T
i (t)ei(t)

≤
N∑
i=1

(α1||ei(t)||2 + α2||ei(t− σ(t))||2) +

N∑
i=1

N∑
j=1,j 6=i

eTi (t)c̄
(1)
ij Γ1ej(t) +

N∑
i=1

eTi (t)c̄
(1)
ii Γ1ei(t)

+

N∑
i=1

N∑
j=1

||ei(t)|||c̄(2)
ij |||Γ2||||ej(t− σ(t))||+

N∑
i=1

N∑
j=1

||ei(t)|||c̄(3)
ij |||Γ3||||

∫ t

t−d(t)
ej(s)ds|| (3.6)

−
m∑
i=1

γ1kie
T
i (t)ei(t)

≤
N∑
i=1

(α1||ei(t)||2 + α2||ei(t− σ(t))||2) + γ1

N∑
i=1

N∑
j=1,j 6=i

||ei(t)||c̄(1)
ij ||ej(t)||+

N∑
i=1

ρminc̄
(1)
ii e

T
i (t)ei(t)
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+ γ2

N∑
i=1

N∑
j=1

||ei(t)|||c̄(2)
ij |||ej(t− σ(t))||+ γ3

N∑
i=1

N∑
j=1

||ei(t)|||c̄(3)
ij |||

∫ t

t−d(t)
ej(s)ds||

−
m∑
i=1

γ1kie
T
i (t)ei(t)

=eT (t)(α1IN + (ρmin − γ1)Ĉ(1) + γ1
C̄(1) + (C̄(1))T

2
− γ1K)e(t) + eT (t)(γ2|C̄(2)|)e(t− σ(t))

+ eT (t− σ(t))(α2IN )e(t− σ(t)) + eT (t)(γ3|C̄(3)|)ẽ(t),

where

e(t) = (||e1(t)||, ||e2(t)||, . . . , ||eN (t)||)T , e(t− σ(t)) = (||e1(t− σ(t))||, ||e2(t− σ(t))||, . . . , ||eN (t− σ(t))||)T ,

ẽ(t) = (||
∫ t

t−d(t)
e1(s)ds||, ||

∫ t

t−d(t)
e2(s)ds||, . . . , ||

∫ t

t−d(t)
eN (s)ds||)T .

By Assumption 2.2 and Lemma 2.5, calculating the time derivation of V2(t) along the trajectories of
system (3.2), we get

V2(t) ≤
N∑
i=1

h
(1)
i [eTi (t)ei(t)− (1− σ̄)eTi (t− σ(t))ei(t− σ(t))]

+

N∑
i=1

h
(2)
i [d(t)eTi (t)ei(t)− (1− µ)(

∫ t

t−d(t)
eTi (s)ei(s)ds)]

≤
N∑
i=1

h
(1)
i [eTi (t)ei(t)− (1− σ̄)eTi (t− σ(t))ei(t− σ(t))]

+
N∑
i=1

h
(2)
i [deTi (t)ei(t)−

1− µ
d

(

∫ t

t−d(t)
ei(s)ds)

T (

∫ t

t−d(t)
ei(s)ds)]

=eT (t)(H1 + dH2)e(t)− eT (t− σ(t))(1− σ̄)H1e(t− σ(t))− ẽ(t)1− µ
d

H2ẽ(t).

(3.7)

Let ξ(t) = (eT (t), eT (t− σ(t)), ẽT (t))T , Ξ = −Ω.
According to (3.3) and (3.5), (3.6), (3.7), it follows that

V̇ (t) = V̇1(t) + V̇2(t) ≤ −ξT (t)Ξξ(t) ≤ 0. (3.8)

From (3.8), we get
0 ≤ λmin(Ξ)||ξ(t)||2 ≤ ξT (t)Ξξ(t) ≤ −V̇ (t). (3.9)

Integrating (3.9) from 0 to t, in view of V (t) > 0, we obtain∫ t

0
λmin(Ξ)||ξ(s)||2ds ≤ −

∫ t

0
V̇ (s)ds = V (0)− V (t) ≤ V (0) < +∞.

By Barbalat’s lemma [4], we have

λmin(Ξ)||e||2 ≤ λmin(Ξ)||ξ(t)||2 → 0,

which implies that limt→∞ ||e(t)|| = 0, then we can get limt→∞(yi(t) − xi(t − τ)) = 0, (i = 1, 2, . . . , N).
That is to say the drive system (2.1) lag synchronization with the response system (2.4) at time τ . This
completes the proof.
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Remark 3.2. For any given dynamical network with node dynamics f(·, ·), the coupling matrices C̄(1), C̄(2),
C̄(3) and Γ1, Γ2, Γ3 are known, so the positive constants α1, α2 in Assumption 2.3 and γ1, γ2, γ3, ρmin can be
estimated by simple calculations. Thus, from condition (3.3), if the matrices H1, H2 and the pinned nodes
m are fixed, the feedback gains ki can be estimated. However, the node dynamics and the coupling matrices
are usually nonidentical for different dynamical systems. Therefore, the proposed pinning controllers with
fixed feedback gains are not universal.

In the following section, an adaptive pinning strategy will be adopted to design universal controllers.

3.2. Synchronization via the adaptive feedback pinning control

In this subsection, we use the adaptive feedback control to pin the lag synchronization. Without loss of
generality, assume that the first m(1 ≤ m ≤ N) nodes are selected and pinned with the adaptive controllers,
which are described as 

ui(t) =− γ1ki(t)ei(t), 1 ≤ i ≤ m,
k̇i(t) =δie

T
i (t)ei(t), ki(0) = 0, δi > 0, 1 ≤ i ≤ m,

ui(t) =0, m+ 1 ≤ i ≤ N,
(3.10)

where γ1 = ||Γ1||, ei(t) = yi(t)− xi(t− τ), and δi are positive constants. According to (3.10), we obtain the
following lag synchronization error system,

ėi(t) =f(yi(t), yi(t− σ(t)))− f(xi(t− τ), xi(t− σ(t)− τ)) +

N∑
j=1

c̄
(1)
ij Γ1ej(t) +

N∑
j=1

c̄
(2)
ij Γ2ej(t− σ(t))

+

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds− γ1ki(t)ei(t), 1 ≤ i ≤ m,

ėi(t) =f(yi(t), yi(t− σ(t)))− f(xi(t− τ), xi(t− σ(t)− τ)) +

N∑
j=1

c̄
(1)
ij Γ1ej(t) +

N∑
j=1

c̄
(2)
ij Γ2ej(t− σ(t))

+

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds, m+ 1 ≤ i ≤ N,

k̇i(t) =δie
T
i (t)ei(t), δi > 0, 1 ≤ i ≤ m.

(3.11)

Let ||Γ2|| = γ2, ||Γ3|| = γ3, |C̄(k)| = (|c̄(k)
ij |)N×N , (k = 1, 2, 3), ρmin = λmin((Γ1 + ΓT1 )/2), Ĉ(1) =

diag(c̄
(1)
11 , c̄

(1)
22 , . . . , c̄

(1)
NN ), K∗ = diag(k∗1, . . . , k

∗
m, 0, . . . , 0), where k∗i (1 ≤ i ≤ m) are positive constants to be

determined later. Then we have the following result:

Theorem 3.3. Suppose that the Assumption 2.2 and 2.3 hold. The drive system (2.1) and the response
system (2.4) with adaptive controllers (3.10) can realize the lag synchronization if there exist matrices Ri =

diag(r
(i)
1 , r

(i)
2 , · · · , r(i)

N ) ≥ 0, (i = 1, 2) such that the following LMI holds:

Φ =

 Φ11
1
2γ2|C̄

(2)| 1
2γ3|C̄

(3)|
∗ α2IN − (1− σ̄)R1 0

∗ ∗ − 1−µ
d R2

 < 0, (3.12)

where Φ11 = α1IN + (ρmin − γ1)Ĉ(1) + γ1
C̄(1)+(C̄(1))T

2 − γ1K
∗ +R1 + dR2.

Proof. Choose the following Lyaponov-Krasovskii functional candidate as follows:

V (t) = V1(t) + V2(t), (3.13)
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where

V1(t) =
1

2

N∑
i=1

eTi (t)ei(t) + γ1

m∑
i=1

1

2δi
(ki(t)− k∗i )2,

V2(t) =
N∑
i=1

r
(1)
i

∫ t

t−σ(t)
eTi (s)ei(s)ds+

N∑
i=1

r
(2)
i

∫ 0

−d(t)

∫ t

t+θ
eTi (s)ei(s)dsdθ.

Calculating V1(t) along the trajectory of the error system (3.11), we have

V̇1(t)

=
N∑
i=1

eTi (t)[f(yi(t), yi(t− σ(t)))− f(xi(t− τ), xi(t− σ(t)− τ)) +
N∑
j=1

c̄
(1)
ij Γ1ej(t)

+
N∑
j=1

c̄
(2)
ij Γ2ej(t− σ(t)) +

N∑
j=1

c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds]−

m∑
i=1

γ1ki(t)e
T
i (t)ei(t)

+ 2γ1

m∑
i=1

1

2δi
(ki(t)− k∗i )k̇i(t).

(3.14)

From Assumption 2.3, we have

V̇1(t)

≤
N∑
i=1

(α1||ei(t)||2 + α2||ei(t− σ(t))||2) +
N∑
i=1

N∑
j=1

eTi (t)c̄
(1)
ij Γ1ej(t) +

N∑
i=1

N∑
j=1

eTi (t)c̄
(2)
ij Γ2ej(t− σ(t))

+

N∑
i=1

N∑
j=1

eTi (t)c̄
(3)
ij Γ3

∫ t

t−d(t)
ej(s)ds−

m∑
i=1

γ1ki(t)e
T
i (t)ei(t) + 2γ1

m∑
i=1

1

2δi
(ki(t)− k∗i )k̇i(t)

≤
N∑
i=1

(α1||ei(t)||2 + α2||ei(t− σ(t))||2) +
N∑
i=1

N∑
j=1,j 6=i

eTi (t)c̄
(1)
ij Γ1ej(t) +

N∑
i=1

eTi (t)c̄
(1)
ii Γ1ei(t)

+

N∑
i=1

N∑
j=1

||ei(t)|||c̄(2)
ij |||Γ2||||ej(t− σ(t))||+

N∑
i=1

N∑
j=1

||ei(t)|||c̄(3)
ij |||Γ3||||

∫ t

t−d(t)
ej(s)ds||

−
m∑
i=1

γ1k
∗
i e
T
i (t)ei(t)

≤
N∑
i=1

(α1||ei(t)||2 + α2||ei(t− σ(t))||2) + γ1

N∑
i=1

N∑
j=1,j 6=i

||eTi (t)||c̄(1)
ij ||ej(t)||+

N∑
i=1

ρminc̄
(1)
ii e

T
i (t)ei(t)

+ γ2

N∑
i=1

N∑
j=1

||ei(t)|||c̄(2)
ij |||ej(t− σ(t))||+ γ3

N∑
i=1

N∑
j=1

||ei(t)|||c̄(3)
ij |||

∫ t

t−d(t)
ej(s)ds||

−
m∑
i=1

γ1k
∗
i e
T
i (t)ei(t)

=eT (t)(α1IN + (ρmin − γ1)Ĉ(1) + γ1
C̄(1) + (C̄(1))T

2
− γ1K

∗)e(t) + eT (t)(γ2|C̄(2)|)e(t− σ(t))

+ eT (t− σ(t))(α2IN )e(t− σ(t)) + eT (t)(γ3|C̄(3)|)ẽ(t),

(3.15)
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where

e(t) = (||e1(t)||, ||e2(t)||, . . . , ||eN (t)||)T , e(t− σ(t))

= (||e1(t− σ(t))||, ||e2(t− σ(t))||, . . . , ||eN (t− σ(t))||)T ,

ẽ(t) = (||
∫ t

t−d(t)
e1(s)ds||, ||

∫ t

t−d(t)
e2(s)ds||, . . . , ||

∫ t

t−d(t)
eN (s)ds||)T .

By Assumption 2.2 and Lemma 2.5, calculating the time derivative of V2(t) along the trajectories of
system (3.11), we get

V2(t) ≤
N∑
i=1

h
(1)
i [eTi (t)ei(t)− (1− σ̄)eTi (t− σ(t))ei(t− σ(t))]

+

N∑
i=1

h
(2)
i [d(t)eTi (t)ei(t)− (1− µ)(

∫ t

t−d(t)
eTi (s)ei(s)ds)]

≤
N∑
i=1

h
(1)
i [eTi (t)ei(t)− (1− σ̄)eTi (t− σ(t))ei(t− σ(t))]

+
N∑
i=1

h
(2)
i [deTi (t)ei(t)−

1− µ
d

(

∫ t

t−d(t)
ei(s)ds)

T (

∫ t

t−d(t)
ei(s)ds)]

=eT (t)(H1 + dH2)e(t)− eT (t− σ(t))(1− σ̄)H1e(t− σ(t))− ẽ(t)1− µ
d

H2ẽ(t).

(3.16)

Now, let η(t) = (eT (t), eT (t− σ(t)), ẽT (t))T . From (3.12) and (3.14)-(3.16), we can see that

V̇ (t) = V̇1(t) + V̇2(t) ≤ ηT (t)Φη(t) ≤ 0. (3.17)

Then, similar to the proof of Theorem 3.1, we have lim
t→∞
||e(t)|| = 0. This completes the proof.

Remark 3.4. In general, the strength of linear feedback must be maximal, which is a kind of waste in practice
to some extent. Compared with linear control [6], the control gains of adaptive control increase according
to the adaptive laws. Hence, adaptive control is more flexible.

Remark 3.5. To avoid solving the LMI (3.12), we have the following corollary, and the conditions of Corollary
3.6 are more easy to verify.

First, let R = α2IN − (1− σ̄)R1, then using Schur complement lemma, the condition (3.12) is equivalent
to

Φ11 −
1

4
γ2

2 |C̄(2)|R−1|C̄(2)|T +
d

4(1− µ)
γ2

3 |C̄(3)|R−1
2 |C̄

(3)|T < 0. (3.18)

Moreover, when R1 = 1
1−σ̄ (α2 + 1

2γ2c2)IN , R2 = 1
2γ3c3IN , where c2 = ||(|C̄(2)|)||, c3 = ||(|C̄(3)|)||.

According to Lemma 2.6, we have

Φ11 −
1

4
γ2

2 |C̄(2)|R−1|C̄(2)|T +
d

4(1− µ)
γ2

3 |C̄(3)|R−1
2 |C̄

(3)|T

≤αIN + (ρmin − γ1)Ĉ(1) +
1

2
γ1(C̄(1) + (C̄(1))T )− γ1K

∗

=Q− γ1K
∗,

(3.19)
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where

Q =αIN + (ρmin − γ1)Ĉ(1) +
1

2
γ1(C̄(1) + (C̄(1)))T ,

α =α1 +
1

2(1− σ̄)
(2α2 + (2− σ̄)γ2c2) +

d

2
γ3c3(

2− µ
1− µ

).

Then let

Q− γ1K
∗ =

(
Q11 − K̃∗ Q12

QT12 Qm

)
,

where Qm is the minor matrix of Q by removing its first m(1 ≤ m ≤ N) row-column pairs, Q11 and Q12

are matrices with appropriate dimensions, K̃∗ = diag(k∗1, k
∗
2, . . . , k

∗
m). Now we can obtain the following

corollary.

Corollary 3.6. Suppose that Assumption 2.2 and 2.3 hold. The drive system (2.1) and the response system
(2.4) with adaptive controllers (3.10) can realize the lag synchronization if the following two conditions are
satisfied:

k∗i >
1

γ1
λmax(Q11 −Q12Q

−1
m QT12), 1 ≤ i ≤ m (3.20)

and

λmax(
C̄(1) + (C̄(1))T

2
)m < − δ

γ1
, (3.21)

where δ = α+ λmax((ρmin − γ1)Ĉ(1))m.

Proof. From Lemma 2.8 and condition (3.20), we can see that Q− γ1K
∗ < 0 is equivalent to Qm < 0. So,

we only need to prove that Qm < 0. By applying Lemma 2.7, we get

λmax(Qm) ≤ δ + γ1λmax(
C̄(1) + (C̄(1))T

2
)m. (3.22)

From condition (3.21), it is not difficult to see that δ + γ1( C̄
(1)+(C̄(1))T

2 )m < 0. Then, in view of (3.22),
we have λmax(Qm) < 0. Therefore, along with (3.18), condition (3.12) is satisfied. This completes the
proof.

Remark 3.7. As similar to the proof in Corollary 3.6, our lag synchronization criterion of Theorem 3.1 is
also easily verified and does not need to solve any linear matrix inequality. And the corresponding results
are verified through a simulation experiment. However, from the magnified inequalities (3.19) and (3.22),
we can see that the results of Corollary 3.6 are more conservative than Theorem 3.3.

Remark 3.8. Different from [6, 10, 22, 29, 40], the proposed conditions in this paper depend on the time-
varying delays. Moreover, in [16, 35], the time-varying delay meets σ(t) = d(t), which is a strong condition,
and most of the situations do not have this property. Thus the results in this paper have less conservativeness
and expand the results in the existing literatures.

4. Illustrative example

In this section, two numerical examples are given to illustrate the effectiveness of our results. Firstly,

we consider the following time-delayed Chua’s system,
ẋ1(t) =−m(1 + b)x1(t) +mx2(t) + ϕ(x1(t)),

ẋ2(t) =x1(t)− x2(t) + x3(t),

ẋ3(t) =− ρx2(t)− ωx3(t)− ρω0 sin(vx1(t− σ(t))),
(4.1)
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where ϕ(x1(t)) = −m
2 (a− b)(|x1(t) + 1| − |x1(t)− 1|). When m = 10, b = −0.7831, a = −1.4325, ρ = 19.53,

ω = 0.1636, ω0 = 0.2, v = 0.5, and σ(t) = 0.02 + 0.01 sin(10t), one can easily verify that the nonlinear
function f(·, ·) satisfies Assumption 2.2 with α1 = 12.5008 and α2 = 0.2441.

Example 4.1. Based on the above Chua’s system (4.1), we use the drive-response systems (2.1) and (2.4)
consisting of N = 4 identical time-delayed Chua systems with mixed delays coupling to verify the correctness
of Theorem 3.1. Now we choose the following coupling matrices:

C̄(1) =

 −13 4 3 6
6 −14 5 3
4 6 −15 5
8 2 6 −16

 , C̄(2) =

 0.2 0.1 −0.3 0
0.3 −0.1 0.5 −0.7
−0.5 0.1 0.5 0.1
0.3 −0.3 −0.1 0.1

 ,

C̄(3) =

 0.1 −0.2 0.6 −0.5
0.3 −0.6 0.2 0.1
0 0.5 0.2 −0.7

0.2 0.1 0 −0.3

 , Γ1 =

(
3.5 0 −0.1
0 3.5 −0.5

0.1 0.6 3.5

)
,

Γ2 =

( −0.3 −0.1 0.1
0.1 0.2 0
0 −0.1 0.4

)
, Γ3 =

(
0.1 −0.3 0.1
−0.1 0.1 −0.2

0 −0.1 0.3

)
.

For τ = 0.5 and d(t) = 0.3 + 0.5 cos(5t), choose the initial conditions xi(0) = (−1.8 + 0.5i,−0.9 +
0.5i,−4.7 + 0.5i)T and yi(0) = (1.8 + 0.5i, 0.9 + 0.5i, 4.7 + 0.5i)T , 1 ≤ i ≤ 4. Fig. 1 shows the curves of error
dynamics between the drive-response networks without controllers. It is clear that the complex dynamical
networks cannot achieve synchronization.
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Figure 1: The error-state trajectory without controllers.

However, by applying the linear feedback pinning control, we assume m = 1, that is, the number of nodes

to be controlled is 1. By simple computation, we can obtain − δ
γ1

= −4.4549, λmax( C̄
(1)+(C̄(1))T

2 )m = −5.8223,

and λmax(Q11 − Q12QmQ
T
12)/γ1 = 16.4058. Then, choosing the appropriate feedback gain k1 = 20, the

corresponding simulation can be seen in Fig. 2, showing the drive system (2.1) and response system (2.4)
can reach synchronization by using the above controllers. Moreover, Figs. 3–5 illustrate that the state
trajectory of response network (2.4) and drive network (2.1) with τ = 0.5.
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Figure 2: The error-state trajectory by the linear pinning control.
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Figure 3: The state trajectories of xi1(t) and yi1(t) (i = 1, 2, . . . , 4) under the linear pinning control.
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Figure 4: The state trajectory of xi2(t) and yi2(t) (i = 1, 2, . . . , 4) under the linear pinning control.
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Figure 5: The state trajectory of xi3(t) and yi3(t) (i = 1, 2, . . . , 4) under the linear pinning control.

From the above example we can see that the strength of linear feedback may be maximum, which is a
kind of waste in practice to some extent. Compared with linear control, the gains of the adaptive control
increase according to the adaptive laws.

In the following, a numerical example is given to show the application of the adaptive pinning control.

Example 4.2. We consider the drive-response systems (2.1) and (2.4) consisting of N = 5 identical time-
delayed Chua’s systems with mixed delays coupling to verify the correctness of Theorem 3.3. Choose the
following coupling matrices:

C̄(1) =


0 0 0 0 0
5 −14 4 2 3
3 5 −15 4 3
6 2 3 −16 5
4 3 3 7 −17

 , C̄(2) =


−0.2 0.5 0 0.1 −0.3
0.3 −0.2 0.5 −0.4 −0.2
−0.6 0.1 0.5 0 0

0 −0.4 −0.1 0.3 0.2
0.3 0 −0.1 0.1 −0.3

 ,

C̄(3) =


0.1 −0.2 0.6 −0.5 0
0.3 −0.6 0.2 0.3 −0.2
0 0.5 0.1 −0.7 0.1

0.2 0.1 −0.1 −0.7 0.5
−0.3 0.2 0 0.4 −0.1

 , Γ1 =

(
4.5 0 0
0 4.5 −0.5
0 0.6 4.5

)
,

Γ2 =

( −0.2 −0.1 0
0.1 0.3 0
0 0 0.4

)
, Γ3 =

(
0.2 −0.4 0.1
−0.1 0.1 −0.2

0 0.1 0.3

)
.

For τ = 0.5 and d(t) = 0.5 − 8 sin(0.5t), choose the initial conditions xi(0) = (−1.8 + 0.5i,−0.9 +
0.5i,−4.7 + 0.5i)T and yi(0) = (1.8 + 0.5i, 0.9 + 0.5i, 4.7 + 0.5i)T , 1 ≤ i ≤ 5. Fig. 6 shows the curves of error
dynamics between the drive-response networks without controllers. It is clear that the complex dynamical
networks cannot achieve synchronization.

Then, by applying the adaptive feedback pinning control, we assume m = 1. By simple computation,

we have − δ
γ1

= −3.2393, λmax( C̄
(1)+(C̄(1))T

2 )m = −4.4912. We can see that condition (3.21) of Corollary 3.6
is tenable. Therefore, from Corollary 3.6, the lag synchronization between the drive system (2.1) and the
response system (2.4) can be realized by the adaptive controllers (3.10).

In the numerical simulations, we apply the adaptive controllers (3.10) to pin the first node of the response
system (2.4) and let δ1 = 1. The corresponding simulation can be seen in Fig. 7, which shows the drive
system (2.1) and response system (2.4) can achieve synchronization by using the adaptive controllers, and
the state trajectories of drive system and response system with τ = 0.5 are described in Figs. 8–10.
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Figure 6: The error-state trajectory without controllers.
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Figure 7: The error-state trajectory by the adaptive pinning control.
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Figure 8: The state trajectory of xi1(t) and yi2(t) (i = 1, 2, . . . , 5) under the adaptive pinning control.
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Figure 9: The state trajectory of xi2(t) and yi2(t) (i = 1, 2, . . . , 5) under the adaptive pinning control.
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Figure 10: The state trajectory of xi3(t) and yi3(t) (i = 1, 2, . . . , 5) under the adaptive pinning control.

5. Conclusion

In this paper, the issue of the lag synchronization between drive and response systems with mixed
coupling has been investigated. By applying the Lyaponov functional theory and mathematical analysis
method, less conservative conditions of lag synchronization are obtained by adding controllers to a part of
nodes. Moreover, the coupling configuration matrices are not required to be symmetric or irreducible. It is
shown that the lag synchronization of the drive and response systems can be realized via the linear feedback
pinning control and adaptive feedback pinning control. These results remove some restrictions on the node
dynamics and the number of the pinned nodes. Finally, numerical examples are presented to illustrate the
effectiveness of the theoretical results.
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