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Abstract

In this paper we present some absolute retract results for modified Geraghty multivalued type contrac-
tions in b-metric space. Our results, generalize several existing results in the corresponding literature. We
also present some examples to support the obtained results. (©2016 all rights reserved.
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1. Introduction and preliminaries

Let P(X) denote the collection of all nonempty subsets of a set X # ), and F : X — P(X) be
multifunctions (multivalued mapping). Throughout the paper, set of all nonempty closed and bounded
subsets of X will be represented by P (X) under the assumption that X is equipped with a metric.
Further, the set of all fixed point(s) of F' will be denoted by Fp, that is,

Fr={reX:xe€ Fx}.

Let (X,d) be a metric space and B(xo,7) = {z € X : d(zo,z) < r}. For z € X and A, B C X, we set
D:P(X)x P(X)—[0,00) U{+0o0}, such that

D(A,B) =sup{D(a,B) : a € A} and D(B, A) = sup{D(b, A) : b € B}.
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Let H: P(X) x P(X) — [0,00) U {400} be defined as

max{D(A, B), D(B, A)}, A#0+#B,
H(A,B)=<¢ 0, A=0=DB,
+00, otherwise.

Note that H forms a metric and it is called the Hausdorff metric (for more details see e.g. [I3 [14] and the
references therein).

For non-empty sets X,Y, a mapping ¢ : X — Y is called a selection of F' : X — P(Y), whenever
p(x) € Fx for all x € X. A topological space X is an absolute retract for metric spaces if for each metric
space Y, A € P,(Y) and continuous function ¢ : A — X, there exists a continuous function ¢ : ¥ — X
such that ¢|4 = 1 (see [12]).

Let M be the collection of all metric spaces, X € M, D € P(M) and F' : X — P} 4(X) a lower semi-
continuous multifunction. We say that F' has the selection property with respect to D if for each Y € D,
continuous function f : Y — X and continuous functional g : ¥ — (0, 00) such that

G(y) = F(f(y) N B(f(y),9(y)) #0

forally € Y, A € Py(Y), every continuous selection ¢ : A — X of G|4 admits a continuous extension
@ Y — X, which is a selection of G. If D = M, then we say that F' has the selection property and we
denote this by F' € Sp(X) (for more details see [13], 14]).

In this paper, we present some new results on absolute retract (see e.g. [4, [10 [12H14]) of the fixed points
set of extended multivalued Geraghty type contractions. Our results combine, extend and generalize several
existing results on the corresponding literature (see e.g. [1H3L&] @, 1T} 15, [16] and related references therein).

2. Fixed points set of extended multivalued Geraghty type contractions

In the all over this paper let ¥ be the set of all increasing and continuous functions ¥ : [0, 00) — [0, 00)
satisfying the following property: ¢ (ct) < ci(t) for all ¢ > 1 and ¥(0) = 0. We denote by O the family of
all increasing functions 6 : [0,00) — (0, 1).

Definition 2.1. Let F' : X — P, 4(X) be a multivalued mapping and a : X x X — [0,00) be a given
function. Then F' is said to be a-admissible if

(T3) a(z,y) >1forally € Fx = a(y,z) > 1, for all z € Fy.

Example 2.2. Let X = [1,2] and Fz = [v—1,2]. Define a(z,y) = 1 if z = y = 2 and (=, y) = 0 otherwise.
Clearly, F' is a-admissible.

Definition 2.3. Let (X, d) be a metric space and F' : X — P, 4(X) be a multivalued mapping. We say
that F' is an extended multivalued Geraghty type contraction if there exist a : X x X — [0,00), a € [0,1)
and some L > 0 such that

for all x,y € X, where,

D(z,Fy)+ D(y, Fx)

M (x,y) = max{d(z,y), D(z, F'z), D(y, F'y), 5

}

and
N(z,y) = min{D(z, Fz), D(y, Fz)}
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and 7n(a) = 1+a,9€@and¢ ¢ eV,
Furthermore, we say that F' is generalized multivalued Geraghty type contraction if

oz, y)¢v(H(Fz, Fy)) < 0 (M(z,y))¢Y(M(z,y)) + Lo(N(z,y)) (2.1)
for all x,y € X, where, L, M (x,y), N(x,y), a(x,y), 8,1, ¢ are defined as above.

Remark 2.4. The functions belonging to © are strictly smaller than 1. Then, the expression 6(¢(M(x,y)))
in (2.1) satisfies
O((M(x,y))) <1 for any z,y € X with x # y.

Theorem 2.5. Let (X,d) be a complete metric space and F : X — P, 4(X) be a extended multivalued
Geraghty type contraction such that

(i) F is a-admissible;

(ii) there exists xg € X and x; € Fxy such that a(xo, 1) > 1;
(iii) F is continuous.
Then F' has a fixed point.

Proof. By condition (ii), there exists g € X and x; € Fxg such that a(xg,z1) > 1. If 21 = 9, as z; € Fy,
then z1 is a fixed point of F' and we have nothing to prove. First, we note that

D(l’o, Fxl) + D(l’l, F.Z’o)
2

M(x07 ) :1:1) = max{d($07 ax1)7D(:B07 FxO)v D(:Ulnyl)v
= max{d(zo,,z1), D(z1, Fx1)}.

}

Since n(a)D(xg, Fxo) < d(xo,x1), if M(xo,,21) = D(z1,Fx1), then
P(D(x1, Far)) < alzo, 21)¢(H(Fro, Fa1)) < 0()(D(x1, F21)))¢(D (21, Fr)) + Lé(0)
<Y(D(x1, Firy)),

which is a contradiction. It follows that M(xo,,z1) = d(zo,,21). Let ¢ = m > 1, then there
Z0,T1

exists x9 € Fxq1 such that
Y(d(w1,32)) < qo(wo, 21)Y(H (Fo, F1)). (2.2)
Using with x = x¢ and y = 21, by we get
P(d(x1,22)) < /O (d(wo, 21)))(d(w0, 21)) (2.3)
Now, by the properties of the function v, we deduce

d(a:l,xg) )
\/9 d(xo,x1)) \/9 d(wo, 71)))

and so d(x1, z2) < \/O(WY(d(xg,x1)))d(x0,21) < d(x0,21). If Z9 € Fao, then x4 is a fixed point of F'. Assume
that z1 # xo & Fxo. We have

Y( Y(d(z1,22)) < P(d(x0,71))

M (z1,29) = max{d(z1, z2), D(z2, Fx2)}, N(x1,22) =0
and n(a)D(z1, Fr1) < d(x1,x2). If M(x1,22) = D(x2, Fx9), then

0 < Y(D(ze, Fa)) < afx1,x2)(H(Fxy1, Fra))
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< 0(p(D(x2, Fx2)))(D (22, F22))
< P(D(x2, Fxa)),

which is a contradiction and hence M(ml, x9) = d(z1, z2).

~/ k) k)
Put ¢1 = i?df;z,xf)) 20.:21)) > 1 (by (2.3])). Then there exists 3 € Fzy such that

Y(d(w2, x3)) < qra(wy, x2)y (H(Fay, Fag)).
Since n(a)D(x2, Fxe) < d(x2,x3), by (2.1) with z = 22 and y = 3, we have

Y(d(xe,23)) < qra(zy, x2)Y(H(Fxy, Fxa))
< @O(P(M(z1,22))) (M (21, 22)) + @1 LN (21, 22)
= q0(Y(d(z1,22)))(d (331,962))
< VO(W(d(xo, 1))/ (¢ (d(wo, 21))) i (d(wo, 1))
< (VO ( (x0,21))))*¢(d (3?07361))

Since

d(z2,23) < Yld(za,23))

Y o, e ) = (Vadan,an)

< Y(d(zo,21))

and 1) is increasing, then

d(2,13) < (\/0((d(20,21))))*d(x0, 71) < d(z0,21).

By continuing this process, we obtain a sequence {x,} in X such that x, # z,-1 and d(zp,zn11) <
(/0¥ (d(xg,x1))))"d(xg, x1) for all n € N.
Let t = \/0(v(d(xp,x1))), then 0 < t < 1. By the triangle inequality for n < m, we have

m—1 m—n—l
A(n, wm) <Y dlwg, zpn) < (0D tF)d(wo, 21)
k=n k=0
tn
< T td(xo,asl).

The previous inequality shows that {z,} is a Cauchy sequence in (X, d). Since (X, d) is a complete metric

space, so there exists z* € X such that lim z,, = z*. The continuity of F' implies that
n—oo

0 < D(z*, Fz*) = lim D(zp41, F2*) < lim H(Fx,, Fx*) =0

n—o0 n—oo

and so z* € Fz*. O
Example 2.6. Let X = [—1,00), d(z,y) = | — y| and for any A,B C X

D(A,B) =sup{D(a,B) :a € A},

H(A, B) = max{sup D(z, B),sup D(y, A)}.
€A yeB

Define a multivalued mapping F': X — P, 4(X) by F(x) = [~1, §] for every z € X. It is easy to see that
(X, d) is a complete metric space. We have

n(a)D(z, F(x)) < d(z,y), n(a) = yael0,1),

1+4+a
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whenever x,y € [—1,0]. Hence, if we set 1(t) = t, 6(t) = L and

t+2°
| 2ifx >y,
because
w'f$>y
H(Fz,Fy)={ %, . ="
(Fe, Fy) {Tifx<y,

and M(x,y) = |z — y|, N(x,y) = 0, therefore

a(z, y)p(H(Tz, Ty)) < 0 (M (z,y)))0(M(z,y)) + L(N(z,y)).

It is straightforward that conditions of Theorem 2.5 are satisfied and so F has a fixed point. For this example
we have Fp = [—1,0].

3. Extended multivalued Geraghty type contractions in the setting of b-metric spaces

In this section, first we recall the notion of b-metric and introduce the notion of a extended multivalued
Geraghty type contractions in the setting of b-metric spaces. After then, we state and prove our main results.

Definition 3.1 ([6]). Let X be a nonempty set and s > 1 be a given real number. A mapping d: X x X —
[0, 00) is said to be a b-metric if for all z,y, z € X the following conditions are satisfied:

(bMy) d(z,y) = 0 if and only if x = y;
(bM3) d(l‘, Z) < S[d(xa y) + d(y7 Z)]
In this case, the pair (X, d) is called a b-metric space (with constant s).

For s = 1, b-metric turns into standard metric. That is why b-metric spaces attracted the attention of
researchers on this fields (see e.g. [0, [7]). Let (X,d) be a b-metric space. We consider next the following
family of subsets given by

P(X):={Y|]Y C X and Y # 0}.

In this case D is a generalized functional on a b-metric space (X,d) defined by D : P(X) x P(X) —
[0,00) U {400},
inf{d(a,b)la € A,be B}, A#0+#B,
D(A,B)={ 0, A=0=B,
400, otherwise.
In particular, if zy € X then D(zg, B) := D({zo}, B).
The following basic lemmas will be useful in the proof of main results.

Lemma 3.2 ([7]). Let (X,d) be a b-metric space. Then, we have
D(z,A) < sld(xz,y) + D(y,A)] forallz,y € X and A C X.
Lemma 3.3 ([7]). Let (X,d) be a b-metric space and let {x;}}_, C X. Then
d(xp, x0) < sd(xg,x1) + ... + s"_ld(xn,g, Tp—1) + 8" d(xp—1,Tn)-
We denote by F the family of all functions 3 : [0, 00) — [0, S%) for some s > 1.

Definition 3.4. Let (X, d) be a complete b-metric space and F : X — P, (X)) be a multivalued mapping.
We say that F'is a extended multivalued Geraghty type contraction in b-metric space with (s > 1), whenever
there exist a: X x X — [0,00), a € [0,1) and some L > 0 such that for
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D(z,Fy)+ D(y, Fx)

M (x,y) = max{d(z,y), D(z, Fx), D(y, Fy), 55

}

and
N(z,y) = min{D(z, Fz), D(y, Fx)},

we have
n(a)D(z, F(z)) < d(z,y) = a(z,y)y(s*H(Fz, Fy))
< BW(M(z,y)p(M(z,y)) + Lo(N(z,y))

for all z,y € X, where n(a) = 117, 8 € F and ¢, ¢ € V.

(3.1)

Theorem 3.5. Let (X,d) be a complete b-metric space with (s > 1), and F' : X — Py (X) be a extended
multivalued Geraghty type contraction such that

(i) F is a-admissible;

(ii) there exists xg € X and x; € Fxy such that a(xg, 1) > 1;
(iii) F is continuous.
Then F has a fixed point.

Proof. By condition (ii), there exists 29 € X and x1 € Fxg such that a(xg,x1) > 1. If 21 = 29, as z1 € Frq,
then z is a fixed point of F' and we have nothing to prove. First, we note that

D(xo, Fl'l) + D(xl, F.Z'o)
2s

M(x()vaxl) = max{d(xo, ,.Tl),D(.Z’(],Fl‘o),D($1,F,%’1),
= max{d(zo,,z1), D(z1, Fx1)}.

}

Since n(a)D(zo, Fxo) < d(zo, x1), if M(zo,,21) = D(21, Fz1), then

(D(z1, F1)) < awo, 21)¢(s° H(Fao, F1)) < B(¢(D(z1, F21)))(D(z1, F1)) + Lo (0)
< P(D(z1, Fa1)),

which is a contradiction. It follows that M (xo,,x1) = d(xo,,x1). Let us take a real ¢ such that 1 < ¢ < s.
Then
0 < (D(x1, Fx1)) < alwo, 1) (H(Fro, Fr1)) < qolzo, x1) (s> H(Fxo, Fay)).

Hence, there exists xo € Fxq such that

Y(d(z1,x2)) < qolxo, 21)(s>H(Fxg, Fxy)). (3.2)
Using with * = 29 and y = z1, by we get
b(d(r,@2)) < S5eb(d(xo,,21)). (3.3)

Now, by the properties of the function ¢ and regarding the fact that s% < 1, we deduce

52 s?

w(;d(fﬁl,@)) < ;@D(d(ﬂ?laxz)) < P(d(zo, 1)),

d(x1,29) < S%d(xo,xl) < d(zg, 7).
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If 9 € Fxo, then x5 is a fixed point of F. Assume that x1 # zo & Fxo. We have:
M (z1,29) = max{d(z1, x2), D(x2, Fx2)}, N(x1,22) =0
and n(a)D(z1, Fa1) < d(w1, 2). If M(21,22) = D(w2, Fag), then

0 < Y(D(z2, Fz2)) (xl,azg)w(SBH(Fxl,Fxg))

<a
< O(Y(D(xg, Fxo)))(D(x2, F13))
< 1/J(D((L'Q,Fa}2)),

which is a contradiction and hence M (z1,z2) = d(x1,x2). Put

Hib(d(xo, 1))
P(d(z1,22))

By (3.3), we have ¢; > 1. Hence, there exists x3 € Fxo such that

q1 =

Y(d(z,23)) < qra(zy, 20)Y(s* H(Fxy, Fa)).
Since n(a)D(x, Fxg) < d(x2,x3), by (3.1) with z = 9 and y = x3, we have

Y(d(z2,13)) < qrafzy, 22)Y(s°H(Fxy, Fay))
< @B (M (1, 22))) (M (z1,22)) + @1 LO(N (21, 22))

< z—;Qb(d(xl,xg)).

So
b(d(az,73)) < Tgeb(d(ar,z2) < () (a0, 1)),

By properties of @ we obtain
q .2
d(z2,23) < ( 5)"d(20, z1).

By continuing this process, we obtain a sequence {z,} in X such that z, € Fx,_1, x, # x,—1 and
d(n, Tny1) < (&)"d(xo, 1) for all n € N. By the triangle inequality for n < m, we have

m—1

d(Tp, Tm) < Z ST (g, Tpg)

k=n

(o ¢]
< k—nt1, 9 kg
—kz:s (52) ('7:07:61)
=n

s(3)"

=l s(%)

ld(xo,z1) — 0 as n — oo.

We deduce that {z,} is a Cauchy sequence in (X,d). Since (X,d) is a complete b-metric space, so there
exists * € X such that lim x,, = 2*. The mapping F is continuous, so
n—oo

D(x*, Fx*) = lim D(zpy1, Fa*) < lim H(Fx,, F2*) =0
— 00 n—oo

n

and so z* € Fx*. O
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Example 3.6. Put X = {1} U{m + n+2 :m,n € N} and define a metric d on X by
d(z,y) =[z -y |

Define a mapping F' on X by

F(x):{ Tm+ 25 r=m+ L
Then F satisfies in the assumptions of Theorem

Proof. Tt is obvious that (X, d) is a complete metric space and 1 is a unique fixed point of F. if n < m, we
have

1
D F d — —
n(a) (m+n+2’ (m+n+2))< (m+n+2’n+n+2)
0
1 1 1 1
d —0, 7 —) <d — —
n(a) (m+n+2, m+n+2)< (m + ot +2)
0
1 1 1
— T - —— - _p-
na) [mt g e g s g s
0
1 1 1
Z = < — - .
2\ 6m |<n(a) | —6m | <| m+ R n+2‘
0
3m <m—n<m.
This is a contradiction. Therefore F satisfies in the assumptions of Theorem [3.5] O

Example 3.7. Let X be the set of Lebesgue measurable functions on [0, 1] such that fo |z(t)|dt < 1. Define
d: X x X i [0,00) by
d(z,y) / lz(t) — y(t)|2dt.

Then, d is a b-metric on X, with s = 2. The multivalued mapping T : X — 2% is defined by

3z +4, if z(t) < —1,
Tx(t) =< [—z,1], if —1<uz(t)<0,
In(1 + (), if x(t) > 0.

Consider the mapping a : X x X — [0,00) by the following

2, fy<z< -3,
alz,y)=4 1, ifz>y>0,
0, otherwise.

We take 3 : [0,00) — [0, %) and ¥ : [0,00) — [0, 00) as

t2+1

t) =t d t) = —&——.

Evidently, ¢ € ¥ and 5 € F. Moreover, T is a-admissible, a(1,7'1) > 1 and T is continuous. Now, we
prove that T is a generalized a — 1-Suzuki-Geraghty multivalued type contraction. For z(t) > 0, we have
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a(x(t),y(t)(s*d(Ta(t), T <23/ [T (t) — Ty(t)|*dt)

_23/| 1+xt)—gln(1+y(t))\2dt

_ o-3 n1+$(7§) 27, o-3 ! n z(t) —y(t), 2
s /()]l(1+y(t))| dt = 2 /0\1(1+1+y(t) J[2dt

1 1
<2 [+ o) — 0P <27 [ () - w0t

d(z,y)? +1
~ 4d(z,y)? +8

=27%d(z,y) < d(z,y) = B(d(z,y)d(z,y).

For z(t) < 0, by definition of Tx(t) and a(z(t),y(t)) the condition of (3.1) is satisfied. Thus, T is a
generalized o — 1-Suzuki-Geraghty multivalued type contraction. By Theorem T has a fixed point.
Here 0, —2 are fixed points.

If in 1’ F is a family of all functions 3 : [0, 00) — [0, %) for some s > 1, we can deduce the following
theorem.

Theorem 3.8. Let (X,d) be a complete b-metric space and absolute retract for b-metric spaces, F: X —
Py o (X) an extended multivalued Geraghty type contraction, F is continuous, and F' € SP(X). If a(z,y) > 1
for allx € X and y € F(x), then Fr is an absolute retract for b-metric spaces.

Proof. Let Y be a b-metric space, A € P,y(Y') and £ : A — FF a continuous function. Since X is an absolute
retract for b-metric spaces, there exists a continuous function ¢g : Y — X such that ¢g|a = . Define the
function g : Y — (0, 00) by

90(y) = sup{d(eo(y), 2)|z € F(eo(y))} +1

for all y € Y. It is not difficult to see that g is continuous and

F(eo(y)) N Blgo(y), 90(y) = Fleo(y))

for all y € A (see [14]). Also we observe that the function £ : A — Fr has the property {(y) € F(po(y))
(y € A), so is a continuous selection of the multivalued mapping. Since F' € Sp(X), there exists a continuous
function 1 : Y — X such that ¢1]4 = £ and p1(y) € F(po(y)) for all y € Y. First, we note that

M(po(y), p1(y)) = max{d(vo(y), 1(v)), D(vo(y), Fro(y)), D(e1(y), Fe1(y))

D(po(y), Fe1(y)) + D(e1(y), F@o(y))}
’ 2s
= max{d(po(y),, v1(y)), D(¢1(y), Fe1(y))}-

Since 1(a)D(¢o(y), F(vo(y))) < d(po(y), p1(y)), if M(po(y), »1(y)) = D(p1(y), Fe1(y)), then

);
z/J(D(sol(y),Fw(y))) a(po(y), 1()U(s*H(F(o(y), Fe1(y)))))
B(D(e1(y), Fer(y))¢(D(p1(y), Fpr(y))) + Lo(0)
< w(D(%(y),F@ ®))),
)

which is contradiction. It follows that M(¢o(y), ¢1(y)) = d(wo(y),¢1(y)). Let 1 < ¢ < s and r € (1,7),
then

(D (p1(y), Fer(y))) < alwoy), prm) (s H(F (o(y), Fle1(y))))
< B(d(eo(y), p1(¥)¢(d(po(y), ¢1(v)))

< Du(d(eo(y), 1)),
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Now, by the property of ) € ¥ and regarding the fact that £ < 1 we have

Y(CD(p1(y), Fer(y))) < gww(@l(y),ml(y») < P(d(po(y), ¥1(y))).

Since 1) is increasing, therefore

D(p1(y), Fe1(y))) < %d(wo(y),sol(y)) < gd(soo(y),w(y)) +rh (3.4)

Hence, Ga(y) := F(p1(y)) N B(e1(y), Z(d(po(y), ¢1(y))) +r~1) # 0 for all y € Y. Since we know that

F € Sp(X), there exists a continuous function @y : ¥ — X such that @o|4 = € and @a(y) € Ga(y) for all
y € Y. Thus, pa(y) € F(e1(y)) for all y € Y and

dp1(v). 22(v) < L(dlpo(y), o1 () + 77

Similarly we have

M(p1(y), p2(y)) = max{d(p1(y),, 2(y)), D(p2(y), Fo2(y)) }, N(e1(y), p2(y)) = 0.
If M(p1(y),p2(y)) = D(p2(y), Fpa2(y)), then

0 < 9(D(p2(y), F2(y))) < a1 (y), p2 () (s’ H(F (1(y), Fe2(y)))))
B(D(pa(y), Fipa(y)(D(pa(y), Fepa(y)))

Y(D(p2(y), Fo2(y)))
Y(D(p2(y), Fo2(y))),

which is contradiction. It follows that M (v1(y), p2(y)) = d(v1(y), p2(y))-
Now, by the property of ¢ we have

Y(=D(p2(y), Fp2(y))) < glb(D(%Dz(y)» Foa(y))) < ¢(d(e1(y), p2(y)))-

VAN VAN
»

A

Since 1 is increasing, therefore
D(p2(y). Foa(y) < {d(p1(y). 02()) < (1 (y). o) + 77"
By we have
D(p2(y), Fea(w)) < (2Pd(20(y). 1)) + 772

Hence, G3(y) = F(pa(y)) N Blpa(y)), (£)%d(po(y), p1(y)) +77%) # 0. Since F € Sp(X), there exists
a continuous function ¢3 : Y — X such that ¢3|4 = £ and p3(y) € Gs(y) for all y € Y. Also, we

have d(pa(y), w3(y)) < (£)%d(po(y),p1(y)) + =2 and @3(y) € F(pa(y)) for all y € Y. By continuing
this process, we obtain {¢, : ¥ — X},>0 a sequence of continuous functions such that ¢,|4 = £ and

d(en-1(), en(y)) < (D" Ld(wo(y), e1(y)) +r~ "D and ¢, (y) € F(pn-1(y)) for ally € Y and n > 1. Now,
for each A > 0 we put

Yy:={yeY :dlpo(y),p1(y)) <A}.

Since ¢1(y) € F(po(y)) and
F(po(y)) N B(eo(y), 90(y)) = Fleo(y)),

©1(y) € B(po(y),90(y)). Hence, d(¢o(y), v1(y)) < Ay := go(y). Thus, y € Y),. Since Y) is open for each
A > 0, the family of sets {Y)\|A > 0} is an open covering of Y and we have

Agn-1(9), on(®) < (1) dlgo(y), e1(y) + 7Y
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forallm > 1 and y € Y. Since % <1,r>1, and X is complete, the sequence {p, },>0 converges uniformly
on Y, for all A > 0. Let ¢ : Y — X be the pointwise limit of {¢,}n>0 and note that ¢ is continuous
and p|4 = £ because p,|a = & for all n > 0. Since F' is continuous, hence ¢(y) € F(p(y)) for all y € Y.
Therefore, ¢ : Y — B is a continuous extension of &, that is, B = {x € X : x € F(x)} is an absolute retract

for b-metric spaces. O
4. Corollaries

By letting a(z,y) = 1 for all z,y € X, we get the following consequences:

Corollary 4.1. Let (X,d) be a complete b-metric space and absolute retract for b-metric spaces, F': X —
Py (X), also there exists a € [0,1) and some L > 0 such that,

n(a)D(x, F(x)) < d(w,y) = ¢(s°d(Tx, Ty))
< B (d(z,y)))¢(d(z,y)) + Lo(N(z,y))

for all z,y € X, where n(a) = H%? BeF,andy,p €V and

(4.1)

N(z,y) = min{d(z,Tz),d(y, Tx)},

F' is continuous and F € SP(X). If a(z,y) > 1 for allz € X and y € F(x), then Fr is an absolute retract
for b-metric spaces.

If in (4.1]), we let L = 0 then we obtain the following sequence.

Corollary 4.2. Let (X,d) be a complete b-metric space and absolute retract for b-metric spaces, F: X —
Py (X)), also there exist a € [0,1) such that,

n(a)D(z, F(z)) < d(z,y) = U(s’d(Tz,Ty)) < (¥(d(z,y)v(d(w,y))

for all x,y € X, where n(a) = H%? g eF and p,¢ € VU, F is continuous, and ' € SP(X). If a(z,y) > 1
forallx € X and y € F(x), then Fr is an absolute retract for b-metric spaces.

5. Consequences

As it is expected, the main results of the paper yield several existing results in the literature by choosing
the auxiliary functions «,n, 1, ¢ in a proper way. To list more results it is sufficient to take d(x,y) instead
of M(x,y), and /or take L = 0. Notice also that, one can replace the single valued mapping instead of
multivalued mapping to cover more results in the literature. Furthermore, by relaxing b-metric with metric,
we observe more results as a consequence of our main results.
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