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Abstract

In this paper we present some absolute retract results for modified Geraghty multivalued type contrac-
tions in b-metric space. Our results, generalize several existing results in the corresponding literature. We
also present some examples to support the obtained results. c©2016 all rights reserved.
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1. Introduction and preliminaries

Let P (X) denote the collection of all nonempty subsets of a set X 6= ∅, and F : X → P (X) be
multifunctions (multivalued mapping). Throughout the paper, set of all nonempty closed and bounded
subsets of X will be represented by Pb,cl(X) under the assumption that X is equipped with a metric.
Further, the set of all fixed point(s) of F will be denoted by FF , that is,

FF = {x ∈ X : x ∈ Fx}.

Let (X, d) be a metric space and B(x0, r) = {x ∈ X : d(x0, x) < r}. For x ∈ X and A,B ⊆ X, we set
D : P (X)× P (X)→ [0,∞) ∪ {+∞}, such that

D(A,B) = sup{D(a,B) : a ∈ A} and D(B,A) = sup{D(b, A) : b ∈ B}.
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Let H : P (X)× P (X)→ [0,∞) ∪ {+∞} be defined as

H(A,B) =


max{D(A,B), D(B,A)}, A 6= ∅ 6= B,
0, A = ∅ = B,
+∞, otherwise.

Note that H forms a metric and it is called the Hausdorff metric (for more details see e.g. [13, 14] and the
references therein).

For non-empty sets X,Y, a mapping ϕ : X → Y is called a selection of F : X → P (Y ), whenever
ϕ(x) ∈ Fx for all x ∈ X. A topological space X is an absolute retract for metric spaces if for each metric
space Y , A ∈ Pcl(Y ) and continuous function ψ : A → X, there exists a continuous function ϕ : Y → X
such that ϕ|A = ψ (see [12]).

Let M be the collection of all metric spaces, X ∈ M, D ∈ P (M) and F : X → Pb,cl(X) a lower semi-
continuous multifunction. We say that F has the selection property with respect to D if for each Y ∈ D,
continuous function f : Y → X and continuous functional g : Y → (0,∞) such that

G(y) := F (f(y)) ∩B(f(y), g(y)) 6= ∅

for all y ∈ Y , A ∈ Pcl(Y ), every continuous selection ψ : A → X of G|A admits a continuous extension
ϕ : Y → X, which is a selection of G. If D = M, then we say that F has the selection property and we
denote this by F ∈ Sp(X) (for more details see [13, 14]).

In this paper, we present some new results on absolute retract (see e.g. [4, 10, 12–14]) of the fixed points
set of extended multivalued Geraghty type contractions. Our results combine, extend and generalize several
existing results on the corresponding literature (see e.g. [1–3, 8, 9, 11, 15, 16] and related references therein).

2. Fixed points set of extended multivalued Geraghty type contractions

In the all over this paper let Ψ be the set of all increasing and continuous functions ψ : [0,∞)→ [0,∞)
satisfying the following property: ψ(ct) ≤ cψ(t) for all c > 1 and ψ(0) = 0. We denote by Θ the family of
all increasing functions θ : [0,∞)→ (0, 1).

Definition 2.1. Let F : X → Pb,cl(X) be a multivalued mapping and α : X × X → [0,∞) be a given
function. Then F is said to be α-admissible if

(T3) α(x, y) ≥ 1 for all y ∈ Fx⇒ α(y, z) ≥ 1, for all z ∈ Fy.

Example 2.2. Let X = [1, 2] and Fx = [x− 1
2 , 2]. Define α(x, y) = 1 if x = y = 2 and α(x, y) = 0 otherwise.

Clearly, F is α-admissible.

Definition 2.3. Let (X, d) be a metric space and F : X → Pb,cl(X) be a multivalued mapping. We say
that F is an extended multivalued Geraghty type contraction if there exist α : X × X → [0,∞), a ∈ [0, 1)
and some L ≥ 0 such that

η(a)D(x, F (x)) ≤ d(x, y) =⇒ α(x, y)ψ(H(Fx, Fy))

≤ θ(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y))

for all x, y ∈ X, where,

M(x, y) = max{d(x, y), D(x, Fx), D(y, Fy),
D(x, Fy) +D(y, Fx)

2
}

and
N(x, y) = min{D(x, Fx), D(y, Fx)}
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and η(a) = 1
1+a , θ ∈ Θ and ψ, φ ∈ Ψ.

Furthermore, we say that F is generalized multivalued Geraghty type contraction if

α(x, y)ψ(H(Fx, Fy)) ≤ θ(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y)) (2.1)

for all x, y ∈ X, where, L,M(x, y), N(x, y), α(x, y), θ, ψ, φ are defined as above.

Remark 2.4. The functions belonging to Θ are strictly smaller than 1. Then, the expression θ(ψ(M(x, y)))
in (2.1) satisfies

θ(ψ(M(x, y))) < 1 for any x, y ∈ X with x 6= y.

Theorem 2.5. Let (X, d) be a complete metric space and F : X → Pb,cl(X) be a extended multivalued
Geraghty type contraction such that

(i) F is α-admissible;

(ii) there exists x0 ∈ X and x1 ∈ Fx0 such that α(x0, x1) ≥ 1;

(iii) F is continuous.

Then F has a fixed point.

Proof. By condition (ii), there exists x0 ∈ X and x1 ∈ Fx0 such that α(x0, x1) ≥ 1. If x1 = x0, as x1 ∈ Fx1,
then x1 is a fixed point of F and we have nothing to prove. First, we note that

M(x0, , x1) = max{d(x0, , x1), D(x0, Fx0), D(x1, Fx1),
D(x0, Fx1) +D(x1, Fx0)

2
}

= max{d(x0, , x1), D(x1, Fx1)}.

Since η(a)D(x0, Fx0) ≤ d(x0, x1), if M(x0, , x1) = D(x1, Fx1), then

ψ(D(x1, Fx1)) ≤ α(x0, x1)ψ(H(Fx0, Fx1)) ≤ θ(ψ(D(x1, Fx1)))ψ(D(x1, Fx1)) + Lφ(0)

< ψ(D(x1, Fx1)),

which is a contradiction. It follows that M(x0, , x1) = d(x0, , x1). Let q = 1√
θ(ψ(d(x0,x1)))

> 1, then there

exists x2 ∈ Fx1 such that

ψ(d(x1, x2)) ≤ qα(x0, x1)ψ(H(Fx0, Fx1)). (2.2)

Using (2.1) with x = x0 and y = x1, by (2.2) we get

ψ(d(x1, x2)) ≤
√
θ(ψ(d(x0, x1)))ψ(d(x0, x1)). (2.3)

Now, by the properties of the function ψ, we deduce

ψ(
d(x1, x2)√

θ(ψ(d(x0, x1))
) ≤ 1√

θ(ψ(d(x0, x1)))
ψ(d(x1, x2)) < ψ(d(x0, x1))

and so d(x1, x2) <
√
θ(ψ(d(x0, x1)))d(x0, x1) < d(x0, x1). If x2 ∈ Fx2, then x2 is a fixed point of F . Assume

that x1 6= x2 6∈ Fx2. We have:

M(x1, x2) = max{d(x1, x2), D(x2, Fx2)}, N(x1, x2) = 0

and η(a)D(x1, Fx1) ≤ d(x1, x2). If M(x1, x2) = D(x2, Fx2), then

0 < ψ(D(x2, Fx2)) ≤ α(x1, x2)ψ(H(Fx1, Fx2))



H. Afshari, H. H. Alsulami, E. Karapınar, J. Nonlinear Sci. Appl. 9 (2016), 4695–4706 4698

≤ θ(ψ(D(x2, Fx2)))ψ(D(x2, Fx2))

< ψ(D(x2, Fx2)),

which is a contradiction and hence M(x1, x2) = d(x1, x2).

Put q1 =

√
θ(ψ(d(x0,x1)))ψ(d(x0,x1))

ψ(d(x1,x2))
> 1 (by (2.3)). Then there exists x3 ∈ Fx2 such that

ψ(d(x2, x3)) < q1α(x1, x2)ψ(H(Fx1, Fx2)).

Since η(a)D(x2, Fx2) ≤ d(x2, x3), by (2.1) with x = x2 and y = x3, we have

ψ(d(x2, x3)) < q1α(x1, x2)ψ(H(Fx1, Fx2))

≤ q1θ(ψ(M(x1, x2)))ψ(M(x1, x2)) + q1LN(x1, x2)

= q1θ(ψ(d(x1, x2)))ψ(d(x1, x2))

≤
√
θ(ψ(d(x0, x1)))

√
θ(ψ(d(x0, x1)))ψ(d(x0, x1))

≤ (
√
θ(ψ(d(x0, x1))))

2ψ(d(x0, x1)).

Since

ψ(
d(x2, x3)

(
√
θ(ψ(d(x0, x1))))2

) ≤ ψ(d(x2, x3))

(
√
θ(ψ(d(x0, x1))))2

< ψ(d(x0, x1))

and ψ is increasing, then

d(x2, x3) < (
√
θ(ψ(d(x0, x1))))

2d(x0, x1) < d(x0, x1).

By continuing this process, we obtain a sequence {xn} in X such that xn 6= xn−1 and d(xn, xn+1) <
(
√
θ(ψ(d(x0, x1))))

nd(x0, x1) for all n ∈ N.
Let t =

√
θ(ψ(d(x0, x1))), then 0 < t < 1. By the triangle inequality for n < m, we have

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤ (tn
m−n−1∑
k=0

tk)d(x0, x1)

≤ tn

1− t
d(x0, x1).

The previous inequality shows that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete metric
space, so there exists x∗ ∈ X such that lim

n→∞
xn = x∗. The continuity of F implies that

0 ≤ D(x?, Fx?) = lim
n→∞

D(xn+1, Fx
?) ≤ lim

n→∞
H(Fxn, Fx

?) = 0

and so x? ∈ Fx?.

Example 2.6. Let X = [−1,∞), d(x, y) = |x− y| and for any A,B ⊂ X

D(A,B) = sup{D(a,B) : a ∈ A},

H(A,B) = max{sup
x∈A

D(x,B), sup
y∈B

D(y,A)}.

Define a multivalued mapping F : X → Pb,cl(X) by F (x) = [−1, x4 ] for every x ∈ X. It is easy to see that
(X, d) is a complete metric space. We have

η(a)D(x, F (x)) ≤ d(x, y), η(a) =
1

1 + a
, a ∈ [0, 1),
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whenever x, y ∈ [−1, 0]. Hence, if we set ψ(t) = t, θ(t) = t+1
t+2 , and

α(x, y) =

{
2 if x ≥ y,
1
2 if x < y,

because

H(Fx, Fy) =

{ x−y
4 if x ≥ y,

y−x
4 if x < y,

and M(x, y) = |x− y|, N(x, y) = 0, therefore

α(x, y)ψ(H(Tx, Ty)) ≤ θ(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y)).

It is straightforward that conditions of Theorem 2.5 are satisfied and so F has a fixed point. For this example
we have FF = [−1, 0].

3. Extended multivalued Geraghty type contractions in the setting of b-metric spaces

In this section, first we recall the notion of b-metric and introduce the notion of a extended multivalued
Geraghty type contractions in the setting of b-metric spaces. After then, we state and prove our main results.

Definition 3.1 ([6]). Let X be a nonempty set and s ≥ 1 be a given real number. A mapping d : X ×X →
[0,∞) is said to be a b-metric if for all x, y, z ∈ X the following conditions are satisfied:

(bM1) d(x, y) = 0 if and only if x = y;

(bM2) d(x, y) = d(y, x);

(bM3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

For s = 1, b-metric turns into standard metric. That is why b-metric spaces attracted the attention of
researchers on this fields (see e.g. [5, 7]). Let (X, d) be a b-metric space. We consider next the following
family of subsets given by

P(X) := {Y |Y ⊂ X and Y 6= ∅}.
In this case D is a generalized functional on a b-metric space (X, d) defined by D : P (X) × P (X) →

[0,∞) ∪ {+∞},

D(A,B) =


inf{d(a, b)|a ∈ A, b ∈ B}, A 6= ∅ 6= B,
0, A = ∅ = B,
+∞, otherwise.

In particular, if x0 ∈ X then D(x0, B) := D({x0}, B).
The following basic lemmas will be useful in the proof of main results.

Lemma 3.2 ([7]). Let (X, d) be a b-metric space. Then, we have

D(x,A) ≤ s[d(x, y) +D(y,A)] for all x, y ∈ X and A ⊂ X.

Lemma 3.3 ([7]). Let (X, d) be a b-metric space and let {xk}nk=0 ⊂ X. Then

d(xn, x0) ≤ sd(x0, x1) + ...+ sn−1d(xn−2, xn−1) + snd(xn−1, xn).

We denote by F the family of all functions β : [0,∞)→ [0, 1
s2

) for some s > 1.

Definition 3.4. Let (X, d) be a complete b-metric space and F : X → Pb,cl(X) be a multivalued mapping.
We say that F is a extended multivalued Geraghty type contraction in b-metric space with (s > 1), whenever
there exist α : X ×X → [0,∞), a ∈ [0, 1) and some L ≥ 0 such that for
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M(x, y) = max{d(x, y), D(x, Fx), D(y, Fy),
D(x, Fy) +D(y, Fx)

2s
}

and
N(x, y) = min{D(x, Fx), D(y, Fx)},

we have

η(a)D(x, F (x)) ≤ d(x, y) =⇒ α(x, y)ψ(s3H(Fx, Fy))

≤ β(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y))
(3.1)

for all x, y ∈ X, where η(a) = 1
1+a , β ∈ F and ψ, φ ∈ Ψ.

Theorem 3.5. Let (X, d) be a complete b-metric space with (s > 1), and F : X → Pb,cl(X) be a extended
multivalued Geraghty type contraction such that

(i) F is α-admissible;

(ii) there exists x0 ∈ X and x1 ∈ Fx0 such that α(x0, x1) ≥ 1;

(iii) F is continuous.

Then F has a fixed point.

Proof. By condition (ii), there exists x0 ∈ X and x1 ∈ Fx0 such that α(x0, x1) ≥ 1. If x1 = x0, as x1 ∈ Fx1,
then x1 is a fixed point of F and we have nothing to prove. First, we note that

M(x0, , x1) = max{d(x0, , x1), D(x0, Fx0), D(x1, Fx1),
D(x0, Fx1) +D(x1, Fx0)

2s
}

= max{d(x0, , x1), D(x1, Fx1)}.

Since η(a)D(x0, Fx0) ≤ d(x0, x1), if M(x0, , x1) = D(x1, Fx1), then

ψ(D(x1, Fx1)) ≤ α(x0, x1)ψ(s3H(Fx0, Fx1)) ≤ β(ψ(D(x1, Fx1)))ψ(D(x1, Fx1)) + Lφ(0)

< ψ(D(x1, Fx1)),

which is a contradiction. It follows that M(x0, , x1) = d(x0, , x1). Let us take a real q such that 1 < q < s.
Then

0 < ψ(D(x1, Fx1)) ≤ α(x0, x1)ψ(H(Fx0, Fx1)) < qα(x0, x1)ψ(s3H(Fx0, Fx1)).

Hence, there exists x2 ∈ Fx1 such that

ψ(d(x1, x2)) < qα(x0, x1)ψ(s3H(Fx0, Fx1)). (3.2)

Using (3.1) with x = x0 and y = x1, by (3.2) we get

ψ(d(x1, x2)) <
q

s2
ψ(d(x0, , x1)). (3.3)

Now, by the properties of the function ψ and regarding the fact that q
s2
< 1, we deduce

ψ(
s2

q
d(x1, x2)) ≤

s2

q
ψ(d(x1, x2)) < ψ(d(x0, x1)),

d(x1, x2) ≤
q

s2
d(x0, x1) < d(x0, x1).
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If x2 ∈ Fx2, then x2 is a fixed point of F . Assume that x1 6= x2 6∈ Fx2. We have:

M(x1, x2) = max{d(x1, x2), D(x2, Fx2)}, N(x1, x2) = 0

and η(a)D(x1, Fx1) ≤ d(x1, x2). If M(x1, x2) = D(x2, Fx2), then

0 < ψ(D(x2, Fx2)) ≤ α(x1, x2)ψ(s3H(Fx1, Fx2))

≤ θ(ψ(D(x2, Fx2)))ψ(D(x2, Fx2))

< ψ(D(x2, Fx2)),

which is a contradiction and hence M(x1, x2) = d(x1, x2). Put

q1 =
q
s2
ψ(d(x0, x1))

ψ(d(x1, x2))
.

By (3.3), we have q1 > 1. Hence, there exists x3 ∈ Fx2 such that

ψ(d(x2, x3)) < q1α(x1, x2)ψ(s3H(Fx1, Fx2)).

Since η(a)D(x,Fx2) ≤ d(x2, x3), by (3.1) with x = x2 and y = x3, we have

ψ(d(x2, x3)) < q1α(x1, x2)ψ(s3H(Fx1, Fx2))

≤ q1β(ψ(M(x1, x2)))ψ(M(x1, x2)) + q1Lφ(N(x1, x2))

<
q1
s2
ψ(d(x1, x2)).

So
ψ(d(x2, x3)) ≤

q1
s2
ψ(d(x1, x2)) ≤ (

q

s2
)2ψ(d(x0, x1)).

By properties of ψ we obtain

d(x2, x3) ≤ (
q

s2
)2d(x0, x1).

By continuing this process, we obtain a sequence {xn} in X such that xn ∈ Fxn−1, xn 6= xn−1 and
d(xn, xn+1) < ( q

s2
)nd(x0, x1) for all n ∈ N. By the triangle inequality for n < m, we have

d(xn, xm) ≤
m−1∑
k=n

sk−n+1d(xk, xk+1)

≤
∞∑
k=n

sk−n+1(
q

s2
)kd(x0, x1)

= [
s( q
s2

)n

1− s( q
s2

)
]d(x0, x1)→ 0 as n→∞.

We deduce that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete b-metric space, so there
exists x∗ ∈ X such that lim

n→∞
xn = x∗. The mapping F is continuous, so

D(x?, Fx?) = lim
n→∞

D(xn+1, Fx
?) ≤ lim

n→∞
H(Fxn, Fx

?) = 0

and so x? ∈ Fx?.
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Example 3.6. Put X = {1} ∪ {m+ 1
n+2 : m,n ∈ N} and define a metric d on X by

d(x, y) =| x− y | .

Define a mapping F on X by

F (x) =

{
1 x = 1,
7m+ 1

n+2 x = m+ 1
n .

Then F satisfies in the assumptions of Theorem 3.5.

Proof. It is obvious that (X, d) is a complete metric space and 1 is a unique fixed point of F . if n < m, we
have

η(a)D(m+
1

n+ 2
, F (m+

1

n+ 2
)) < d(m+

1

n+ 2
, n+

1

n+ 2
)

m

η(a)d(m+
1

n+ 2
, 7m+

1

n+ 2
) < d(m+

1

n+ 2
, n+

1

n+ 2
)

m

η(a) | m+
1

n+ 2
− 7m− 1

n+ 2
| <| m+

1

n+ 2
− n− 1

n+ 2
|

m
1

2
| −6m |≤ η(a) | −6m | <| m+

1

n+ 2
− n− 1

n+ 2
| .

m
3m < m− n < m.

This is a contradiction. Therefore F satisfies in the assumptions of Theorem 3.5.

Example 3.7. Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1
0 |x(t)|dt < 1. Define

d : X ×X :→ [0,∞) by

d(x, y) =

∫ 1

0
|x(t)− y(t)|2dt.

Then, d is a b-metric on X, with s = 2. The multivalued mapping T : X → 2X is defined by

Tx(t) =


3x+ 4, if x(t) < −1,
[−x, 1], if − 1 ≤ x(t) < 0,
1
8 ln(1 + x(t)), if x(t) ≥ 0.

Consider the mapping α : X ×X → [0,∞) by the following

α(x, y) =


2, if y ≤ x ≤ −3,
1, if x ≥ y ≥ 0,
0, otherwise.

We take β : [0,∞)→ [0, 14) and ψ : [0,∞)→ [0,∞) as

ψ(t) = t and β(t) =
t2 + 1

4t2 + 8
.

Evidently, ψ ∈ Ψ and β ∈ F . Moreover, T is α-admissible, α(1, T1) ≥ 1 and T is continuous. Now, we
prove that T is a generalized α− ψ-Suzuki-Geraghty multivalued type contraction. For x(t) ≥ 0, we have
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α(x(t), y(t))ψ(s3d(Tx(t), Ty(t))) ≤ 23(

∫ 1

0
|Tx(t)− Ty(t)|2dt)

= 23
∫ 1

0
|1
8

ln(1 + x(t))− 1

8
ln(1 + y(t))|2dt

= 2−3
∫ 1

0
| ln(

1 + x(t)

1 + y(t)
)|2dt = 2−3

∫ 1

0
| ln(1 +

x(t)− y(t)

1 + y(t)
)|2dt

≤ 2−3
∫ 1

0
| ln(1 + |x(t)− y(t)|)|2dt ≤ 2−3

∫ 1

0
|x(t)− y(t)|2dt

= 2−3d(x, y) ≤ d(x, y)2 + 1

4d(x, y)2 + 8
d(x, y) = β(d(x, y)d(x, y).

For x(t) < 0, by definition of Tx(t) and α(x(t), y(t)) the condition of (3.1) is satisfied. Thus, T is a
generalized α − ψ-Suzuki-Geraghty multivalued type contraction. By Theorem 3.5, T has a fixed point.
Here 0,−2 are fixed points.

If in (3.2), F is a family of all functions β : [0,∞)→ [0, 1s ) for some s ≥ 1, we can deduce the following
theorem.

Theorem 3.8. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, F : X →
Pb,cl(X) an extended multivalued Geraghty type contraction, F is continuous, and F ∈ SP (X). If α(x, y) ≥ 1
for all x ∈ X and y ∈ F (x), then FF is an absolute retract for b-metric spaces.

Proof. Let Y be a b-metric space, A ∈ Pcl(Y ) and ξ : A→ FF a continuous function. Since X is an absolute
retract for b-metric spaces, there exists a continuous function ϕ0 : Y → X such that ϕ0|A = ξ. Define the
function g0 : Y → (0,∞) by

g0(y) = sup{d(ϕ0(y), z)|z ∈ F (ϕ0(y))}+ 1

for all y ∈ Y . It is not difficult to see that g0 is continuous and

F (ϕ0(y)) ∩B(ϕ0(y), g0(y)) = F (ϕ0(y))

for all y ∈ A (see [14]). Also we observe that the function ξ : A → FF has the property ξ(y) ∈ F (ϕ0(y))
(y ∈ A), so is a continuous selection of the multivalued mapping. Since F ∈ Sp(X), there exists a continuous
function ϕ1 : Y → X such that ϕ1|A = ξ and ϕ1(y) ∈ F (ϕ0(y)) for all y ∈ Y . First, we note that

M(ϕ0(y), ϕ1(y)) = max{d(ϕ0(y), ϕ1(y)), D(ϕ0(y), Fϕ0(y)), D(ϕ1(y), Fϕ1(y))

,
D(ϕ0(y), Fϕ1(y)) +D(ϕ1(y), Fϕ0(y))

2s
}

= max{d(ϕ0(y), , ϕ1(y)), D(ϕ1(y), Fϕ1(y))}.

Since η(a)D(ϕ0(y), F (ϕ0(y))) ≤ d(ϕ0(y), ϕ1(y)), if M(ϕ0(y), ϕ1(y)) = D(ϕ1(y), Fϕ1(y)), then

ψ(D(ϕ1(y), Fϕ1(y))) ≤ α(ϕ0(y), ϕ1(y))ψ(s3H(F (ϕ0(y), F (ϕ1(y)))))

≤ β(ψ(D(ϕ1(y), Fϕ1(y))))ψ(D(ϕ1(y), Fϕ1(y))) + Lφ(0)

< ψ(D(ϕ1(y), Fϕ1(y))),

which is contradiction. It follows that M(ϕ0(y), ϕ1(y)) = d(ϕ0(y), ϕ1(y)). Let 1 < q < s and r ∈ (1, sq ),
then

ψ(D(ϕ1(y), Fϕ1(y))) ≤ α(ϕ0(y), ϕ1(y))ψ(s3H(F (ϕ0(y), F (ϕ1(y)))))

≤ β(ψ(d(ϕ0(y), ϕ1(y)))ψ(d(ϕ0(y), ϕ1(y)))

<
q

s
ψ(d(ϕ0(y), ϕ1(y))).
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Now, by the property of ψ ∈ Ψ and regarding the fact that q
s < 1 we have

ψ(
s

q
D(ϕ1(y), Fϕ1(y))) ≤ s

q
ψ(D(ϕ1(y), Fϕ1(y))) < ψ(d(ϕ0(y), ϕ1(y))).

Since ψ is increasing, therefore

D(ϕ1(y), Fϕ1(y))) ≤ q

s
d(ϕ0(y), ϕ1(y)) <

q

s
d(ϕ0(y), ϕ1(y)) + r−1. (3.4)

Hence, G2(y) := F (ϕ1(y)) ∩ B(ϕ1(y), q
s2

(d(ϕ0(y), ϕ1(y))) + r−1) 6= ∅ for all y ∈ Y . Since we know that

F ∈ Sp(X), there exists a continuous function ϕ2 : Y → X such that ϕ2|A = ξ and ϕ2(y) ∈ G2(y) for all
y ∈ Y . Thus, ϕ2(y) ∈ F (ϕ1(y)) for all y ∈ Y and

d(ϕ1(y), ϕ2(y)) <
q

s
(d(ϕ0(y), ϕ1(y))) + r−1.

Similarly we have

M(ϕ1(y), ϕ2(y)) = max{d(ϕ1(y), , ϕ2(y)), D(ϕ2(y), Fϕ2(y))}, N(ϕ1(y), ϕ2(y)) = 0.

If M(ϕ1(y), ϕ2(y)) = D(ϕ2(y), Fϕ2(y)), then

0 < ψ(D(ϕ2(y), Fϕ2(y))) ≤ α(ϕ1(y), ϕ2(y))ψ(s3H(F (ϕ1(y), F (ϕ2(y)))))

≤ β(ψ(D(ϕ2(y), Fϕ2(y)))ψ(D(ϕ2(y), Fϕ2(y)))

<
q

s
ψ(D(ϕ2(y), Fϕ2(y)))

< ψ(D(ϕ2(y), Fϕ2(y))),

which is contradiction. It follows that M(ϕ1(y), ϕ2(y)) = d(ϕ1(y), ϕ2(y)).
Now, by the property of ψ we have

ψ(
s

q
D(ϕ2(y), Fϕ2(y))) ≤ s

q
ψ(D(ϕ2(y), Fϕ2(y))) < ψ(d(ϕ1(y), ϕ2(y))).

Since ψ is increasing, therefore

D(ϕ2(y), Fϕ2(y)) ≤ q

s
d(ϕ1(y), ϕ2(y)) <

q

s
d(ϕ1(y), ϕ2(y)) + r−1.

By (3.4) we have

D(ϕ2(y), Fϕ2(y)) < (
q

s
)2d(ϕ0(y), ϕ1(y)) + r−2.

Hence, G3(y) := F (ϕ2(y)) ∩ B(ϕ2(y)), ( qs)2d(ϕ0(y), ϕ1(y)) + r−2) 6= ∅. Since F ∈ Sp(X), there exists

a continuous function ϕ3 : Y → X such that ϕ3|A = ξ and ϕ3(y) ∈ G3(y) for all y ∈ Y . Also, we
have d(ϕ2(y), ϕ3(y)) < ( qs)2d(ϕ0(y), ϕ1(y)) + r−2 and ϕ3(y) ∈ F (ϕ2(y)) for all y ∈ Y . By continuing
this process, we obtain {ϕn : Y → X}n≥0 a sequence of continuous functions such that ϕn|A = ξ and
d(ϕn−1(y), ϕn(y)) < ( qs)n−1d(ϕ0(y), ϕ1(y))+r−(n−1) and ϕn(y) ∈ F (ϕn−1(y)) for all y ∈ Y and n ≥ 1. Now,
for each λ > 0 we put

Yλ := {y ∈ Y : d(ϕ0(y), ϕ1(y)) < λ}.

Since ϕ1(y) ∈ F (ϕ0(y)) and
F (ϕ0(y)) ∩B(ϕ0(y), g0(y)) = F (ϕ0(y)),

ϕ1(y) ∈ B(ϕ0(y), g0(y)). Hence, d(ϕ0(y), ϕ1(y)) < λy := g0(y). Thus, y ∈ Yλy . Since Yλ is open for each
λ > 0, the family of sets {Yλ|λ > 0} is an open covering of Y and we have

d(ϕn−1(y), ϕn(y)) ≤ (
q

s
)n−1d(ϕ0(y), ϕ1(y)) + r−(n−1)
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for all n ≥ 1 and y ∈ Y . Since q
s < 1, r > 1, and X is complete, the sequence {ϕn}n≥0 converges uniformly

on Yλ for all λ > 0. Let ϕ : Y → X be the pointwise limit of {ϕn}n≥0 and note that ϕ is continuous
and ϕ|A = ξ because ϕn|A = ξ for all n ≥ 0. Since F is continuous, hence ϕ(y) ∈ F (ϕ(y)) for all y ∈ Y .
Therefore, ϕ : Y → B is a continuous extension of ξ, that is, B = {x ∈ X : x ∈ F (x)} is an absolute retract
for b-metric spaces.

4. Corollaries

By letting α(x, y) = 1 for all x, y ∈ X, we get the following consequences:

Corollary 4.1. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, F : X →
Pb,cl(X), also there exists a ∈ [0, 1) and some L ≥ 0 such that,

η(a)D(x, F (x)) ≤ d(x, y) =⇒ ψ(s3d(Tx, Ty))

≤ β(ψ(d(x, y)))ψ(d(x, y)) + Lφ(N(x, y))
(4.1)

for all x, y ∈ X, where η(a) = 1
1+a , β ∈ F , and ψ, φ ∈ Ψ and

N(x, y) = min{d(x, Tx), d(y, Tx)},

F is continuous and F ∈ SP (X). If α(x, y) ≥ 1 for all x ∈ X and y ∈ F (x), then FF is an absolute retract
for b-metric spaces.

If in (4.1), we let L = 0 then we obtain the following sequence.

Corollary 4.2. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, F : X →
Pb,cl(X), also there exist a ∈ [0, 1) such that,

η(a)D(x, F (x)) ≤ d(x, y) =⇒ ψ(s3d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y))

for all x, y ∈ X, where η(a) = 1
1+a , β ∈ F and ψ, φ ∈ Ψ, F is continuous, and F ∈ SP (X). If α(x, y) ≥ 1

for all x ∈ X and y ∈ F (x), then FF is an absolute retract for b-metric spaces.

5. Consequences

As it is expected, the main results of the paper yield several existing results in the literature by choosing
the auxiliary functions α, η, ψ, φ in a proper way. To list more results it is sufficient to take d(x, y) instead
of M(x, y), and /or take L = 0. Notice also that, one can replace the single valued mapping instead of
multivalued mapping to cover more results in the literature. Furthermore, by relaxing b-metric with metric,
we observe more results as a consequence of our main results.
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