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Abstract

For a higher-order nonlinear impulsive ordinary differential equation, we present the concepts of Hyers–
Ulam stability, generalized Hyers–Ulam stability, Hyers–Ulam–Rassias stability, and generalized Hyers–
Ulam–Rassias stability. Furthermore, we prove the generalized Hyers–Ulam–Rassias stability by using in-
tegral inequality of Grönwall type for piecewise continuous functions. These results extend related con-
tributions to the corresponding first-order impulsive ordinary differential equation. Hyers–Ulam stability,
generalized Hyers–Ulam stability, and Hyers–Ulam–Rassias stability can be discussed by the same methods.
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Keywords: Hyers–Ulam stability, generalized Hyers–Ulam stability, Hyers–Ulam–Rassias stability,
generalized Hyers–Ulam–Rassias stability, nonlinear impulsive differential equation, higher-order, Grönwall
inequality.
2010 MSC: 34A37, 34D20.

1. Introduction

The stability theory is an important branch of the qualitative analysis of differential equations. In
particular, for the stability of functional equations, Ulam [25] raised a question: “When can an approximate
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homomorphism from a group G1 to a metric group G2 be approximated by an exact homomorphism?”
To solve this question, assuming that G1 and G2 are Banach spaces and using a direct method, Hyers

[7] brilliantly gave a partial answer. This result was then extended and improved by Aoki [2] and Rassias
[22] who weakened the condition for the bound of the norm of Cauchy difference. For further details and
discussion, see the monograph by Jung [11].

As far as we know, works by Ob loza [17, 18] were among the first contributions dealing with the Hyers–
Ulam stability of differential equations. Since then, Hyers–Ulam stability and Hyers–Ulam–Rassias stability
of various classes of differential equations and differential operators have been explored by using a wide
spectrum of approaches; see, e.g., [1, 4–6, 8–10, 12, 13, 16, 20, 21, 24, 34] and the references cited therein.

In recent years, Hyers–Ulam stability and Hyers–Ulam–Rassias stability of impulsive differential equa-
tions have always attracted interest of researchers; see, for instance, [3, 14, 19, 26, 27, 33]. One of the
main reasons for this lies in the fact that, as pointed out by Lupulescu and Zada [15], Rogovchenko [23],
Wang and Liu [28], Wang and Wu [29], and Wang et al. [30–32], impulsive differential equations arise
in a number of applied problems in natural sciences and engineering. Note that the results reported in
[3, 14, 19, 26, 27, 33] are concerned with several classes of first-order impulsive differential equations. There-
into, Wang et al. [26] introduced four Ulam’s type stability (Hyers–Ulam stability, generalized Hyers–Ulam
stability, Hyers–Ulam–Rassias stability, and generalized Hyers–Ulam–Rassias stability) concepts for a first-
order impulsive ordinary differential equation. So far, to the best of our knowledge, Ulam’s type stability
results of higher-order impulsive ordinary differential equations have not been studied yet.

It should be noted that research in this paper was strongly motivated by the recent contributions of
Wang et al. [26]. Our principal goal is to analyze the Ulam’s type stability of the higher-order impulsive
differential equation

y(n)(t) = F (t, y(t), y′(t), y′′(t), . . . , y(n−1)(t)), t ∈ I ′ = I\{t1, t2, . . . , tm},
∆y(i)(tk) = y(i)(t+k )− y(i)(t−k ) = Υk(y

(i)(t−k )), i = 0, 1, . . . , n− 1 and k = 1, 2, . . . ,m,

y(t0) = y0, y
′(t0) = y1, y

′′(t0) = y2, . . . , y
(n−1)(t0) = yn−1,

(1.1)

where n ≥ 1 is a natural number, I = [t0, tF ], tk satisfy 0 ≤ t0 < t1 < t3 < · · · < tm < tm+1 = tF < +∞,
F : B → R is a continuous function on a closed ball B in I × Rn, Υk : R → R is a continuous function
for each k, y(i)(t+k ) = limτ→0+ y

(i)(tk + τ) and y(i)(t−k ) = limτ→0+ y
(i)(tk − τ) represent the right-sided and

left-sided limits of y(i)(t) at tk, respectively.

2. Preliminaries

In this section, we present some definitions of Ulam’s type stability and auxiliary lemmas to prove our
main results. Throughout this paper, we use the following spaces:

• C(I,R) is the Banach space of all continuous functions from I to R with norm ‖x‖C = sup{|x(t)| :
t ∈ I};

• PC(I,R) denotes the Banach space of all functions x : I → R with norm ‖x‖PC = sup{|x(t)| : t ∈ I}
such that x ∈ C((tk, tk+1], R), k = 0, 1, . . . ,m and there exist x(t+k ) and x(t−k ) satisfying x(t−k ) = x(tk),
k = 1, 2, . . . ,m;

• PCn(I,R) = {x : I → R |x(i) ∈ PC(I,R), i = 0, 1, . . . , n} is the Banach space with norm ‖x‖PCn =
max{‖x(i)‖PC : i = 0, 1, . . . , n}.

Let R+ = [0,+∞), {y} = (y, y′, y′′, . . . , y(n−1)), ε > 0, µ ≥ 0, and θ ∈ PC(I,R+) be nondecreasing. We
focus on the following inequalities:{

|y(n)(t)− F (t, {y})| ≤ ε, t ∈ I ′,
|∆y(i)(tk)−Υk(y

(i)(t−k ))| ≤ ε, i = 0, 1, . . . , n− 1 and k = 1, 2, . . . ,m,
(2.1)
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|y(n)(t)− F (t, {y})| ≤ θ(t), t ∈ I ′,
|∆y(i)(tk)−Υk(y

(i)(t−k ))| ≤ µ, i = 0, 1, . . . , n− 1 and k = 1, 2, . . . ,m,
(2.2)

and {
|y(n)(t)− F (t, {y})| ≤ εθ(t), t ∈ I ′,
|∆y(i)(tk)−Υk(y

(i)(t−k ))| ≤ εµ, i = 0, 1, . . . , n− 1 and k = 1, 2, . . . ,m.
(2.3)

In what follows, we introduce the concepts of Ulam’s type stability of (1.1).

Definition 2.1. Equation (1.1) is said to be Hyers–Ulam stable on I if there exists a real number KF,m > 0
such that, for every ε > 0 and for every solution y ∈ PCn(I,R) of (2.1), there exists a solution x0 ∈
PCn(I,R) of (1.1) with

|y(t)− x0(t)| < KF,mε, for t ∈ I.

Definition 2.2. Equation (1.1) is called generalized Hyers–Ulam stable on I if there is a function GF,m ∈
C(R+, R+) with GF,m(0) = 0 such that, for every ε > 0 and for every solution y ∈ PCn(I,R) of (2.1), there
exists a solution x0 ∈ PCn(I,R) of (1.1) with

|y(t)− x0(t)| < GF,m(ε), for t ∈ I.

Definition 2.3. Equation (1.1) is termed Hyers–Ulam–Rassias stable on I with respect to (θ, µ) if there
exists an MF,m,θ > 0 such that, for every ε > 0 and for every solution y ∈ PCn(I,R) of (2.3), there exists a
solution x0 ∈ PCn(I,R) of (1.1) with

|y(t)− x0(t)| < MF,m,θε(θ(t) + µ), for t ∈ I.

Definition 2.4. Equation (1.1) is said to be generalized Hyers–Ulam–Rassias stable on I with respect to
(θ, µ) if there exists an LF,m,θ > 0 such that, for every solution y ∈ PCn(I,R) of (2.2), there exists a
solution x0 ∈ PCn(I,R) of (1.1) with

|y(t)− x0(t)| < LF,m,θ(θ(t) + µ), for t ∈ I.

Remark 2.5. Definition 2.1 ⇒ Definition 2.2; Definition 2.3 ⇒ Definition 2.4; for θ(t) = µ = 1, Definition
2.3 ⇒ Definition 2.1.

The following inequality is the well-known integral inequality of Grönwall type for piecewise continuous
functions.

Lemma 2.6. If

x(t) ≤ a(t) +

∫ t

t0

b(s)x(s)ds+
∑

t0<tk<t

ξkx(t−k )

for t ≥ t0 ≥ 0, where x, a, b ∈ PC([t0,∞), R+), a is nondecreasing, b(t) > 0, and ξk > 0, then

x(t) ≤ a(t)
∏

t0<tk<t

(1 + ξk) exp

(∫ t

t0

b(s)ds

)
for t ≥ t0.

Remark 2.7. It follows directly from inequality (2.1) that a function y ∈ PCn(I,R) satisfies (2.1) if and
only if there is a function f ∈ PC(I,R) and a sequence f ik (which defend on y) such that |f(t)| ≤ ε for t ∈ I,
|f ik| ≤ ε for i = 0, 1, . . . , n− 1 and k = 1, 2, . . . ,m, and{

y(n)(t) = F (t, {y}) + f(t), t ∈ I ′,
∆y(i)(tk) = Υk(y

(i)(t−k )) + f ik, i = 0, 1, . . . , n− 1 and k = 1, 2, . . . ,m.
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Remark 2.8. If y ∈ PCn(I,R) satisfies (2.1), then∣∣∣∣y(n−i)(t)− i−1∑
j=0

(t− t0)jyn−i+j
j!

−
k∑
j=1

Υj(y
(n−i)(t−j ))−

∫ t

t0

(t− s)i−1

(i− 1)!
F (s, {y})ds

∣∣∣∣ ≤ ((t− t0)i

i!
+m

)
ε,

where t ∈ I and i = 1, 2, . . . , n.

Proof. It follows from Remark 2.7 that, for t ∈ (tk, tk+1],

y(n−i)(t) =
i−1∑
j=0

(t− t0)jyn−i+j
j!

+
k∑
j=1

Υj(y
(n−i)(t−j )) +

k∑
j=1

fn−ij +

∫ t

t0

(t− s)i−1

(i− 1)!
F (s, {y})ds

+

∫ vi=t

t0

. . .

∫ v2

t0

∫ v1

t0

f(s)ds.

Therefore, we conclude that∣∣∣∣y(n−i)(t)− i−1∑
j=0

(t− t0)jyn−i+j
j!

−
k∑
j=1

Υj(y
(n−i)(t−j ))−

∫ t

t0

(t− s)n−i

(i− 1)!
F (s, {y})ds

∣∣∣∣
≤
∫ vi=t

t0

. . .

∫ v2

t0

∫ v1

t0

∣∣f(s)
∣∣ds+

k∑
j=1

∣∣fn−ij

∣∣,
which implies that∣∣∣∣y(n−i)(t)− i−1∑

j=0

(t− t0)jyn−i+j
j!

−
k∑
j=1

Υj(y
(n−i)(t−j ))−

∫ t

t0

(t− s)i−1

(i− 1)!
F (s, {y})ds

∣∣∣∣ ≤ ((t− t0)i

i!
+m

)
ε.

The proof is complete.

Remark 2.9. One can obtain similar remarks for solutions of inequalities (2.2) and (2.3). The details are
left to the reader.

3. Main results

Define a closed ball B = I×
∏n−1
i=0 [−Mi,Mi], where Mi = ‖y(i)‖PC . In this section, we prove the Ulam’s

type stability of (1.1) with the condition

(t− t0)n−1
∣∣F (t, {y})− F (t, {z})

∣∣ ≤ h(t)
∣∣y(t)− z(t)

∣∣, (3.1)

where h : I → R+ is an integrable function and the Lipschitz condition

∣∣F (t, {y})− F (t, {z})
∣∣ ≤ S0 n−1∑

i=0

∣∣y(i)(t)− z(i)(t)∣∣, S0 > 0 is a constant, (3.2)

respectively.

Theorem 3.1. If

(H1) F satisfies condition (3.1);

(H2) Υk : R → R and there exist constants Mk > 0 such that |Υk(x1) − Υk(x2)| ≤ Mk|x1 − x2| for
k = 1, 2, . . . ,m and x1, x2 ∈ R;
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(H3) there exists a nondecreasing function θ ∈ PC(I,R+) such that, for t ∈ I and for some ρθ > 0,∫ t

t0

θ(s)ds ≤ ρθθ(t),

then (1.1) has generalized Hyers–Ulam–Rassias stability on I with respect to (θ, µ). If, in addition,

1

(n− 1)!

∫ tF

t0

h(s)ds+
m∑
j=1

Mj < 1,

then (1.1) has a unique solution in PCn(I,R) ∩ PC(I,R).

Proof. Let y ∈ PCn(I,R) be a solution to (2.2). The exact solution x ∈ PCn(I,R) of the initial value
problem 

x(n)(t) = F (t, {x}), t ∈ I ′,
∆x(i)(tk) = Υk(x

(i)(t−k )), i = 0, 1, . . . , n− 1 and k = 1, 2, . . . ,m,

x(t0) = y0, x
′(t0) = y1, x

′′(t0) = y2, . . . , x
(n−1)(t0) = yn−1,

is given by

x(t) =



n−1∑
j=0

(t− t0)jyj
j!

+
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {x})ds, t ∈ [t0, t1],

n−1∑
j=0

(t− t0)jyj
j!

+ Υ1(x(t−1 )) +
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {x})ds, t ∈ (t1, t2],

n−1∑
j=0

(t− t0)jyj
j!

+
2∑
j=1

Υj(x(t−j )) +
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {x})ds, t ∈ (t2, t3],

.

.

.

n−1∑
j=0

(t− t0)jyj
j!

+

m∑
j=1

Υj(x(t−j )) +
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {x})ds, t ∈ (tm, tF ].

Similar as in Remark 2.8, an application of inequality (2.2) implies that, for t ∈ I,∣∣∣∣y(t)−
n−1∑
j=0

(t− t0)jyj
j!

−
k∑
j=1

Υj(y(t−j ))−
∫ t

t0

(t− s)n−1

(n− 1)!
F (s, {y})ds

∣∣∣∣ ≤ (m+ ρnθ )(θ(t) + µ).

Hence, for t ∈ (tk, tk+1],

∣∣y(t)− x(t)
∣∣ ≤ ∣∣∣∣y(t)−

n−1∑
j=0

(t− t0)jyj
j!

−
k∑
j=1

Υj(y(t−j ))− 1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {y})ds
∣∣∣∣

+
1

(n− 1)!

∫ t

t0

(t− s)n−1
∣∣F (s, {y})− F (s, {x})

∣∣ds+
k∑
j=1

∣∣Υj(y(t−j ))−Υj(x(t−j ))
∣∣

≤ (m+ ρnθ )(θ(t) + µ) +
1

(n− 1)!

∫ t

t0

h(s)
∣∣y(s)− x(s)

∣∣ds+
k∑
j=1

Mj

∣∣y(t−j )− x(t−j )
∣∣.
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By virtue of Lemma 2.6, we conclude that, for t ∈ I,∣∣y(t)− x(t)
∣∣ ≤ (m+ ρnθ )(θ(t) + µ)

∏
t0<tk<t

(1 +Mk) exp

(
1

(n− 1)!

∫ t

t0

h(s)ds

)
≤ LF,m,θ(θ(t) + µ),

where

LF,m,θ = (m+ ρnθ )
m∏
k=1

(1 +Mk) exp

(
1

(n− 1)!

∫ tF

t0

h(s)ds

)
.

Therefore, (1.1) is generalized Hyers–Ulam–Rassias stable on I with respect to (θ, µ).

Uniqueness of solution. For g ∈ PC(I,R), define an operator Λ : PC(I,R)→ PC(I,R) by

(Λg)(t) =



n−1∑
j=0

(t− t0)jyj
j!

+
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {g})ds, t ∈ [t0, t1],

n−1∑
j=0

(t− t0)jyj
j!

+ Υ1(g(t−1 )) +
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {g})ds, t ∈ (t1, t2],

n−1∑
j=0

(t− t0)jyj
j!

+

2∑
j=1

Υj(g(t−j )) +
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {g})ds, t ∈ (t2, t3],

.

.

.

n−1∑
j=0

(t− t0)jyj
j!

+

m∑
j=1

Υj(g(t−j )) +
1

(n− 1)!

∫ t

t0

(t− s)n−1F (s, {g})ds, t ∈ (tm, tF ].

Clearly, Λ is well-defined. We show that Λ is a Picard operator on PC(I,R). For this, let g1, g2 ∈ PC(I,R)
and consider

∣∣(Λg1)(t)− (Λg2)(t)
∣∣ =

∣∣∣∣ k∑
j=1

(
Υj(g1(t

−
j ))−Υj(g2(t

−
j ))
)

+
1

(n− 1)!

∫ t

t0

(t− s)n−1(F (s, {g1})− F (s, {g2}))ds
∣∣∣∣

≤ 1

(n− 1)!

∫ t

t0

(t− s)n−1
∣∣F (s, {g1})− F (s, {g2})

∣∣ds
+

k∑
j=1

∣∣Υj(g1(t
−
j ))−Υj(g2(t

−
j ))
∣∣

≤ 1

(n− 1)!

∫ t

t0

h(s)
∣∣g1(s)− g2(s)∣∣ds+

k∑
j=1

Mj

∣∣g1(t−j )− g2(t−j )
∣∣

≤
(

1

(n− 1)!

∫ tF

t0

h(s)ds+
m∑
j=1

Mj

)
‖g1 − g2‖PC .

Then, Λ is contractive with respect to ‖ · ‖PC . By virtue of Banach contraction principle, Λ is a Picard
operator. The unique fixed point of this operator is the unique solution of (1.1) in PCn(I,R) ∩ PC(I,R).
This completes the proof.
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Remark 3.2. Theorem 3.1 includes [26, Theorem 4.1] in the case where n = 1 and h(t) = h0 > 0.

Theorem 3.3. Assume that (H2) and (H3) are satisfied. If F satisfies condition (3.2), then (1.1) has
generalized Hyers–Ulam–Rassias stability on I with respect to (θ, µ).

Proof. Let y ∈ PCn(I,R) be a solution to (2.2). For i = 1, 2, . . . , n, define a function by

x(n−i)(t) =



i−1∑
j=0

(t− t0)jyn−i+j
j!

+
1

(i− 1)!

∫ t

t0

(t− s)i−1F (s, {x})ds, t ∈ [t0, t1],

i−1∑
j=0

(t− t0)jyn−i+j
j!

+ Υ1(x(t−1 )) +
1

(i− 1)!

∫ t

t0

(t− s)i−1F (s, {x})ds, t ∈ (t1, t2],

i−1∑
j=0

(t− t0)jyn−i+j
j!

+
2∑
j=1

Υj(x(t−j )) +
1

(i− 1)!

∫ t

t0

(t− s)i−1F (s, {x})ds, t ∈ (t2, t3],

.

.

.

i−1∑
j=0

(t− t0)jyn−i+j
j!

+

m∑
j=1

Υj(x(t−j )) +
1

(i− 1)!

∫ t

t0

(t− s)i−1F (s, {x})ds, t ∈ (tm, tF ].

Then, for t ∈ (tk, tk+1],∣∣y(n−i)(t)− x(n−i)(t)∣∣ ≤ ∣∣∣∣y(n−i)(t)− i−1∑
j=0

(t− t0)jyn−i+j
j!

−
k∑
j=1

Υj(y
(n−i)(t−j ))

− 1

(i− 1)!

∫ t

t0

(t− s)i−1F (s, {y})ds
∣∣∣∣

+
1

(i− 1)!

∫ t

t0

(t− s)i−1
∣∣F (s, {y})− F (s, {x})

∣∣ds
+

k∑
j=1

∣∣Υj(y
(n−i)(t−j )−Υj(x

(n−i)(t−j ))
∣∣

≤ (m+ ρnθ )(θ(t) + µ) +
nS0

(i− 1)!

∫ t

t0

(t− s)i−1
∣∣y(n−i)(s)− x(n−i)(s)∣∣ds

+
k∑
j=1

Mj

∣∣y(n−i)(t−j )− x(n−i)(t−j )
∣∣.

Using Lemma 2.6, we deduce that, for i = 1, 2, . . . , n and t ∈ I,∣∣y(n−i)(t)− x(n−i)(t)∣∣ ≤ (m+ ρnθ )(θ(t) + µ)
∏

t0<tk<t

(1 +Mk) exp

(
S0(t− t0)n

(n− 1)!

)
≤ LF,m,θ(θ(t) + µ),

where

LF,m,θ = (m+ ρnθ )
m∏
k=1

(1 +Mk) exp

(
S0(tF − t0)n

(n− 1)!

)
.

Hence, (1.1) is generalized Hyers–Ulam–Rassias stable on I with respect to (θ, µ). The proof is complete.

Remark 3.4. Theorem 3.3 contains [26, Theorem 4.1] in the case when n = 1.

Remark 3.5. One can proceed as the same way to prove the Hyers–Ulam stability, generalized Hyers–Ulam
stability, and Hyers–Ulam–Rassias stability of (1.1). The details are left to the reader.
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