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Abstract

The purpose of this paper is to propose a new hybrid shrinking iterative scheme for approximating
common elements of the set of solutions to convex feasibility problems for countable families of weak relatively
nonexpansive mappings of a set of solutions to a system of generalized mixed equilibrium problems. A strong
convergence theorem is established in the framework of Banach spaces. The results extend those of other
authors, in which the involved mappings consist of just finitely many ones. c©2016 All rights reserved.
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1. Introduction

Let E be a real Banach space with the dual E∗. We denote by J the normalized duality mapping from
E to 2E

∗
defined by

Jx =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2

}
,

where 〈·, ·〉 denotes the generalized duality pairing. The duality mapping J has the following properties:

(1) if E is smooth, then J is single-valued;

(2) if E is strictly convex, then J is one-to-one;

(3) if E is reflexive, then J is surjective;
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(4) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E;

(5) if E∗ is uniformly convex, then J is uniformly continuous on bounded subsets of E and J is single-
valued and also one-to-one (see [6, 13, 15, 18]).

Let E be a smooth Banach space with the dual E∗. The functional φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ E.
Let C be a closed convex subset of E, and let T be a mapping from C into itself. We denote by F (T ) the

set of fixed points of T . A point p in C is said to be an asymptotic fixed point of T , if C contains a sequence
{xn} which converges weakly to p such that the strong limn→∞(xn − Txn) = 0. The set of asymptotic
fixed points of T will be denoted by F̂ (T ). A mapping T from C into itself is called nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C and relatively nonexpansive ([3, 17, 19, 22]) if F (T ) = F̂ (T ) and
φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ). The asymptotic behavior of relatively nonexpansive mapping
was studied in [3, 13, 15, 18].

Three classical iteration processes are often used to approximate a fixed point of a nonexpansive mapping.
The first one is introduced in 1953 by Mann [12] which well-known as Mann’s iteration process and is defined
as follows: {

x0 chosen arbitrarily,

xn+1 = αnxn + (1− αn)Txn, n ≥ 0,
(1.1)

where the sequence {αn} is chosen in [0, 1]. Fourteen years later, Halpern [8] proposed the new innovation
iteration process which resemble in Mann’s iteration (1.1), it is defined by{

x0 chosen arbitrarily,

xn+1 = αnu+ (1− αn)Txn, n ≥ 0,
(1.2)

where the element u ∈ C is fixed. Seven years later, Ishikawa [9] enlarged and improved Mann’s iteration
(1.1) to the new iteration method, it is often cited as Ishikawa’s iteration process which is defined recursively
by 

x0 chosen arbitrarily,

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn, n ≥ 0,

(1.3)

where {αn} and {βn} are sequences in the interval [0, 1].
In both Hilbert space [19] and uniformly smooth Banach space [22] the iteration process(1.2) has been

proved to be strongly convergent if the sequence {αn} satisfies the following conditions:

(i) αn → 0;

(ii)
∑∞

n=0 αn =∞;

(iii)
∑∞

n=0 |αn+1 − αn| <∞ or limn→∞
αn
αn+1

= 1.

By the restriction of condition (ii), it is widely believed that Halpern’s iteration process (1.2) have slow
convergence though the rate of convergence has not been determined. Halpern [8] proved that conditions (i)
and (ii) are necessary in the strong convergence of (1.2) for a nonexpansive mapping T on a closed convex
subset C of a Hilbert space H. Moreover, Wittmann [19] showed that (1.2) converges strongly to PF (T )u
when {αn} satisfies (i), (ii) and (iii), where PF (T )(·) is the metric projection onto F (T ).

Both iteration processes (1.1) and (1.3) have only weak convergence, in general Banach space (see [7] for
more details). As a matter of fact, process (1.1) may fail to converge while process (1.3) can still converge
for a Lipschitz pseudo-contractive mapping in a Hilbert space (see [4]). For example, Reich [16] proved that
if E is a uniformly convex Banach space with Fréchet differentiable norm and if {αn} is chosen such that
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∑∞
n=0 αn(1 − αn) = ∞, then the sequence {xn} defined by (1.1) converges weakly to a fixed point of T .

However, we note that Mann’s iteration process (1.1) has only weak convergence even in a Hilbert space
(see [7]).

Some attempts to modify the Mann iteration method so that the strong convergence is guaranteed have
recently been made. Nakajo and Takahashi [14] proposed the following modification of the Mann iteration
method for a single nonexpansive mapping T in a Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.4)

where C is a closed convex subset of H, PK denotes the metric projection from H onto a closed convex
subset K of H. They proved that if the sequence {αn} is bounded above from one then the sequence {xn}
generated by (1.4) converges strongly to PF (T )(x0) where F (T ) denotes the set of fixed points of T .

The ideas to generalize the process (1.4) from Hilbert space to Banach space have recently been made.
By using available properties on uniformly convex and uniformly smooth Banach space, Matsushita and
Takahashi [13] presented their ideas as the following method for a single relatively nonexpansive mapping
T in a Banach space E: 

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1− αn)JTxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0).

(1.5)

They proved the following convergence theorem.

Theorem 1.1. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let T be a relatively nonexpansive mapping from C into itself, and let {αn} be
a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞ αn < 1. Suppose that {xn} is given by
(1.5), where J is the duality mapping on E. If F (T ) is nonempty, then {xn} converges strongly to ΠF (T )x0,
where ΠF (T )(·) is the generalized projection from C onto F (T ).

In 2007, Plubtieng and Ungchittrakool [15] proposed the following hybrid algorithms for two relatively
nonexpansive mappings in a Banach space and proved the following convergence theorems.

Theorem 1.2. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a nonempty
closed convex subset of E, let T, S be two relatively nonexpansive mappings from C into itself with F :=
F (T ) ∩ F (S) is nonempty. Let a sequence {xn} be defined by

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1− αn)Jzn),

zn = J−1(β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn(x0)

(1.6)

with the following restrictions:

(i) 0 ≤ αn < 1, lim supn→∞ αn < 1;
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(ii) 0 ≤ β(1)n , β
(1)
n , β

(3)
n ≤ 1, limn→∞ β

(1)
n = 0, lim infn→∞ β

(2)
n β

(3)
n > 0.

Then {xn} converges strongly to ΠFx0, where ΠF is the generalized projection from C onto F .

Theorem 1.3. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty closed
convex subset of E, let T, S be two relatively nonexpansive mappings from C into itself with F := F (T )∩F (S)
is nonempty. Let a sequence {xn} be defined by

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1− αn)Jzn),

zn = J−1(β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn) + αn(‖x0‖2 + 2〈z, Jxn − Jx0〉)},
Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn(x0)

(1.7)

with the following restrictions:

(i) 0 < αn < 1, lim supn→∞ αn < 1;

(ii) 0 ≤ β(1)n , β
(1)
n , β

(3)
n ≤ 1, limn→∞ β

(1)
n = 0, lim infn→∞ β

(2)
n β

(3)
n > 0.

Then {xn} converges strongly to ΠFx0, where ΠF is the generalized projection from C onto F .

Recently, Wei-Qi Deng and Shanguang Qian [21] proposed a new hybrid shrinking iterative scheme for
approximating common elements of the set of solutions to convex feasibility problems for countable families
of relatively nonexpansive mappings of a set of solutions to a system of generalized mixed equilibrium
problems. They proved the following convergence theorem.

Theorem 1.4. Let E be a real uniformly smooth and strictly convex Banach space, and C be a nonempty
closed convex subset of E, let {Ti}, {Si} : C → C be two sequences of relatively nonexpansive mappings with
F := (∩∞i=1F (Ti))

⋂
(∩∞i=1F (Si)) 6= ∅. Let {xn} be the sequence generated by:

x0 = x ∈ C H−1 = W−1 = C,

yn = J−1 [λnJxn + 1− λnJzn] ,

zn = J−1 (αnJxn + βnJTinxn + γnJSinxn) ,

Hn = {z ∈ Hn−1
⋂
Wn−1 : φ(z, yn) ≤ φ(z, xn)} ,

Wn = {z ∈ Hn−1
⋂
Wn−1 : 〈xn − z, Jx− Jxn〉 ≥ 0} ,

xn+1 = PHn∩Wn(x),

(1.8)

where {λn}, {αn}, {βn} and {γn} are sequences in [0, 1] satisfying

(1) 0 ≤ λn < 1, ∀ n = 0, 1, 2, 3, ..., lim supn→∞ λn > 0;
(2) αn + βn + γn = 1, limn→∞ αn = 0, lim supn→∞ βnγn > 0;

and in is the solution to the positive integer equation n = in + (mn−1)mn

2 , (mn ≥ in, n = 1, 2, 3, ...), that is,
for each n ≥ 1, there exists a unique in such that

i1 = 1, i2 = 1, i3 = 2, i4 = 1, i5 = 2, i6 = 3, i7 = 1, i8 = 2, i9 = 3, i10 = 4, i11 = 1.

Then {xn} converges strongly to PFx, where PFx is the generalized projection from C onto F .

The purpose of this paper is to propose a new hybrid shrinking iterative scheme for approximating
common elements of the set of solutions to convex feasibility problems for countable families of weak relatively
nonexpansive mappings of a set of solutions to a system of generalized mixed equilibrium problems. A strong
convergence theorem is established in the framework of Banach spaces. The results extend those of other
authors, in which the involved mappings consist of just finitely many ones. In addition, the concept of cycle
of the sequence of mappings was presented in this paper. The results of this article modify and improve the
results of Deng and Qian [21], it also in some sense, improves some results of [23–27, 29].
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2. Preliminaries

Let E be a smooth Banach space with the dual E∗. The functional φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 (2.1)

for all x, y ∈ E. Observe that, in a Hilbert space H, (2.1) reduces to φ(x, y) = ‖x− y‖2, x, y ∈ H.
Recall that if C is a nonempty, closed and convex subset of a Hilbert space H and PC : H → C is the

metric projection of H onto C, then PC is nonexpansive. This is true only when H is a real Hilbert space.
In this connection, Alber [1] has recently introduced a generalized projection operator ΠC in a Banach space
E which is an analogue of the metric projection in Hilbert spaces. The generalized projection ΠC : E → C
is a map that assigns to an arbitrary point x ∈ E, the minimum point of the functional φ(y, x), that is,
ΠCx = x̄, where x̄ is the solution to the minimization problem

φ(x̄, x) = min
y∈C

φ(y, x), (2.2)

existence and uniqueness of the operator ΠC follow from the properties of the functional φ(y, x) and strict
monotonicity of the mapping J . In Hilbert space, ΠC = PC . It is obvious from the definition of the functional
φ that

(‖x‖ − ‖y‖)2 ≤ φ(y, x) ≤ (‖y‖2 + ‖x‖2) (2.3)

and
φ(x, y) = φ(x, z) + φ(z, y)− 2〈x− z, Jz − Jy〉 (2.4)

for all x, y ∈ E (see [12] for more details).
This section collects some definitions and lemmas which will be used in the proofs of the main results in

the next section. Some of them are known; others are not hard to derive.

Remark 2.1. If E is a reflexive strictly convex and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0 if
and only if x = y. It is sufficient to show that if φ(x, y) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖.
This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J, we have Jx = Jy. Since J is one-to-one,
then we have x = y (see [6, 19, 20] for more details).

Let E be a Banach space, C a nonempty closed convex subset of E and T : C → C a mapping. We use
F (T ) to denote the set of fixed points of a mapping T . A point p in C is said to be an asymptotic fixed point
of T if C contains a sequence {xn} which converges weakly to p such that the ‖xn − Txn‖ → 0. The set
of asymptotic fixed points of T will be denoted by F̂ (T ). A point p in C is said to be a strong asymptotic
fixed point of T if C contains a sequence {xn} which converges strongly to p such that ‖xn − Txn‖ → 0.
The set of asymptotic fixed points of T will be denoted by F̃ (T ).

Definition 2.2. A mapping T is said to be relatively nonexpansive mapping if the following conditions are
satisfied:

(1) F (T ) is nonempty;

(2) φ(u, Tx) ≤ φ(u, x), ∀ u ∈ F (T ), x ∈ C;

(3) F̂ (T ) = F (T ).

If the above conditions (1) and (2) are satisfied, the mapping T is said to be quasi-φ-nonexpansive
mapping. The relative study for the quasi-φ-nonexpansive mappings, we can see [20].

Definition 2.3. A mapping T is said to be weak relatively nonexpansive mapping if the following conditions
are satisfied:

(1) F (T ) is nonempty;

(2) φ(u, Tx) ≤ φ(u, x), ∀ u ∈ F (T ), x ∈ C;
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(3) F̃ (T ) = F (T ).

In [28], the author gives an example which is a weak relatively nonexpansive mapping but not a relatively
nonexpansive mapping.

We need the following Lemmas to prove our main results.

Lemma 2.4 ([12]). Let E be a uniformly convex and smooth real Banach space and let {xn}, {yn} be two
sequences of E. If φ(xn, yn)→ 0 and either {xn} or {yn} is bounded, then ‖xn − yn‖ → 0.

Lemma 2.5 ([1, 2, 10, 12]). Let C be a nonempty closed convex subset of a smooth real Banach space E
and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0 for all y ∈ C.

Lemma 2.6 ([1, 2, 10]). Let E be a reflexive, strictly convex and smooth real Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E. Then

φ(y,Πcx) + φ(Πcx, x) ≤ φ(y, x) for all y ∈ C.

Lemma 2.7 ([5]). Let E be a uniformly convex Banach space and Br(0) = {x ∈ E : ‖x‖ ≤ r} be a closed ball
of E. Then there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) with g(0) = 0
such that

‖λx+ µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµg(‖x− y‖) (2.5)

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ+ µ+ γ = 1.

It is easy to prove the following results.

Lemma 2.8. Let E be a strictly convex and smooth real Banach space, let C be a closed convex subset of
E, and let T be a weak relatively nonexpansive mapping from C into itself. Then F (T ) is closed and convex.

Lemma 2.9. Let {Tn}∞n=1, {T ∗n}∞n=1 be two sequences of mappings such that

{{Tn}∞n=1} ⊃ {{T ∗n}∞n=1} ,

if for each i = 1, 2, 3, ..., {T ∗n}∞n=1 contains a subsequence {T ∗nk
}∞k=1 such that T ∗nk

= Ti for all k = 1, 2, 3, . . ..
Then {T ∗n}∞n=1 is said to be a cycle of the {Tn}∞n=1.

Example 2.10. Let {Tn}∞n=1 be a sequence of mappings, the following sequences are some cycles of the
{Tn}∞n=1:

T1, T1, T2, T1, T2, T3, T1, T2, T3, T4, T1, T2, T3, T4, T5, . . . , (cycle 1)

T1, T2, T1, T3, T2, T1, T4, T3, T2, T1, T5, T4, T3, T2, T1, . . . , (cycle 2)

T1, T2, T1, T1, T2, T3, T2, T1, T1, T2, T3, T4, T3, T2, T1, . . . . (cycle 3)

3. Main results

Now we prove our convergence theorems as follows.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a nonempty
closed convex subset of E, let {Tn}, {Sn} be two sequences of weak relatively nonexpansive mappings from
C into itself such that F := (∩∞n=0F (Tn))

⋂
(∩∞n=0F (Sn)) 6= ∅. Define a sequence {xn} in C by the following

algorithm: 

x0 ∈ C = C0 chosen arbitrarily,

zn = J−1(β
(1)
n Jxn + β

(2)
n JT ∗nxn + β

(3)
n JS∗nxn),

yn = J−1(αnJxn + (1− αn)Jzn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)}, n = 0, 1, 2, . . . ,

xn+1 = ΠCn+1(x0),

(3.1)

with the conditions
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(i) lim infn→∞ β
(1)
n β

(2)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(ii) lim infn→∞ β
(1)
n β

(3)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(iii) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1),

where {T ∗n}, {S∗n} are the cycles of the {Tn}, {Sn} respectively. Then {xn} converges strongly to ΠFx0, where
ΠF is the generalized projection from C onto F .

Proof. We first show that Cn is closed and convex for each n ≥ 0. From the definition of Cn, it is obvious
that Cn is closed for each n ≥ 0. We show that Cn is convex for any n ≥ 0. Since

φ(z, yn) ≤ φ(z, xn)

is equivalent to
2〈z, Jxn − Jyn〉 ≤ ‖xn‖2 − ‖yn‖2,

it follows that Cn is convex.
Next, we show that F ⊂ Cn for all n ≥ 0. Observe that

zn = J−1(β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn).

Hence from the definition of φ(x, y) and the convexity of ‖ · ‖2 we have, for all p ∈ F that

φ(p, zn) =φ
(
p, J−1(β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn)

)
=‖p‖2 − 2

〈
p, β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn

〉
+
∥∥∥β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn

∥∥∥2
≤β(1)n φ(p, xn) + β(2)n φ(p, T ∗nxn) + β(3)n φ(p, S∗nxn)

≤β(1)n φ(p, xn) + β(2)n φ(p, xn) + β(3)n φ(p, xn)

=φ(p, xn).

By the similar reason we have, for all p ∈ F that

yn = J−1(αnJzn + (1− αn)Jxn),

φ(p, yn) =φ
(
p, J−1(αnJzn + (1− αn)Jxn)

)
≤‖p‖2 − 2 〈p, αnJzn + (1− αn)Jxn〉

+ ‖αnJzn + (1− αn)Jxn‖2

≤αnφ(p, zn) + (1− αn)nφ(p, xn)

≤αnφ(p, xn) + (1− αn)nφ(p, xn)

=φ(p, xn).

That is, p ∈ Cn for all n ≥ 0.
Since xn+1 = ΠCnx0 and Cn ⊂ Cn−1 for all n ≥ 1, we have

φ(xn, x0) ≤ φ(xn+1, x0) (3.2)

for all n ≥ 0. Therefore {φ(xn, x0)} is nondecreasing. In addition, it follows from Lemma 2.6 that

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(p, x0)− φ(p, xn) ≤ φ(p, x0)

for each p ∈ F ⊂ Qn and for all n ≥ 0. Therefore, φ(xn, x0) is bounded, this together with (3.2) implies that
the limit of {φ(xn, x0)} exists. Put

lim
n→∞

φ(xn, x0) = d. (3.3)
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From Lemma 2.6, we have, for any positive integer m, that

φ(xn+m, xn) = φ(xn+m,ΠCnx0) ≤ φ(xn+m, x0)− φ(ΠCnx0, x0)

= φ(xn+m, x0)− φ(xn, x0)
(3.4)

for all n ≥ 0. Therefore
lim
n→∞

φ(xn+m, xn) = 0. (3.5)

From (3.5) and (2.3), we know that {xn} is bounded and Lemma 2.7 together with (3.5) implies

lim
n→∞

‖xn+m − xn‖ = 0.

Then {xn} is a Cauchy sequence, hence there exists a point x∗ ∈ C such that {xn} converges strongly to x∗.
Since xn+1 = ΠCn+1x0 ∈ Cn, from the definition of Cn, we have

φ(xn+1, yn) ≤ φ(xn+1, xn). (3.6)

It follows from (3.5) and (3.6) that
φ(xn+1, yn)→ 0.

By using Lemma 2.5, we have

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − xn‖ = 0,

and hence yn → x∗ as n→∞. Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

(1− αn)‖Jzn − Jxn‖ = lim
n→∞

‖Jyn − Jxn‖ = 0.

Since 0 ≤ αn ≤ α < 1, then
lim
n→∞

‖Jzn − Jxn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous bounded sets, we have

lim
n→∞

‖zn − xn‖ = 0,

so that zn → x∗ as n→∞.
Since {xn} is convergent, then {xn} is bounded so are {zn}, {JT ∗nxn} and {JS∗nxn}. From the definition

of φ(x, y) and
zn = J−1(β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn),

we have, for all p ∈ F that

φ(p, zn) =φ(p, J−1(β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn))

=‖p‖2 − 2〈p, β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn〉
+ ‖β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn‖2.

Therefore, by using (2.5) in Lemma 2.7, for all p ∈ F , we have

φ(p, zn) ≤‖p‖2 − 2
〈
p, β(1)n Jxn + β(2)n JT ∗nxn + β(3)n JS∗nxn

〉
+ β(1)n ‖Jxn‖

2 + β(2)n ‖JT ∗nxn‖
2 + β(3)n ‖JS∗nxn‖

2 − β(1)n β(2)n g(‖Jxn − JT ∗nxn‖)
≤β(1)n φ(p, xn) + β(2)n φ(p, T ∗nxn) + β(3)n φ(p, S∗nxn)− β(1)n β(2)n g(‖Jxn − JT ∗nxn‖)
≤β(1)n φ(p, xn) + β(2)n φ(p, xn) + β(3)n φ(p, xn)− β(1)n β(2)n g(‖Jxn − JT ∗nxn‖)
=φ(p, xn)− β(1)n β(2)n g(‖Jxn − JT ∗nxn‖),
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and hence
β(1)n β(2)n g (‖Jxn − JT ∗nxn‖) ≤ φ(p, xn)− φ(p, zn)→ 0,

as n→∞. By using the same way, we can prove that

β(1)n β(3)n g (‖Jxn − JS∗nxn‖) ≤ φ(p, xn)− φ(p, zn)→ 0,

as n→∞. From the properties of the mapping g, we have

‖Jxn − JT ∗nxn‖ → 0,

as n→∞, and
‖Jxn − JS∗nxn‖ → 0,

as n→∞. Since J−1 is also uniformly norm-to-norm continuous on any bounded set, we have

‖xn − T ∗nxn‖ → 0,

as n→∞, and
‖xn − S∗nxn‖ → 0,

as n→∞. Since {T ∗n}∞n=0, {S∗n}∞n=0 are the cycles of the {Tn}∞n=0, {Sn}∞n=0, respectively, so for any i = 0, 1, ...,
there exist a subsequence {T ∗in} ⊂ {T

∗
n} such that T ∗in = Ti for all n = 0, 1, . . .. That is,

‖xin − Tixin‖ → 0,

as n → ∞, and xin → x∗, since Ti is a weak relatively nonexpansive mapping, then x∗ ∈ F (Ti), for
all i = 0, 1, . . .. By the same reason we know that x∗ ∈ F (Si), for all i = 0, 1, . . .. Hence x∗ ∈ F :=
(∩∞n=0F (Tn)) ∩ (∩∞n=0F (Sn)).

Finally, we prove that x∗ = ΠFx0. From Lemma 2.7, we have

φ(x∗,ΠFx0) + φ(ΠFx0, x0) ≤ φ(x∗, x0).

On the other hand, since xn+1 = ΠCn+1x0 and Cn ⊃ F , for all n, we get from Lemma 2.9 that,

φ(ΠFx0, xn+1) + φ(xn+1, x0) ≤ φ(ΠFx0, x0).

By the definition of φ(x, y), it follows that both φ(x∗, x0) ≤ φ(ΠFx0, x0) and φ(x∗, x0) ≥ φ(ΠFx0, x0),
whence φ(x∗, x0) = φ(ΠFx0, x0). Therefore, it follows from the uniqueness of ΠFx0 that x∗ = ΠFx0. This
completes the proof.

Taking αn ≡ 0, Theorem 3.1 is reduced to the following result.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a nonempty
closed convex subset of E, let {Tn}, {Sn} be two sequences of weak relatively nonexpansive mappings from
C into itself such that F := (∩∞n=0F (Tn))

⋂
(∩∞n=0F (Sn)) 6= ∅. Define a sequence {xn} in C by the following

algorithm: 
x0 ∈ C = C0 chosen arbitrarily,

yn = J−1(β
(1)
n Jxn + β

(2)
n JT ∗nxn + β

(3)
n JS∗nxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)}, n = 0, 1, 2, . . . ,

xn+1 = ΠCn+1(x0)

(3.7)

with the conditions

(i) lim infn→∞ β
(1)
n β

(2)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(ii) lim infn→∞ β
(1)
n β

(3)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1,
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where {T ∗n}, {S∗n} are the cycles of {Tn}, {Sn} respectively. Then {xn} converges strongly to ΠFx0, where
ΠF is the generalized projection from C onto F .

Next, we prove a convergence theorem for Halpern-type iterative algorithm.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let {Tn}∞n=0, {Sn}∞n=0 be two sequences of weak relatively nonexpansive mappings
from C into itself such that F = (∩∞n=0F (Tn))

⋂
(∩∞n=0F (Sn)) 6= ∅. Define a sequence {xn} in C by the

following algorithm:

x0 ∈ C = C0 chosen arbitrarily,

zn = J−1(β
(1)
n Jx0 + β

(2)
n JT ∗nxn + β

(3)
n JS∗nxn),

yn = J−1(αnJzn + (1− αn)Jxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ (1− αnβ(1)n )φ(z, xn) + αnβ
(1)
n φ(z, x0)}, n = 0, 1, 2, . . . ,

xn+1 = ΠCn+1x0,

(3.8)

with the conditions

(i) limn→∞ β
(1)
n = 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(ii) lim supn→∞ β
(2)
n β

(3)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1,

where {T ∗n}, {S∗n} are the cycles of the {Tn}, {Sn} respectively. Then {xn} converges to q = ΠF (T )x0.

Proof. We first show that Cn is closed and convex for each n ≥ 0. From the definition of Cn, it is obvious
that Cn is closed for each n ≥ 0. Next, we prove that Cn is convex for each n ≥ 0. Since

φ(z, yn) ≤ (1− β(1)n )φ(z, xn) + β(1)n φ(z, x0)

is equivalent to

2
〈
z, (1− β(1)n )Jxn + β(1)n Jx0 − Jyn

〉
≤ (1− β(1)n )‖xn‖2 + β(1)n ‖x0‖2.

It is easy to get Cn is convex for each n ≥ 0.
Next, we show that F ⊂ Cn for all n ≥ 0. Observe that

zn = J−1
(
β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

)
.

Hence from the definition of φ(x, y) and the convexity of ‖ · ‖2 we have, for each p ∈ F that

φ(p, zn) =φ
(
p, J−1

(
β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

))
=‖p‖2 − 2

〈
p, β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

〉
+
∥∥∥β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

∥∥∥2
≤β(1)n φ(p, x0) + β(2)n φ(p, T ∗nxn) + β(3)n φ (p, S∗nxn)

≤β(1)n φ(p, x0) + β(2)n φ(p, xn) + β(3)n φ(p, xn)

≤β(1)n φ(p, x0) + (1− β(1)n )φ(p, xn).

By the similar reason we have, for each p ∈ F that

φ(p, yn) =φ
(
p, J−1 (αnJzn + (1− αn)Jxn)

)
=‖p‖2 − 2 〈p, αnJzn + (1− αn)Jxn〉
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+ ‖αnJzn + (1− αn)Jxn‖2

≤αnφ(p, zn) + (1− αn)φ(p, xn)

≤αn
(
β(1)n φ(p, x0) + (1− β(1)n )φ(p, xn)

)
+ (1− αn)φ(p, xn)

≤αnβ(1)n φ(p, x0) +
(

1− αnβ(1)n

)
φ(p, xn).

So, p ∈ Cn, which implies that F ⊂ Cn for all n ≥ 0.
Since xn+1 = ΠCn+1x0 ∈ Qn and Cn ⊂ Cn−1, then we get

φ(xn, x0) ≤ φ(xn+1, x0), for all n ≥ 0. (3.9)

Therefore {φ(xn, x0)} is nondecreasing. It follows from Lemma 2.6 that

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(p, x0)− φ(p, xn) ≤ φ(p, x0),

for each p ∈ F ⊂ Qn and for all n ≥ 0. Therefore, φ(xn, x0) is bounded. This together with (3.9) implies
that the limit of {φ(xn, x0)} exists. Put

lim
n→∞

φ(xn, x0) = d. (3.10)

From Lemma 2.6, we have, for any positive integer m, that

φ(xn+m, xn) =φ(xn+m,ΠCnx0) ≤ φ(xn+m, x0)− φ(ΠCnx0, x0)

=φ(xn+m, x0)− φ(xn, x0),
(3.11)

for all n ≥ 0. Therefore (3.11) implies
lim
n→∞

φ(xn+m, xn) = 0. (3.12)

Since {xn} is bounded, from (3.12) and by using Lemma 2.7 we have

lim
n→∞

‖xn+m − xn‖ = 0.

Then {xn} is a Cauchy sequence, hence there exists a point x∗ ∈ C such that {xn} converges strongly to
x∗. In particular, we have

lim
n→∞

‖xn+1 − xn‖ = 0, (3.13)

lim
n→∞

φ(xn+1, xn) = 0.

Since xn+1 = ΠCn+1x0 ∈ Cn, from the definition of Cn, we also have

φ(xn+1, yn)→ 0, φ(xn+1, zn)→ 0,

and
‖xn+1 − yn‖ → 0, ‖xn+1 − zn‖ → 0. (3.14)

as n→∞.
From the definition of φ(x, y) and

zn = J−1
(
β(1)n Jx0 + β(2)n JTnxn + β(3)n JSnxn

)
,

we have, for all p ∈ F that

φ(p, zn) =φ
(
p, J−1

(
β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

))
=‖p‖2 − 2

〈
p, β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

〉
+
∥∥∥β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

∥∥∥2 .
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Therefore, from the boundedness of {xn}, {zn}, {Txn} and {Sxn}, and by using (2.5) in Lemma 2.7, we
have

φ(p, zn) ≤‖p‖2 − 2
〈
p, β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

〉
+ β(1)n ‖Jx0‖+ β(2)n ‖JT ∗nxn‖+ β(3)n ‖JS∗nxn‖2 − β(2)n β(3)n g(‖JT ∗nxn − JS∗nxn‖)

≤β(1)n φ(p, x0) + β(2)n φ(p, T ∗nxn) + β(3)n φ(p, S∗nxn)− β(2)n β(3)n g(‖JT ∗nxn − JS∗nxn‖)
≤β(1)n φ(p, x0) + β(2)n φ(p, xn) + β(3)n φ(p, xn)− β(2)n β(3)n g(‖JT ∗nxn − JS∗nxn‖)
≤β(1)n φ(p, x0) + (1− β(1)n )φ(p, xn)− β(2)n β(3)n g(‖JT ∗nxn − JS∗nxn‖),

which implies that

β(2)n β(3)n g(‖JT ∗nxn − JS∗nxn‖) ≤ β(1)n φ(p, x0) + (1− β(1)n )φ(p, xn)− φ(p, zn).

From limn→∞ β
(1)
n = 0 and xn → x∗, zn → x∗, we have

β(2)n β(3)n g(‖JT ∗nxn − JS∗nxn‖)→ 0,

as n→∞. From the properties of the mapping g, we have

‖JT ∗nxn − JS∗nxn‖ → 0, (3.15)

as n→∞. Since
zn = J−1

(
β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

)
,

then we have
Jzn =

(
β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn

)
.

Therefore

‖Jxn − Jzn‖ =
∥∥∥Jxn − (β(1)n Jx0 + β(2)n JT ∗nxn + β(3)n JS∗nxn)

∥∥∥
=
∥∥∥β(1)n (Jxn − Jx0) + β(2)n (Jxn − JT ∗nxn) + β(3)n (Jxn − JS∗nxn)

∥∥∥
≥
∥∥∥β(2)n (Jxn − JT ∗nxn) + β(3)n (Jxn − JS∗nxn)‖ − ‖β(1)n (Jxn − Jx0)

∥∥∥ ,
which leads to∥∥∥β(2)n (Jxn − JT ∗nxn) + β(3)n (Jxn − JS∗nxn)‖ ≤ ‖Jxn − Jzn‖+ ‖β(1)n (Jxn − Jx0)

∥∥∥ .
Since xn → x∗, zn → x∗ and limn→∞ β

(1)
n = 0, then from above inequality we obtain∥∥∥β(2)n (Jxn − JT ∗nxn) + β(3)n (Jxn − JS∗nxn)

∥∥∥ = 0. (3.16)

On the other hand, by using the property of norm ‖ · ‖, we have∥∥∥β(2)n (Jxn − JT ∗nxn) + β(3)n (Jxn − JS∗nxn)
∥∥∥

=
∥∥β(2)n (Jxn − JT ∗nxn) + β(3)n (Jxn − JS∗nxn)

+ β(3)n (Jxn − JT ∗nxn)− β(3)n (Jxn − JT ∗nxn)
∥∥

=
∥∥∥(β(2)n + β(3)n )(Jxn − JT ∗nxn) + β(3)n (JT ∗nxn − JS∗nxn)

∥∥∥
≥
∥∥∥(β(2)n + β(3)n )(Jxn − JT ∗nxn)‖ − ‖β(3)n (JT ∗nxn − JS∗nxn)

∥∥∥ ,
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which leads to the following inequality∥∥∥(β(2)n + β(3)n )(Jxn − JT ∗nxn)
∥∥∥ ≤ ∥∥∥β(2)n (Jxn − JT ∗nxn) + β(3)n (Jxn − JS∗nxn)

∥∥∥+ β(3)n ‖JT ∗nxn − JS∗nxn‖ .

Therefore, by using (3.15) and (3.16) we have∥∥∥(β(2)n + β(3)n )(Jxn − JT ∗nxn)
∥∥∥→ 0.

This together with the condition (ii) of Theorem 3.3 implies that

‖Jxn − JT ∗nxn‖ → 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, then we have

‖xn − T ∗nxn‖ → 0,

as n→∞. Since {T ∗n}∞n=0, {S∗n}∞n=0 are the cycles of {Tn}∞n=0, {Sn}∞n=0, respectively, so for any i = 0, 1, . . .,
there exist a subsequence {T ∗in} ⊂ {T

∗
n} such that T ∗in = Ti for all n = 0, 1, . . .. That is,

‖xin − Tixin‖ → 0,

as n → ∞, and xin → x∗, since Ti is a weak relatively nonexpansive mapping, then x∗ ∈ F (Ti), for all
i = 0, 1, 2, . . .. By the same reason we know that x∗ ∈ F (Si), for all i = 0, 1, 2, . . .. Hence x∗ ∈ F :=
(∩∞n=0F (Tn)) ∩ (∩∞n=0F (Sn)).

Finally, we prove that x∗ = ΠFx0. From Lemma 2.8, we have

φ(x∗,ΠFx0) + φ(ΠFx0, x0) ≤ φ(x∗, x0).

On the other hand, since xn+1 = ΠCn+1 and Cn ⊃ F , for all n, we get from Lemma 2.6 that,

φ(ΠFx0, xn+1) + φ(xn+1, x0) ≤ φ(ΠFx0, x0).

By the definition of φ(x, y), it follows that both φ(x∗, x0) ≤ φ(ΠFx0, x0) and φ(x∗, x0) ≥ φ(ΠFx0, x0),
whence φ(x∗, x0) = φ(ΠFx0, x0). Therefore, it follows from the uniqueness of ΠFx0 that x∗ = ΠFx0. This
completes the proof.

Taking αn ≡ 1, Theorem 3.3 is reduced to the following result.

Theorem 3.4. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let {Tn}∞n=0, {Sn}∞n=0 be two sequences of weak relatively nonexpansive mappings
from C into itself such that F = (∩∞n=0F (Tn))

⋂
(∩∞n=0F (Sn)) 6= ∅. Define a sequence {xn} in C by the

following algorithm: 
x0 ∈ C = C0 chosen arbitrarily,

yn = J−1(β
(1)
n Jx0 + β

(2)
n JT ∗nxn + β

(3)
n JS∗nxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)}, n = 0, 1, 2, . . . ,

xn+1 = ΠCn+1x0,

(3.17)

with the conditions

(i) limn→∞ β
(1)
n = 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(ii) lim supn→∞ β
(2)
n β

(3)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1,

where {T ∗n}, {S∗n} are the cycles of {Tn}, {Sn}, respectively. Then {xn} converges to q = ΠF (T )x0.
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4. Applications

The so-called convex feasibility problem for a family of mappings {Tn} is to find a point in the nonempty
intersection ∩∞n=1F (Tn).

Let E be a smooth, strictly convex, and reflexive Banach space, and C be a nonempty, closed, convex
subset of E. Let {Bi}∞i=1 : C → E∗ be a sequence of βi-inverse strongly monotone mappings, {ψi}∞i=1 :
C → R1 a sequence of lower semi-continuous and convex functions, and {θi}∞i=1 : C → R1 a sequence of
bifunctions satisfying the conditions:

(A1) θ(x, x) = 0;

(A2) θ is monotone, i.e., θ(x, y) + θ(y, x) ≤ 0;

(A3) lim supn→∞ θ(x+ t(z − x), y) ≤ θ(x, y);

(A4) the mapping y 7→ θ(x, y) is convex and lower semi-continuous.

A system of generalized mixed equilibrium problems (GMEP) for {Bi}∞i=1, {ψi}∞i=1 and {θi}∞i=1 is to find
an x∗ ∈ C such that

θ(x∗, y) + 〈y − x∗, Bix∗〉+ ψi(y)− ψi(x∗) ≥ 0, ∀ y ∈ C, i = 1, 2, . . . , (4.1)

whose set of common solutions is denoted by Ω = ∩∞i=1Ωi, where Ωi indicates the set of solutions to
generalized mixed equilibrium problem for Bi, θi and ψi.

Define a countable family of mappings {Sr,i}∞i=1 : E → C with r > 0 as follows:

Sr,i(x) = {z ∈ C : τi(x, y) +
1

r
〈y − z, Jz − Jy〉 ≥ 0, y ∈ C}, ∀ i = 1, 2, . . . , (4.2)

where τi(x, y) = θ(x, y) + 〈y − x,Bix〉+ ψi(y)− ψi(x). It has been shown by Zhang [28] that

(1) {Sr,i}∞i=1 is a sequence of single-valued mappings;

(2) {Sr,i}∞i=1 is a sequence of relatively nonexpansive mappings;

(3)
⋂∞
i=1 F (Sr,i) = Ω.

By using Theorems 3.3 and 3.4 we can get the following results.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let {Tn} be a sequences of weak relatively nonexpansive mappings from C into
itself and {Sr,i}∞i=1 be a sequence of mappings defined by (4.2) with F := (∩∞n=0F (Tn))

⋂
(∩∞n=0F (Sr,i)) 6= ∅.

Define a sequence {xn} in C by the following algorithm:

x0 ∈ C = C0 chosen arbitrarily,

zn = J−1(β
(1)
n Jxn + β

(2)
n JT ∗nxn + β

(3)
n JS∗r,nxn),

yn = J−1(αnJxn + (1− αn)Jzn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)}, n = 0, 1, 2, . . . ,

xn+1 = ΠCn+1(x0),

(4.3)

with the conditions

(i) lim infn→∞ β
(1)
n β

(2)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(ii) lim infn→∞ β
(1)
n β

(3)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(iii) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1),

where {T ∗n}, {S∗n} are the cycles of the {Tn}, {Sr,n}, respectively. Then {xn} converges strongly to ΠFx0,
which is some common solution to the convex feasibility problem for {Tn} and a system of generalized mixed
equilibrium problems for {Sr,n} where ΠF is the generalized projection from C onto F .
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Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let {Tn} be a sequences of weak relatively nonexpansive mappings from C into
itself and {Sr,i}∞i=1 be a sequence of mappings defined by (4.2) with F := (∩∞n=0F (Tn))

⋂
(∩∞n=0F (Sr,i)) 6= ∅.

Define a sequence {xn} in C by the following algorithm:

x0 ∈ C = C0 chosen arbitrarily,

zn = J−1(β
(1)
n Jx0 + β

(2)
n JT ∗nxn + β

(3)
n JS∗r,nxn),

yn = J−1(αnJzn + (1− αn)Jxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ (1− αnβ(1)n )φ(z, xn) + αnβ
(1)
n φ(z, x0)}, n = 0, 1, 2, . . . ,

xn+1 = ΠCn+1x0,

(4.4)

with the conditions

(i) limn→∞ β
(1)
n = 0, β

(1)
n + β

(2)
n + β

(3)
n = 1;

(ii) lim supn→∞ β
(2)
n β

(3)
n > 0, β

(1)
n + β

(2)
n + β

(3)
n = 1,

where {T ∗n}, {S∗r,n} are the cycles of the {Tn}, {Sr,n}, respectively. Then {xn} converges strongly to ΠFx0,
which is some common solution to the convex feasibility problem for {Tn} and a system of generalized mixed
equilibrium problems for {Sr,n} where ΠF is the generalized projection from C onto F .

Remark 4.3.

(1) In [21], the sequences {Tin}∞n=0 and {Sin}∞n=0 are namely the “cycle 1” of the {Tn}∞n=0 and {Sn}∞n=0,
respectively.

(2) In [21], the conditions of Theorem 3.1 and Theorem 4.1 are not sufficient, in fact, in order to use Lemma
2.6 and Lemma 2.7, the condition “Let E be a uniformly convex and uniformly smooth Banach space”,
is needed.

(3) In [21], the proof of Theorem 3.1 is relatively complex. In fact, we can easily prove the iterative
sequence {xn} is a Cauchy sequence without using Lemma 2.6.

(4) In [21], page 11, line 14, the sentence “{Sr,i}∞i=1 is a sequence of closed relatively nonexpansive map-
pings” should be “{Sr,i}∞i=1 is a sequence of relatively nonexpansive mappings”, since the relatively
nonexpansive mapping must be closed.
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