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Abstract

The aim of the paper is to construct an iterative method for finding the fixed points of nonexpansive
mappings. We introduce a general implicit iterative scheme for finding an element of the set of fixed points
of a nonexpansive mapping defined on a nonempty closed convex subset of a real Hilbert space. The strong
convergence theorem for the proposed iterative scheme is proved under certain assumptions imposed on the
sequence of parameters. Our results extend and improve the results given by Ke and Ma [Y. Ke, C. Ma,
Fixed Point Theory Appl., 2015 (2015), 21 pages], Xu et al. [H. K. Xu, M. A. Alghamdi, N. Shahzad, Fixed
Point Theory Appl., 2015 (2015), 12 pages|, and many others. (©)2016 all rights reserved.
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1. Introduction

A well-known iteration method for approximating fixed points of a nonexpansive mapping is the viscosity
approximation method introduced by Moudafi [9] in 2000. Extensions of viscosity approximation method
were obtained by Xu [I1] in 2004. For arbitrary x; € H, let {z,,} be a sequence in H defined by

Tnt1 = anf(xn) + (1 —ap)Tx,, forallneN, (1.1)
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where {a,} is a sequence in (0,1) and f and T are contractions and nonexpansive mappings from H onto
itself, respectively. This method is called the explicit viscosity method for nonexpansive mappings. It is
well-known that under certain assumptions imposed on the parameters, the sequence {z,} generated by
converges strongly to the fixed point x* of T" which solves the following variational inequality:

(I—flz*,x—a*) >0, forallze C:= Fizx(T). (1.2)

The implicit midpoint rules are the most powerful techniques for solving ordinary differential equations,
(see [3, B, 10] and the references therein). In 2014, Alghamdi et al. [2] introduced the implicit midpoint rule
for nonexpansive mapping as follows: let H be a Hilbert space and T : H — H a nonexpansive mapping.
For arbitrary x; € H, let {x,} be a sequence in H defined by

Tn + Tpy

Tnt1 = (1 —ap)zy + anT< 5

>, for all n € N, (1.3)
where {a;,} is a sequence in (0, 1) for all n € N. They proved that under some suitable conditions imposed
on sequence of parameters, the sequence {x,} generated by converges weakly to some fixed point of
T. By using the idea of contractions to regularize the implicit midpoint rule for nonexpansive mappings
and to find the strong convergence results, in 2015, Xu et al. [12] introduced the following viscosity implicit
midpoint rule: let C be a nonempty closed convex subset of a Hilbert space H and f,T are contraction and
nonexpansive mappings from C' onto itself, respectively. For arbitrary z; € C, let {x,} be a sequence in C
defined by

Tp + Tntl

2

where {a,} is a sequence in (0, 1) for all n € N. They proved that the sequence generated by converges

strongly to the fixed point z* of T', which solves the variational inequality (1.2]). In the same year, Ke and
Ma [7] have generalized the viscosity implicit midpoint rule of Xu et al. [I2] in the following way:

Tni1 = anfan,) + (1 — an)T( ), for all n € N, (1.4)

Tnt1 = anfxn) + (1 — an)T(ﬁnmn +(1- ﬂn)xn+1), for all n € N, (1.5)

where {a,,} and {f,} are some sequences in (0, 1) for all n € N and proved the strong convergence of the
proposed implicit rule . Also as we know, there are a large number of algorithms for solving the fixed
point problem of nonexpansive mappings in the literature, see [I4HI§].

On the other hand, the projection methods have played an important role in Hilbert spaces, depending
on their convergence analysis. By virtue of projections, in 2011, Ceng et al. [4] introduced implicit and
explicit iterative schemes for finding the fixed points of a nonexpansive mapping 71" defined on a nonempty,
closed and convex subset C' of a real Hilbert space H as follows:

xy = PoltyVay + (I — tpuF)Txy] (1.6)

and
Tni1 = Polan YV, + (I — appuF)Tz,], for all n € N, (L.7)

where F': C' — H is k-Lipschitzian and n-strongly monotone operator with £k > 0,7 >0, V : C — H is an
L-Lipschitzian mapping with L > 0, T : C' — C' is a nonexpansive mapping with Fiz(T) # 0, {a,,} C (0,1)
and x1 € C an arbitrary initial point. They proved that the sequences generated by the iterative schemes
and converge strongly to a fixed point z* of T" which solves the following variational inequality
problem:

(WF —AV)a*,x —2*) >0, forall z € C:= Fix(T).

In this paper, motivated by the work of Alghamdi et al. [2], Ceng et al. [4], Ke and Ma al [7] and Xu et
al. [12], we propose a more general implicit iteration than for finding fixed points of a nonexpansive
mapping and prove the strong convergence of the sequence generated by the proposed iteration to fixed
point of nonexpansive mapping. Our results extend and improve the results given by Ke and Ma [7], Xu et
al. [12], and many others.
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2. Preliminaries

Let C be a nonempty subset of a real Hilbert space H with inner product (-, -) and norm ||-||. A mapping
T:C — H is called

(1) monotone if
(Te —Ty,z —y) >0, forall z,yeC;

(2) n-strongly monotone if there exists a positive real number 7 such that

(Tx —Ty,z —y) Zn”a:—yH?, for all z,y € C,

(3) k-Lipschitzian if there exists a constant k£ > 0 such that

|Tx —Ty|| < kl|lz—y|, forallzyedC,

(4) nonezpansive if
[Tz — Tyl <[z —yl, foralazyeC.

Throughout this paper, the symbol N stands for the set of all natural numbers. Also, we denote by I the
identity mapping of H.
Let C be a nonempty closed convex subset of H. Then, for any x € H, there exists a unique nearest
point Pe(z) of C such that
|z — Po(z)|] < [lz —yll, forallyeC.

The mapping P¢ is called the metric projection [8] from H onto C. It is remarkable that the metric
projection mapping Pc is nonexpansive from H onto C (see Agarwal et al. [I] for other properties of
projection mappings).

The following lemmas will be needed to prove our main results.

Lemma 2.1 ([6]). For the metric projection mapping Pc, the following properties hold:
(i) Po(x) € C for allx € H;
(ii) (z — Po(z), Po(x) —y) >0 for allx € H and y € C;
(i) 12—yl > 1z — Po(@)| + Iy — Pe(@)|? for all z € H andy € C;
(iv) (Pe(x) — Pe(y) — ) > |Pe(@) — Pe@)|]? for allz,y € H.

Lemma 2.2 ([I3]). Let C' be a nonempty subset of a real Hilbert space H. Suppose that A € (0,1) and

w>0. Let F': C = H be a k-Lipschitzian and n-strongly monotone operator on C. Define the mapping
T\:C— H by
Th(x) =x — A\uFxz, forallz € C and X € (0,1).

Then T, is a contraction provided 0 < p < 2];7—2. More precisely, for p € (0, 2,;7—2),

ITx(z) = Tl < (A = A7)[lz —yll, for all 2,y € C,

where T =1 — /1 — pu(2n — pk?) € (0,1].

Lemma 2.3 ([4]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let V : C'— H be an
L-Lipschitzian mapping with constant L > 0 and F : C — H be a k-Lipschitzian and n-strongly monotone
operator with constants k,n > 0. Then for 0 < ~vL < un,

(& =y, (uF —yV)x — (uF —=yV)y) > (un —yL)|lz —y|> for all z,y € C.

That is, (uWF —~V') is strongly monotone with coefficient (un — ~yL).
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Lemma 2.4 ([1]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C be a
nonexpansive mapping with Fix(T) # 0. Then I —T is demiclosed at zero; that is, if {x,} is a sequence in C
weakly converging to some x* € C' and the sequence {(I —T)xy,} converges strongly to 0, then x* € Fix(T).

Lemma 2.5 ([12]). Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+1 < (1 —ap)sy + by, foralln eN,
where {an} is a sequences in (0,1) and {b,} is a sequence in R such that
(a) Yo% an =00, and
(b) either limsup,, ., Z—: <0 or Y o2 |by] < o0.

Then lim,,_vso S5, = 0.

3. Main results

In this section, we introduce a more general implicit iteration method than (1.5 for finding the fixed
points of a nonexpansive mapping.

Theorem 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space H. Let F : C — H be a
k-Lipschitzian and n-strongly monotone operator and 'V : C — H be an L-Lipschitzian mapping with L > 0.
Let T : C — C be a nonexpansive mapping with Fix(T) # 0. Suppose that 0 < p < i—’; and 0 < vL < T,
where T =1 — \/1 — u(2n — pk?). For arbitrary x1 € C, consider the sequence {x,} in C generated by the
following iterative algorithm.:

r1 € C,
Zn = YnTn + (1 - ’Yn)Txny (31)
Tp+1l = PC’[an’YV‘Tn + (I - anuF)T(ann + (1 - ﬂn)l'n—i—l)]

for all n € N, where {an},{Bn}, and {v} are some sequences with {ay,},{Bn} C (0,1) and {v,} C [0,1]
satisfying the following conditions:

(1) imp oo n =0, > 07 oy =00 and Y o7 |ng1 — Q| < 00;
(ii)) 0 <e< Bp < Ppy1 <1 forallneN, Y > |Buy1 — Bnl < o0
(iii) vn €[0,1] for alln € N and >~ [Ynt1 — Yn| < 00.

Then the sequence {xy} converges strongly to x* € Fixz(T), which is also the unique solution of the varia-
tional inequality:
(WF —AV)x*,a* —x) <0, forall x € Fix(T). (3.2)

Proof. Set y, = Bpzn + (1 — Bp)xny1 and 0, = (1 — B,)(1 — ay,7) for all n € N. We now proceed with the
following steps.

STEP 1. {z,} is bounded.
Let g € Fiz(T). From (3.1), we have

2 = qll < v llon —qll + (1 — ) [|[Tzn — 4|
<Anllzn —qll + (1 =) |20 — ¢l = |20 — qll,
and
lyn —all < Bnllzn — all + (1 = Bn) |21 — 4|
< Bnllzn —all + (1 = Bn) |zn+1 — ql|-
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Hence
[Zn+1 — all < [lanyVay + (I — anpF)T (yn) — 4|
= lan(YVan — uFq) + (I — anpF)T(yn) — (I — anpF)q||
< an [[(Wan = pFg) || + (1 — an7) [[T(yn) — 4l
< an(|VVan — Vel + [7Va — uFql) + (1 — anT) lyn —
< apyL |2y — gl + an [(YV = pF)gll + (1 = ant) [By |2 — all + (1 = Ba) |21 — gll]
= ap VL |2n — qll + an [[(WV = pF)q|| + Bn(1 — anT) [0 — q||
+ (1= Bn)(1 = an7) [[n+1 — gl
= (anyL + Ba(1 — an7)) Iz — gl + an [[(VV — pF )|l + On 2041 — gl

which immediately gives that

(1= On)l[zns1 — qll < [anvL + Bn(1 — anT)] lzn — gl + o |(VV = pF)ql| - (3-3)

Since ay, B, € (0,1), it follows that (1 —6,) =1 — (1 — 8,)(1 — a,7) > 0 for all n € N. Hence, from (3.3)),
we get

anyL + Bn(1 — o T) o

— < o -
[Zn+1 =g < - len = all + =5 10V = uF)al
an (T — L) O
( 1-6, > | gl + 1-6, [(vV = uF)q||
an (T — L) (T — L) 1
=1 n — CLF .
< 1-06, ) Hl‘ QH + 1-0, (7_ — ’YL) ||(’}/V I )q”

Thus, we have

1
fenes = all < max{ o = ol -5 16V = uFhal |, foralln e

T —~L)
Hence {z,} is bounded and so the sequences {Vx,}, {zn},{yn}, {Txn}, {Tyn}, and {FTz,} are bounded.
STEP 2. ||[Zp41 — @n|| — 0 as n — oo.
Choose My, My and Mjs such that

My > sup |[WVx, — puFTy,||, Mz >sup|x, —Txy,|, and Mz > sup |z, — z,]-
n>1 n>1 n>1

From ({3.1), we have

zn+1 = znll = V412041 + (1 = Y1) TZn41 — YnZn — (1 — ) Ty |
= [fn+1Tn4+1 — Wt1%n + Ynt1%Tn — YnTn + (1 = Y1) TTpi1
(1= vy 1)Ton + (1 =Yg 1) Ty — (1 — ) T |
< Ynt1l|Tns1 — Tull + (1= Yot ) 1T 2041 — T2 + [yns1 — Yalllzn — Tan||
< Yt |Znr = anll + (1 = yng1) l2ntr — @all + (1 = Wlllen — Ton||
= |Tns1 — Zoll + [Ynt1 — alllzn — Ty

(3.4)

Note that

Yn+1 = Yn = Bn12n41 + (1 = Bns1)Tnt2 — Buzn — (1 — Br)Tns1
= (1= Bnt1)®nt2 — (1 = Bny1)Tnt1 + (1 = Bat1)Tns1 + Bov12nt1 — Buzn — (1 — Bn)Tnt1
= (1 = Bnt+1)(@Tn+2 — Tn+1) + Bnt12n+1 — Bnt1Zn41 — Bnzn + BnTntr
= (1= Bny1)(@ns2 — Tng1) + Bu(Tat1 — 2n) + Brr1(Znr1 — Tnt1)
+ Bn(zny1 — xn—l-l) — Bn(zn1 — xn—l-l)
= (1 = Bnt+1)(@n+2 — Tnt1) + Bu(2nt1 — 20) + (Brt1 — Bn) (2n41 — Tnt)
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Therefore,
[yn+1 = Yull < (1 = Basr)|Tnt2 — Tngall + Bullzntr — zull + But1 — Bulllzntr — o]l

Using (3.4), we have

”yn+1 - ynH < (1 - /Bn—i-l)”$n+2 - xn—HH + 511”5%—&-1 — Ty |
+ Bulvnt1 — lllen — Tl + |Bua1 — Bulllznr1 — Tpaa |-

Again from (3.1), we have

lznte = a1l < lan1yVener + (I — anp 1 pplF)Tyns1 — anyVay — (I — anpF) Ty, ||
= lant17Vani1 + (I — anp1plF)Tyni1 — anyVan — (I — anpF) Ty,
—(I = anp1puF)Tyn + (I — anp1p0F) Tyn |
< = ant 11 F)Tynt1 — (I — a1 pplF) Ty || + [Jan417V @041
—n 17V xn + 17V g — YV — (g1 — an) uF Ty, ||
< (1= ant17) [[TYn+1 — Tynll + an 17|V ens1 — V||
+ lantr — anl [VVan — pFTyy|
< (1= an17) |ynt1 — ynll + anp1vLl|zns1 — 2|l + a1 — an| My
< (1 —an4i7) [(1 = Bt D)l @ns2 — Tl + BallTns1 — @l
+ Bulns1r — Wnlllen — Tanll + [Bns1 — Bulllzne1 — nall]
+ anp17Ll|Tnt1 — | + [ant1 — an| My
= (1 = anp17)(1 = Bng 1) [[#n42 — Tl + s — an| My
+ (1= an17) Bl — lllzn — Tanll + (1 — a1 7)Brs1 = Bnlllzntr — @]
+ (an+1'yL +(1- an—l—lT)ﬁn) [#n+1 — 2|
< OntallTnte — Toga |l + lansr — an My + (1 = apg17) Bulyn1 — yal Mo
+ (1 = an417)|Bns1 — Bn|Ms + (an—i-l'YL + (1 - an+17)ﬁn) [Zn+1 — Znl
< OntrllTnte — Tngr |l + a1 — an My + [yn41 — YoMz + |Bns1 — Bl M3
+ (an+1'YL + (1 - O‘n+17')/8n) |Tnt1 — znll,

which immediately gives that

(1= Opi1)||znt2 — Zng1ll < (Bn — Buan1T + anp17L) || Zng1 — xp|| + o1 — an| My
+ [ Ynt1 — Yn| Mo + | Brt1 — Bn|Ms,

that is,
/871 - Bnan—l-l'r + an+17L

| Tni2 — Tpy|l < [Znt+1 — 2|
1-— 0n+1
1
+ W(Ml\anﬂ — | + Mo |yni1 — Yl + M3|Bui1 — Bal)
— Un+41
o an—l—l(T — ’YL) + (Bn-i-l - Bn)(l - an+17-)
=(1- T [Zn+1 — 24l
— Un41
1
+ W(Ml‘anJrl - Oén| + M2|'Yn+1 - '7n| + M3|6n+1 - BnD
— Un41

Let M = max{M;, Ma, M3}. Note that 0 < € < 3, < 8,41 < 1, we have

Bt +0n1 = Bug1 + (1= Bur1) (1 = anga7) = (1 = anpa7(1 = fogr)) < 1.
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Hence
D<e< ﬁn+1 < (1 — 0n+1) < 1. (35)

From (3.5), 1 — 6,41 < 1 implies 1 < ﬁ. Therefore,

anJrl(T - VL) S an+1(7— - 'VL) + (/BTL+1 - ﬁn)(l - anJrlT)
an-l—l(T - ’YL) + (/Bn—i—l - /Bn)(l - an—l—lT)

<
1- 9n+1
implies
an+1(7- - 'YL) + (ﬁn—i—l - /Bn)(]- - an—i—lT)
_an—i-l(T - PYL) Z - 1—6 T .
n
Thus,

M
|Zn42 — Tpga]l < [1 — apq1(T — ’YL)] |Znt1 — zall + ?(‘O‘n—f—l — Q| + [Ynt1 = Yal + [Bat1 — /Bn|)

Since Y2 o =00, Yoo |ng1 — | <00, Y00 [Bng1 — Bnl < 00, and Y07 [yt — el < 00, therefore
by Lemma [2.5] we get

lim [[zp41 — 2, = 0.

n—o0

STEP 3. ||zp, — Txy| — 0 as n — oo.
Note that
ln = Tall < 20 = nstll + 2ns1 = Tyl + [Ty — T
<l — sl + [Zns1 — Toll + g — 2l
= lzn — zpia |l + [[PelanyVan + (I — anpF)Tyn] — Po[Tyalll + [lyn — zn|
< ||#n — Tptall + anl[VVan — pFTyn| + lyn — 24|
< lzn — zngall + My + [|Bnzn + (1 = Bp)@pt — n|
< |#n = Tptall + an My + Bullzn — 2l + (1 = Bn) [ Tn41 — 2nl|
= (2= Bn) l|lzn = Zngall + anMi + By [y + (1 = ) T2n — 24|
= (2= Bn) |z — Zns1 |l + My + Bn(1 — )20 — Tanll,

which implies that

[1 - /Bn(l - 'Yn)] Hwn - Tan S (2 - Bn)Hxn - xn—&—l” + aan-

Since limy, 00 o, = 0 and limy, o0 [|Zp+1 — Zp|| = 0, we get
lim ||z, — Tz,|| = 0.
n—oo

Moreover, from ({3.1]), we have

[#n = Tynl| < llzn — na1ll + [[2n41 — Tynl|
< zn — zngall + ol Van — pFTyy||
<||zn — Tns1 |l + an
—0 asn— oo.

STEP 4. limsup,, ., ((uF —yV)x*, 2* — x,) <0, where 2* = Py (I — (WF —4V))z*.
Let us take a subsequence {z,, } of {z,} such that

limsup (uF —AV)z*, 2" — x,) = klim (WF —AV)x*, a* —xp,) .
—00

n—oo
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Since {zn} is bounded, there exists a subsequence {zy, } of {zy,} such that z,, — ¢ € H. Without loss of
generality, we may assume that x,, — ¢. From Step 3 ‘and Lemma-, we have g € Fixz(T). This together
with the property of metric projection implies that

lim sup (uF — V)a, " = ) = lim (F =4V, 2" = )

n—oo
= ((uF —V)z*, 2" — q)
<0.
STEP 5. x, — =¥ as n — oo.

Set
Ap = llzn — 2", Bn=yn — 2|, ¢én=(1—3a)(1~— O‘nT)(l —an(T —7L)),

and

Ly = 2|y Van — uFz*||* + 205, (4V — uF)x*, (I — anpuF) Ty, — (I — anpF)z*)

for all n € N. Then from , we have
A%y = [lngn — a2
<Ny Van + (I — anpF) Ty, — «*||?
= on(0Va — ") U o T (1 - o F)a" |
aplyVan — pFa*||* + (1 — cn7)?(|Tyy — 2*||?
+ 20, (Way — pFa*, (I — anuF)Ty, — (I — apuF)x™)
= aplVVan — uFa™|* + (1 = anr)?|[Tyn — 2|
+ 20 (YWay —yVa™, (I — anuF )Ty, — (I — apuF)z™)
+ 20, (YWar — uFx*, (I — anuF)Ty, — (I — appuF)z™)
= (1 — an?)?|Tyn — 2*||* + 200, (YW, — AVa*, (I — anuF)Tyy — (I — anuF)z*) + Ly,
(1= ant)lyn — 271 + 200 (1 = anr)y||[Van — Va* ||| Tyn — 2% + Ly
(1= an7) g — 2*|1* + 200 (1 = anT)yL|wn — &*|[lgn — 2" || + Ln
=(1- OénT)zB?L + 20, (1 — an1)yLAL By, + Ly,

<
<

It turns out that
(1 — an7)?B2 + 20 (1 — o 7)YLAL By, + (L, — A21) > 0.

Solving above quadratic inequality for B, we get

—any LA + Q2L A — (L — A2,)
B, > .
(1 — 1)
Note that
B = |lyn — 27|
< Ballzn = 2|l + (1 = Bp)l|#n+1 — 27|
= Bullyn@n + (1 = yn)Txn — 2% + (1 = Br) Anta
< Balmllzn — 2| + (1 = )| Tzn — 27||] 4+ (1 = Bn) Anta
< Ballzn — 2| + (1 = Bn)Ansa
= BnAn + (1 - 5n)An+1-

Therefore, we have

—any LAy + (/02721242 — (Ly — AZ,)
(1—ap7) ’

/BnAn + (1 - ﬁn)An—i—l Z
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or
(ﬁn - /BnanT + an’YL)An + (1 - /Bn)(l - anT)An+1 > \/Q%VQLQA% — Ln + A?Hrl’
or
(/Bn — Bpou, T + an’YL)An + enAn-i-l > \/a%72L2A% —Ln,+ A721+17
or

a?L,YQL2A7% — Ly + A?L-‘rl (Bn — Bpan,T + OénfyL)ZAi + G%Ai—l-l + Q(Bn — Bpou, T + anryL)enAnAn+1

<
< (6n — BronT + an’YL)2A?L =+ 072LA$L+1 + (/Bn — BnonT + Oln'YL)en[Ai + A?L+1]’

which gives that
[1-— QEL — 0 (Bn — BnanT + an’YL)]AgH-l
< [(671 - /BnanT + anVL)Q + (/Bn - 6nan7' + Oén’YL)an - 0472172[/2}‘4% + Ln;
or
[1 - Qn(l - Oén(T — ’YL))]AEH—I < [(/Bn — BnonT + an'YL)2 + (ﬁn — BT + anvL)‘gn - a72172L2]A3L + Ln,

or
(1 - ¢n)AEL+1 S [(/Bn - 6nan7' + O‘n’YL) (1 - an(T - 7L)) - a?ﬂ/QLz] A?L + Ln‘

It follows that

(Bn - /BnanT + Oén")/L)(l — an<7' — ")/L)) _ 042’}’2[/2 I
A2 < s 2 0 |
e 1—¢n ”+1_¢n (3.7)
Let
. B (B = BT + anyL) (1 — (T — YL)) — 024212
. = .
Then

(1 =7L) (2 — an(r —7L)) — af7*L?
1- ¢n .

Since {f,} satisfies 0 < € < 3, < Bn+1 < 1 for all n > 1, it follows that lim,_,~ B, exists. Assume that

Up —

lim 8, =8* > 0.
n—oo

Then 5 I
lim w, = 2075
n—o00 /8*
Let o7 satisfies
2(tr —~L
0< o1 < (7-5*’7)

Then there exists a positive integer Ny large enough such that w,, > o1 for all n > Ny, and hence

(Bn — BnanT + Oén'YL)(l —ap(T — ’YL)) - O‘%L’YQLQ
1- ¢n

for all n > Nj. Therefore, from (3.7), we have, for all n > Ny,

<1-oa,

Ln,

A2 < (1—opa,)A2 + g

(3.8)
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Note that
Ly = anlan|WVan — uFa*|* +2((yV = uF)z*, (I — anpF) Ty, — (I — apuF)z*)]

= aplan|VVa, — NFCU*H2 +2{(VV = pF)z", (I — anpF)Tyn — (I — anpd)zy)
+2((YV = puF)z*, (I — anpuF)xy, — (I — apulF)z™)]

< anlanllyVan — uFa* 2+ 2(1 — ann)l(3V = wF)a* I Ty — ol
+2((yV = uF)z*, xy — 2" + apu(Fz* — Fxy))]

< anlanlvVan — pFa* | + 201 = an7)[|(VV = pF)2* (|| Tyn — all
+2{(YV = pF)a”, wn — %) + 200 pkl|(YV — pF)a||[Jxn — 27[]].

Thus, by lim,, o o, = 0, (3.6]), and Step 4, we have

1i7rln_>s01ip Ula'n([in_(bn) < liTIln_>S£p or(l 1_ o) an|VV i, — pFz*|?
+2(1 = )|V = uF)o [Ty — o 59
+2((\ = pF)a* w0 — ) + 200tk (V — pF )| |20 — 2|
<0.
From , , and Lemma we have z,, — x* as n — oo. O

Remark 3.2. Several implicit rules can be deduced from our implicit rule (3.1]) as follows:

e For 7, =1 for all n € N, our algorithm (3.1]) reduces to

m el (3.10)
Tn+1 = Po [ozn’nyn + (I — anNF)T(ann +(1- 5n)$n+1)]«

For 7, = 0 for all n € N, our algorithm (3.1)) reduces to

n€C (3.11)
Tnt1 = Po [aanwn + (I - an,uF)T(,BnTmn +(1- ,Bn)xn+1)].

For 7, =1 and 8, = 3 for all n € N, our algorithm (3.1]) reduces to
2

xr1 € C,
3.12
{xn-i-l = FPc [annyxn + (I - O‘n:U’F)T(W#)] : ( )

For C = H, uF =1,V = f, a contraction mapping with coefficient § € (0,1), v = 1 and L = 6§ with
0<t<t= u(n — u%kQ), our algorithm (3.1)) reduces to

x € C,

Zn = o + (1 = )T (zn),

Ln+1 = Oénf(l'n) + (1 - O‘n)T(ﬁnzn + (1 - ﬁn)anrl)-

For C = H, uF = I, V = f, a contraction mapping with coefficient § € (0,1), v =1 and L = 6 with
0<b<t= u( — %,uk:Z), take 7, = 1 for all n € N. Then, our algorithm (3.1]) reduces to

7 €0, (3.13)
Tn+l1 = anf($n) + (1 - an)T(/ann + (1 - /Bn)xn—i—l)‘

The algorithm (3.13]) is studied by Ke and Ma [7].
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e For C = H, uF =1,V = f, a contraction mapping with coefficient 6 € (0,1), v = 1 and L = 0 with
0<f<T1= u(n — %MkQ), take v, = 1 and 8, = % for all n € N. Then, our algorithm (3.1]) reduces to

x1 € C,
3.14
{xn-&-l = Oénf(xn) + (1 - O‘n)T(L;nH) ( )

The algorithm (3.14)) is studied by Xu et al. [12].

Remark 3.3. Tterative algorithms (3.10) and (3.12) improve and extend the algorithms (3.13) and (3.14)),
respectively, in the following ways:

(a) The self-mapping f : C' — C' is extended to non-self-mapping V : C — H.
(b) The contraction coefficient k € (0,1) is extended to Lipschitzian constant L € [0, c0).

In particular, we derive the following interesting result.

Theorem 3.4. Let C' be a nonempty closed convex subset of a real Hilbert space H. Let F : C'— H be a
k-Lipschitzian and n-strongly monotone operator and 'V : C — H be an L-Lipschitzian mapping with L > 0.
Let T : C — C be a nonexpansive mapping with Fiz(T) # 0. Suppose that 0 < p < i—g and 0 < vL < T,
where 7 = 1—/1 — u(2n — pk?). For arbitrary x; € C, consider the sequence {z,,} in C generated by
and {an} and {Bn} are some sequences in (0,1) satisfying the conditions (i) and (ii) of Theorem[3.1] Then
the sequence {x,} converges strongly to x* € Fix(T), which is also the unique solution of the variational

inequality (3.2)).
Proof. The proof follows from Theorem by taking ~, = 0 for all n > 1. O

We now present the result of Ke and Ma [7, Theorem 3.1] as a corollary.

Corollary 3.5. Let C be a nonempty closed convexr subset of a real Hilbert space H and f : C' — C' be
a O-contraction mapping. Let T : C — C be a nonexpansive mapping with Fix(T) # 0. For arbitrary
x1 € C, consider the sequence {z,} in C generated by and {an} and {B,} are some sequences in
(0,1) satisfying the conditions (i) and (ii) of Theorem [3.1] Then the sequence {x,} converges strongly to
x* € Fix(T), which is also the unique solution of the variational inequality:

(I—f)z",a* —x) <0, forallz e Fix(T).

Proof. The proof follows from Theorem by taking C = H, uFF = I and V = f, a contraction mapping
with coefficient § € (0,1), y=1and L=0 with0 <0 <71 = ,u(n — %ukZ), and v, =1 for all n € N. O
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