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Abstract

In this paper, we consider a problem that consists of finding a common solution to quasi variational
inclusion and fixed point problems. We first present a simple proof to the strong convergence theorem
established by Zhang et al. recently. Next, we propose a new algorithm to solve such a problem. Under
some mild conditions, we establish the strong convergence of iterative sequence of the proposed algorithm.
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1. Introduction

In this paper, we consider a quasi variational inequality problem that requires to find a point u ∈ H so
that

θ ∈ A(u) +M(u), (1.1)

where H is a real Hilbert space, A : H → H is a single-valued mapping and M : H → 2H is a multi-valued
mapping. The solution set of problem (1.1) is denoted by V I(H, A,M). We recall one of special cases of
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such problem. If M = ∂δC with C a nonempty closed convex subset of H, and δC : H → [0,+∞] is the
indicator function of C, that is,

δC(x) =

{
0, x ∈ C,
+∞, x 6∈ C.

In this case, problem (1.1) is reduced to finding a point u so that

〈A(u), v − u〉 ≥ 0, ∀v ∈ C, (1.2)

which is called Hartman-Stampacchia variational inequality problem. A fixed point problem requires to find
a point u so that

Su = u, (1.3)

where S : H → H is a nonlinear mapping. The set of fixed points of S is denoted by F (S).
Takahashi and Toyoda [6] considered the problem for finding a common solution to Hartman-Stampacchia

variational inequality problem (1.2) and fixed point problem (1.3), that is, find a point u such that

u ∈ F (S) and 〈A(u), v − u〉 ≥ 0, ∀v ∈ C. (1.4)

Since then much efforts have gone into constructing algorithms to solve such a problem; see e.g., [3, 5, 6, 10]
and references therein. Recently, Zhang et al. [11] considered a problem to find a common solution of
problems (1.1) and (1.3), that is, find a point u such that

u ∈ F (S) ∩ V I(H, A,M). (1.5)

It is obvious that problem (1.5) is an extension of the problem (1.4) considered by Takahashi and Toyoda
[6]. In [11], Zhang et al. constructed an algorithm, which generates a sequence (xn) by

x0 = x ∈ H,
yn = JM,λ(xn − λAxn),
xn+1 = αnx+ (1− αn)Syn,

(1.6)

where JM,λ is the resolvent related to M with λ a positive constant. Under some certain assumptions, they
proved the sequence (xn) generated by (1.6) converges in norm to a solution of problem (1.5).

The aim of this paper is to introduce some new iterative algorithms to solve problem (1.5). We first prove
the strong convergence of algorithm (1.6) by employing a new simple proof. Some other iterative schemes
to approximate the solution of problem (1.5) are proposed and also the strong convergence properties for
these new algorithms are proved.

2. Preliminaries

Throughout this paper, I denotes the identity operator on H, “→” strong convergence, “⇀” weak
convergence, and ωw(xn) the set of weak cluster points of the sequence (xn). Let PC denote the projection
from H onto a nonempty closed convex subset C of H, that is,

PCx = arg min
y∈C

‖x− y‖, x ∈ H.

It is well-known that PCx is characterized by the inequality:

〈x− PCx, c− PCx〉 ≤ 0, c ∈ C. (2.1)

Let T be a mapping defined on H. Recall that T is contractive if there is a κ ∈ (0, 1) so that ‖Tx−Ty‖ ≤
κ‖x − y‖ for any x, y ∈ H; and nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for any x, y ∈ H. The fixed point
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problem (1.3) for the nonexpansive mapping has been widely investigated and studied. There are two
iterative schemes with strong convergence for approximating a fixed point of a nonexpansive mapping. One
is the Halpern iteration, which generates an iterative sequence by

xn+1 = αnx+ (1− αn)Sxn, x ∈ H. (2.2)

This iteration is originally constructed by Halpern [2] and further studied by Wittmann [7] and Xu [8]. It
is well-known that if F (S) 6= ∅, then the sequence (xn) generated by (2.2) converges strongly to PF (S)x,
whenever (αn) is a sequence in (0, 1) satisfying the following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=0 αn =∞;

(C2) either
∑∞

n=0 |αn+1 − αn| <∞ or limn→∞ |αn+1 − αn|/αn = 0.

Another is viscosity approximation method, which generates an iterative sequence by

xn+1 = αnf(xn) + (1− αn)Sxn, x ∈ H, (2.3)

where f is a contraction. This iteration is originally proposed by Moudafi [4] and further studied by Xu [9].
It is well-known that if F (S) 6= ∅, then the sequence (xn) generated by (2.3) converges in norm to PF (S)f .

A mapping T is called ν-averaged if there exist a constant ν ∈ (0, 1) and a nonexpansive mapping S
such that T = (1− ν)I + νS; and ν-inverse strongly monotone (ν-ism) if there is a constant ν > 0 such that
〈Tx − Ty, x − y〉 ≥ ν‖Tx − Ty‖2 for any x, y ∈ H. The following lemma collects some useful properties of
averaged and inverse-strongly mappings.

Lemma 2.1 ([1]). The following assertions hold.

(i) T is averaged if and only if I − T is ν-ism for some ν > 1/2;

(ii) The composition of two averaged mappings is also averaged;

(iii) If T is ν-ism with ν > 0 and if λ > 0, then λT is (ν/λ)-ism;

(iv) If T is 1-ism with ν > 0, then it is averaged;

(v) If T is ν-averaged with ν ∈ (0, 1), there holds the inequality:

‖Tx− z‖2 ≤ ‖x− z‖2 − 1− ν
ν
‖Tx− x‖2,

where x ∈ H and z ∈ F (T ).

Let M : H → 2H be a multi-valued maximal monotone mapping. Then the mapping JM,λ defined by

JM,λ(u) = (I + λM)−1(u), u ∈ H,

is called the resolvent operator associated with M , where λ is any given positive constant. The mapping
JM,λ has the following properties:

Lemma 2.2. Let A be α-ism and let λ ∈ (0, 2α). Then the following assertions hold.

(i) JM,λ is single-valued and 1-ism;

(ii) V I(H, A,M) = F (JM,λ(I − λA));

(iii) JM,λ(I − λA) is averaged.

Proof. Assertions (i) and (ii) are proved in [11]. Since A is α-ism, λA is α/λ-ism (Lemma 2.1 (iii)). It is easy
to check that α/λ > 1/2, and hence by Lemma 2.1 (i), I − λA is averaged. Since JM,λ is 1-ism, then it is
also averaged (Lemma 2.1 (iv)) and therefore by Lemma 2.1 (ii), the composition JM,λ(I −λA) is averaged,
too.

The following lemmas will be used in the subsequent section.
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Lemma 2.3 (demiclosedness principle). Let T : H → H be a nonexpansive mapping with F (T ) 6= ∅. If (xn)
is a sequence in H so that xn ⇀ x and (I − T )xn → 0, then x ∈ F (T ).

Lemma 2.4 ([8]). Let (an) be a nonnegative real sequence satisfying

an+1 ≤ (1− αn)an + αnµn,

where the sequences (αn) ⊂ (0, 1) and (µn) satisfy the conditions:

(i)
∑∞

n=0 αn =∞, limn→∞ αn = 0;

(ii) either
∑∞

n=0 |αnµn| <∞ or limn→∞ µn ≤ 0.

Then limn→∞ an = 0.

3. Main results

In this section we first give a simple proof of [11, Theorem 2.1]. The key of the proof is the following
lemma.

Lemma 3.1. Let A be a nonexpansive operator and B a ν-averaged operator. If F (A) ∩ F (B) 6= ∅, then
F (A) ∩ F (B) = F (AB).

Proof. It is obvious that F (A)∩F (B) ⊆ F (AB). To see the converse, let x ∈ F (AB). Since F (A)∩F (B) 6= ∅,
we can pick u ∈ F (A) ∩ F (B). Hence

‖x− u‖2 +
1− ν
ν
‖Bx− x‖2 = ‖A(Bx)− u‖2 +

1− ν
ν
‖Bx− x‖2

= ‖A(Bx)−Au‖2 +
1− ν
ν
‖Bx− x‖2

≤ ‖Bx− u‖2 +
1− ν
ν
‖Bx− x‖2

≤ ‖x− u‖2,

where the last inequality follows from Lemma 2.1 (v). This implies that ‖Bx − x‖ ≤ 0, or equivalently,
Bx = x and further

x = A(Bx) = Ax.

Altogether we get the result as desired.

Remark 3.2. In [1], Byrne proved that if A and B are averaged and if F (A)∩F (B) 6= ∅, then the intersection
F (A) ∩ F (B) and F (AB) are coincident. So our result is an extension of this assertion.

Theorem 3.3. Let A : H → H be α-ism with α > 0, M : H → 2H a maximal monotone mapping, and
S : H → H a nonexpansive mapping. If (αn) is chosen in (0, 1) so that the conditions (C1) and (C2) are
satisfied, then the sequence (xn) generated by (1.6) converges strongly to x∗ = PF (S)∩V I(H,A,M)x, whenever
F (S) ∩ V I(H, A,M) 6= ∅.

Proof. Set T = SJM,λ(I − λA). Since S and JM,λ(I − λA) are both nonexpansive, the operator T is
nonexpansive, too. Thus algorithm (1.6) has the following form:

xn+1 = αnx+ (1− αn)Txn,

which is a standard iterative scheme of Halpern iteration. Since JM,λ(I − λA) is averaged, it follows from
Lemmas 3.1 and 2.2 that

F (T ) = F (S) ∩ V I(H, A,M) 6= ∅.

The sequence (xn) therefore converges in norm to PF (S)∩V I(H,A,M)x.
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Remark 3.4. Here we choose λ ∈ (0, 2α), while it is assumed that λ ∈ (0, 2α] in [11]. We show that λ can
not be equal to 2α. In fact, it is proved in [11, page 577, line 11]

(1− αn)λ(2α− λ)‖Axn −Au‖2 → 0, as n→∞,

from which they obtained ‖Axn −Au‖ → 0 as n→∞. So, if λ = 2α, one can not deduce ‖Axn −Au‖ → 0
as n→∞.

Theorem 3.5. Let A : H → H be α-ism with α > 0, M : H → 2H a maximal monotone mapping and
S : H → H a nonexpansive mapping. Choose λ ∈ (0, 2α) and define a sequence (xn) by the iterative
procedure: 

x0 = x ∈ H,
yn = JM,λ(xn − λAxn),
xn+1 = S(αnx+ (1− αn)yn).

(3.1)

If (αn) is chosen in (0, 1) so that the conditions (C1) and (C2) are satisfied, then the sequence (xn) generated
by (3.1) converges strongly to x∗ = PF (S)∩V I(H,A,M)x, whenever F (S) ∩ V I(H, A,M) 6= ∅.

Proof. Take u ∈ F (S) ∩ V I(H, A,M). We divide our proof into several steps.

Step 1. The sequence (xn) is bounded.
Since JM,λ(I − λA) is nonexpansive, we have

‖yn − u‖ = ‖JM,λ(I − λA)xn − u‖ ≤ ‖x− u‖,

which implies that

‖xn+1 − u‖ ≤ ‖αnx+ (1− αn)yn − u‖
≤ αn‖x− u‖+ (1− αn)‖xn − u‖
≤ max{‖x− u‖, ‖xn − u‖}
...

≤ max{‖x0 − u‖, ‖x− u‖} = ‖x− u‖.

This shows (xn) is bounded and so is (yn).

Step 2. limn→∞ ‖yn − xn‖ = 0.
It follows from (3.1) that

‖yn − yn−1‖ = ‖JM,λ(I − λA)xn − JM,λ(I − λA)xn−1‖ ≤ ‖xn − xn−1‖,

and also that

‖xn+1 − xn‖ ≤ ‖[αnx+ (1− αn)yn]− [αn−1x+ (1− αn−1)yn−1]‖
= ‖(αn − αn−1)(x− yn−1) + (1− αn)(yn − yn−1)‖
≤ |αn − αn−1|‖x− yn−1‖+ (1− αn)‖xn − xn−1‖
≤M |αn − αn−1|+ (1− αn)‖xn − xn−1‖,

(3.2)

where M = (‖x‖+ supn≥0 ‖yn‖). By virtue of conditions (C1) and (C2), we can apply Lemma 2.4 to (3.2)
to obtain xn+1 − xn → 0. Consequently, we also have

lim
n→∞

‖xn − yn‖ = 0. (3.3)
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In fact, since JM,λ(I − λA) is averaged, we may assume that it is κ-averaged for some κ ∈ (0, 1). Then it
follows from Lemma 2.1 (v) that

‖xn+1 − u‖2 ≤ ‖αnx+ (1− αn)yn − u‖2

≤ αn‖x− u‖2 + (1− αn)‖yn − u‖2

≤ αn‖x− u‖2 + ‖JM,λ(I − λA)xn − u‖2

≤ αn‖x− u‖2 + ‖xn − u‖2 −
1− κ
κ
‖JM,λ(I − λA)xn − xn‖2

= αn‖x− u‖2 + ‖xn − u‖2 −
1− κ
κ
‖yn − xn‖2.

Letting L = 2 supn≥0 ‖xn‖, we get

1− κ
κ
‖yn − xn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 + αn‖x− u‖2

≤ L‖xn − xn+1‖+ αn,
(3.4)

and therefore (3.3) follows from (3.4) by tending n→∞.

Step 3. If z ∈ ωw(xn), then z ∈ F (S) ∩ V I(H, A,M).
To see this, we set zn = αnx+ (1− αn)yn. Then we conclude that

‖xn − zn‖ ≤ ‖xn − yn‖+ ‖yn − zn‖ = ‖xn − yn‖+ αn‖x− yn‖ → 0, as n→∞,

which further gives that

‖Szn − zn‖ ≤ ‖xn+1 − xn‖+ ‖xn − zn‖ → 0, as n→∞.

Take a subsequence (xnk
) of (xn) such that xnk

⇀ z; hence xnk
⇀ z. By Lemma 2.3, we have z ∈ F (S).

Since

‖JM,λ(I − λA)xn − xn‖ = ‖yn − xn‖ → 0, as n→∞,

we get, by using Lemma 2.3 again, z ∈ F (JM,λVβ) = V I(H, A,M).

Step 4. xn → x∗ := PF (S)∩V I(H,A,M)x.
It follows from the definition of x∗ that

‖xn+1 − x∗‖2 ≤ ‖αnx+ (1− αn)yn − x∗‖2

= (1− αn)2‖yn − x∗‖2 + α2
n‖x− x∗‖2 + 2αn(1− αn)〈yn − x∗, x− x∗〉

≤ (1− αn)‖xn − x∗‖2 + α2
n‖x− x∗‖2 + 2αn(1− αn)〈yn − x∗, x− x∗〉

= (1− αn)‖xn − x∗‖2 + α2
n‖x− x∗‖2 + 2αn(1− αn)〈xn − x∗, x− x∗〉.

In view of Lemma 2.4, if we show that

lim
n→∞

〈xn − x∗, x− x∗〉 ≤ 0,

then the proof is finished. To this end, let (xnk
) be a subsequence of (xn) converging weakly to z and

lim
n→∞

〈xn − x∗, x− x∗〉 = lim
k→∞
〈xnk

− x∗, x− x∗〉.

By Step 3, z ∈ F (S) ∩ V I(H, A,M). This together with (2.1) and x∗ := PF (S)∩V I(H,A,M)x implies that

lim
n→∞

〈xn − x∗, x− x∗〉 = 〈z − x∗, x− x∗〉 ≤ 0,

which is the result as desired.
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Analogously, by using the viscosity approximation method, one can easily get some other algorithms for
approximating a solution to problem (1.5).

Theorem 3.6. Let A : H → H be α-ism with α > 0, M : H → 2H a maximal monotone mapping,
f : H → H a contractive mapping, and S : H → H a nonexpansive mapping. Choose λ ∈ (0, 2α) and define
a sequence (xn) by the iterative procedure:

x0 = x ∈ H,
yn = JM,λ(xn − λAxn),
xn+1 = αnf(xn) + (1− αn)Syn.

(3.5)

If (αn) is chosen in (0, 1) so that conditions (C1) and (C2) are satisfied, then the sequence (xn) generated
by (3.5) converges strongly to x∗ = PF (S)∩V I(H,A,M)f , whenever F (S) ∩ V I(H, A,M) 6= ∅.

Theorem 3.7. Let A : H → H be α-ism with α > 0, M : H → 2H a maximal monotone mapping,
f : H → H a contractive mapping, and S : H → H a nonexpansive mapping. Choose λ ∈ (0, 2α) and define
a sequence (xn) by the iterative procedure:

x0 = x ∈ H,
yn = JM,λ(xn − λAxn),
xn+1 = S[αnf(xn) + (1− αn)yn].

(3.6)

If (αn) is chosen in (0, 1) so that the conditions (C1) and (C2) are satisfied, then the sequence (xn) generated
by (3.6) converges strongly to x∗ = PF (S)∩V I(H,A,M)f, whenever F (S) ∩ V I(H, A,M) 6= ∅.
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