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Abstract

This paper considers the H∞ state estimation problem of static neural networks with interval time-
varying delay. By constructing a suitable Lyapunov-Krasovskii functional, the single-integral and double-
integral terms in the time derivative of the Lyapunov functional are handled by utilizing the inverses of
first-order and squared reciprocally convex parameters techniques. An improved delay dependent criterion
is established such that the error system is globally asymptotically stable with H∞ performance. The desired
estimator gain matrix and the optimal performance index are obtained via solving a convex optimization
problem subject to linear matrix inequalities. Two numerical examples are given to illustrate the effectiveness
of the proposed method. c©2016 all rights reserved.
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1. Introduction

In recent years, neural networks have been gaining increasing research attention because of their extensive
applications in many areas such as reconstruction of moving image, signal processing, the tasks of pattern
recognition, associative memories, fixed-point computations, and so on [6, 8, 24]. It is well-known that
due to the finite speed limit of information processing and the inherent communication time of neurons,
time delay is usually encountered in the implementation of networks. The manifestation of time delay in
neurons may lead to undesirable dynamic network behaviors such as oscillation, instability or other poor
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performances. As a result, numerous results about stability analysis, synchronization and state estimation
for neural networks with time delay have been reported [2, 4, 5, 13, 14, 17, 21, 25, 30–32, 36, 37].

On the other hand, based on the difference of choosing the local field states of neurons or the neuron
states as basic variables, neural networks can be classified as local field neural networks or static neural
networks [34]. Since a static neural network can be transferred equivalently to a local field neural network
in the case of satisfying certain assumptions, more attention has been drawn to local field neural networks.
However, in many applications, these assumptions cannot always be satisfied [19]. Thus, it is necessary to
investigate static neural networks, the corresponding results for static neural networks are relatively few
[7, 11, 12, 15, 18, 26, 33, 35]. In addition, in [11, 12] the foregoing stability criteria for static neural networks
with time-varying delay are only applied into the case when the lower bound of the delay is zero. In fact,
there exists a special type of time delay in practical engineering systems, i.e., interval time-varying delay
h1 ≤ h(t) ≤ h2 and h1 is not restricted to be zero, which commonly exists in networked control systems.

In general, a neural network is a highly interconnected network with a large number of neurons. As
described in [12], the neuron states are not often completely available in the network output, it is usually
the case that only partial information about the states of the nodes is available in the network outputs.
Therefore, in order to understand the network behavior better, the neural state estimation problem has been
gaining considerable amount of interest in recent years. For example, in [29], the authors first investigated
the state estimation problem and derived some delay-independent state estimation conditions. In [10], the
authors discussed the delay dependent state estimation problem for delayed static neural network by a delay
partition approach. Further, Zhang and Yu [38] studied the issue of the exponential state estimation for
Markovian jumping neural networks with time varying discrete and distributed delays. Mathiyalagan et
al. [22] investigated the problem of robust exponential stability and H∞ control for switched neutral-type
neural networks. Vadivel et al. [28] addressed the issue of robust state estimation for a class of fuzzy
neural networks with time-varying delays and parameter uncertainties. Besides, when designing a neural
network or implementing it by VLSI in practice, the energy-to-energy gain from exogenous disturbances to
the estimation error may be restricted less than a prescribed level. Therefore, the H∞ state estimation is
another important issue and has been investigated by some researchers [1, 7, 9, 11, 12, 16, 20].

Among the existing results, for the purpose of conservative reduction, many techniques such as free
weighting matrix, delay decomposition and Jensen’s integral inequalities have been employed in terms of
linear matrix inequalities (LMIs). However, a few disadvantages of these research works still need to be
concerned. When constructing the Lyapunov-Krasovskii functional, most of the developed approaches in
those do not make full use of the information about the time-varying delay h(t) and only consider the upper
bound of the delay. In addition, the previous convex method also only applies the inverses of first-order
technique to tackle the time-varying delay. Therefore, it remains a space to further improve the results
reported in [1, 7, 9, 11, 12, 16, 20], which motivates this work.

In this paper, we focus on the H∞ state estimation problem for delayed neural networks. The purpose
of the problem is to design an H∞ state estimator via the available output measurements such that the
dynamics of the estimation errors system is asymptotically stable, and with a prescribed H∞ noise attenu-
ation level. The main contributions of this paper are listed as follows: First, much better performance can
be achieved by the developed approach, which is benefited from the proposed the inverses of first-order and
squared reciprocally convex parameters techniques. Second, compared with existing relevant results, the
criteria in this paper not only lead to less conservative H∞ state estimation conditions, but also have smaller
computational burden since our theoretical proof is not concerned with any delay-decomposing method or
free-weighting matrix method. As a result, the gain matrix of the state estimator and the optimal perfor-
mance index can be simultaneously obtained by solving a convex optimization problem under the constraint
of LMIs. In addition, for simplicity, the distributed delay is not considered in this paper. However, it is not
difficult to extend the proposed approach to the H∞ state estimation of static neural networks with both
discrete and distributed delays [16]. Two numerical examples are given to illustrate the effectiveness of the
proposed method.

Notation: In this presentation, the following notations will be used. <n denotes the n-dimensional
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Euclidean vector space, and <m×n is the set of all m × n real matrix. ∗ denotes the symmetric part. For
symmetric matrices X and Y , X > Y means that the matrix X − Y is positive definite, whereas X ≥ Y
means that the matrix X − Y is nonnegative. In, 0n and 0m×n denote n × n identity matrix, n × n and
m × n zero matrices, respectively. X⊥ denotes a basis for the null-space of X. col {x1, x2, . . . , xn} means
[xT1 , x

T
2 , . . . , x

T
n ]T . The subscript ′T ′ represents the transpose, and diag{· · · } denotes the block diagonal

matrix. For any matrix X, Sym {X} means X + XT . X[f(t)] ∈ <m×n means that the elements of matrix
X[f(t)] include the scalar value of f(t), i.e., X[f0] = X[f(t)=f0].

2. Preliminaries

Consider the following static neural network with interval time-varying delay:
ẋ(t) = −Ax(t) + g(Wx(t− h(t)) + I) +B1ω(t),

y(t) = Cx(t) +Dx(t− h(t)) +B2ω(t),

z(t) = Hx(t),

x(t) = ϕ(t), ∀t ∈ [−h2, 0],

(2.1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ <n denotes the neuron state vector, n is the number of neu-
rons, ω(t) ∈ <q is a noise disturbance belonging to `2[0,∞), y(t) ∈ <m is the network measurement,
and z(t) ∈ <p, to be estimated, is a linear combination of the states. A = diag{a1, a2, . . . , an} ∈ <n×n
with ai > 0, i = 1, 2, . . . , n is a positive diagonal matrix, W is the delayed interconnection weight ma-
trix, and B1, B2, C, D and H are known real constant matrices with appropriate dimensions. g(x(t)) =
[g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]T ∈ <n is a continuous activation function, I = [I1, I2, . . . , In]T is constant
input vector, and ϕ(t) is an initial condition defined on [−h2, 0]. h(t) denotes the interval time-varying delay
which satisfies

h1 ≤ h(t) ≤ h2, h12 = h2 − h1, ḣ(t) ≤ u,
where h1 and h2 are known positive scalars, and u is a constant.

In addition, it is assumed that each neuron activation function in (2.1), gi(·), i = 1, 2, . . . , n, satisfies the
following condition:

Assumption 2.1. The neuron activation functions gi(·), i = 1, 2, . . . , n are continuous, bounded and satisfy

k−i ≤
gi(s1)− gi(s2)

s1 − s2
≤ k+

i , ∀s1, s2 ∈ <, s1 6= s2,

where k−i and k+
i are known real constants.

As mentioned before, the major objective of this paper is to present an efficient algorithm to deal with
the H∞ state estimation problem of the static neural networks (2.1). Now we consider the following state
estimator for the neural networks (2.1):

˙̂x(t) = −Ax̂(t) + g(Wx̂(t− h(t)) + I) + L(y(t)− Cx̂(t)−Dx̂(t− h(t))),

ẑ(t) = Hx̂(t),

x(t) = 0, ∀t ∈ [−h2, 0],

(2.2)

where x̂(t) ∈ <n denotes the estimated state, and ẑ(t) ∈ <q denotes the estimated measurements of z(t). L
is the estimator gain matrix to be determined.

Let the error signals be e(t) = x(t) − x̂(t) and z̄(t) = z(t) − ẑ(t). Then from (2.1) and (2.2), we easily
obtain the error system as follows:{

ė(t) = −(A+ LC)e(t)− LDe(t− h(t)) + f(We(t− h(t))) + (B1 − LB2)ω(t),

z̄(t) = He(t),
(2.3)

where e(t) = [e1(t), e2(t), . . . , en(t)]T ∈ <n is the state vector of the transformed system and f(We(t)) =
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g(Wx(t) + I)− g(Wx̂(t) + I).
The H∞ performance state estimation problem is stated as follows. For a prescribed level γ > 0 of noise

attenuation, it is to find a suitable state estimator (2.2) such that:

(1) the estimation error system (2.3) with ω(t) ≡ 0 is globally asymptotically stable;

(2) under the zero-initial condition, ||z̄||2 < γ||ω||2 holds for all nonzero ω(t) ∈ `2[0,∞), where ||z̄||2 =√∫∞
0 ||z̄(t)||2dt and ||ω̄||2 =

√∫∞
0 ||ω̄(t)||2dt.

Now, any of the following lemmas will play an important role in the derivation of the main results.

Lemma 2.1 (Park et al.[23]). Let f1, f2, · · ·, fN : <m −→ < have positive values in an open subset D of
Rm. Then, the reciprocally convex combination of fi over D satisfies

min
{ai|ai>0,

∑
i
ai=1}

∑
i

1

ai
fi(t) =

∑
i

fi(t) + max
gi,j(t)

∑
i 6=j

gi,j(t),

subject to

{gi,j : Rm −→ R, gi,j(t) , gi,j(t),

[
fi(t) gi,j(t)
gi,j(t) fi(t)

]
≥ 0}.

Lemma 2.2 (Schur complement, Boyd et al. [3]). Let M , P , Q be given matrices such that Q > 0, then[
P MT

∗ −Q

]
< 0⇔ P +MTQ−1M < 0.

Lemma 2.3 (Tian et al. [27]). Ξ1, Ξ2 and Ξ are constant matrices of appropriate dimensions and 0 ≤ h1 ≤
h(t) ≤ h2, then

(h(t)− h1)Ξ1 + (h2 − h(t))Ξ2 + Ξ < 0,

if and only if
(h2 − h1)Ξ1 + Ξ < 0 and (h2 − h1)Ξ2 + Ξ < 0.

3. Main results

Theorem 3.1. For given scalars 0 < h1 < h2 and u, matrices K1 = diag{k−1 , . . . , k−n }, and K2 =
diag{k+

1 , . . . , k
+
n }, the H∞ performance state estimation problem is solvable if there exist positive define ma-

trices P = [Pij ]5×5, Q = [Qij ]3×3, M = [Mij ]3×3, R = [Rij ]3×3, X1, X2, S1, S2, U1, U2, Z1, Z2, positive di-
agonal matrices ∆i(i = 1, 2, . . . , 4), Λi = diag(λi1, . . . , λin), i = 1, 2, . . . , 6, and matrices Tk(k = 1, 2, . . . , 6),
N , G with appropriate dimensions such that the following LMIs hold:

 Ξ∗
[h(t)=h1]

B̂ Ĥ

∗ −γ2I 0
∗ ∗ −I

 < 0, (3.1)

 Ξ∗
[h(t)=h2]

B̂ Ĥ

∗ −γ2I 0
∗ ∗ −I

 < 0, (3.2)


2Z1 0 T1 0
∗ Z1 0 T2

∗ ∗ 2Z1 0
∗ ∗ ∗ Z1

 > 0,


2Z2 0 T3 0
∗ Z2 0 T4

∗ ∗ 2Z2 0
∗ ∗ ∗ Z2

 > 0, (3.3)
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[
S1 T5

∗ S1

]
> 0,

[
S2 +

h212
2 Z1 T6

∗ S2 +
h212
2 Z2

]
> 0, (3.4)

where

Ξ∗[h(t)=h1] = Ξ−ΨT
1[h1]Ξ1Ψ1[h1] −ΨT

2[h1]Ξ2Ψ2[h1],

Ξ∗[h(t)=h2] = Ξ−ΨT
1[h2]Ξ2Ψ1[h2] −ΨT

2[h2]Ξ2Ψ2[h2],

Ξ =

[
[Eij ]7×7 Π
∗ Φ

]
,

[Eij ]7×7 =



E11 −GD E13 E14 0 P12 P13

∗ E22 E23 E24 E25 0 0
∗ ∗ E33 E34 0 E36 P23

∗ ∗ ∗ E44 0 PT
23 E47

∗ ∗ ∗ ∗ E55 0 0
∗ ∗ ∗ ∗ ∗ E66 0
∗ ∗ ∗ ∗ ∗ ∗ −R22


,

with

E11 = −P11A−ATP11 + P14 + P T14 +M11 + h2
1X1 −X2 + h2

12S1 − h2
1U1

− 2W TK1∆1K2W −NA−GC −ANT − CTGT ,
E13 = −P14 + P15 −ATP12 + P T24 +X2, E14 = −P15 −ATP13 + P T34,

E22 = −(1− u)Q11 − 2S2 + T6 + T T6 − 2W TK1∆2K2W,

E23 = S2 − T T6 , E24 = −T6 + S2, E25 = −(1− u)Q12,

E33 = −P24 − P T24 + P25 + P T25 +Q11 −M11 +R11 −X2 − h2
1U2 − S2 − 2W TK1∆3K2W,

E34 = −P25 − P T34 + P T35 + T6,

E36 = P22 +Q12 −W TK1Λ3W +W TK2Λ4W −M12 +R12,

E44 = −P35 − P T35 −R11 − S2 − 2K1W
T∆4K2W,

E47 = P33 −R12 −W TK1Λ5W +W TK2Λ6W,

E55 = −(1− u)Q22, E66 = Q22 −M22 +R22,

Π =



Π11 Π12 Π13 0 Π15 Π16 Π17 Π18

0 Π22 0 0 0 0 0 Π28

Π31 Π32 Π33 0 Π35 Π36 Π37 0
0 Π42 0 Π44 −PT

45 −P55 −P55 0
0 Π52 0 0 0 0 0 0
0 0 Π63 0 P24 P25 P25 0
0 0 0 Π74 P34 P35 P35 0


,

Π11 = M13 +W TK2∆1 +W TK1∆1, Π12 = P11 +N,

Π15 = −ATP14 + P44 + h1U1, Π16 = −ATP15 + P45, Π17 = −ATP15 + P45,

Π18 = M12 −W TK1Λ1W +W TK2Λ2W −N −ANT − CTGT ,
Π22 = −(1− u)Q13 +W TK2∆2 +W TK1∆2, Π28 = −DTGT ,

Π32 = P T12, Π33 = Q13 −M13 +R13 +W TK1∆3 +W TK2∆3,

Π35 = −P44 + P T45 + h1U2, Π36 = −P45 + P55, Π37 = −P45 + P55,

Π42 = P T13, Π44 = W TK2∆4 +W TK1∆4 −R13, Π52 = −(1− u)Q23,

Π63 = Q23 −M23 +R23 +W TΛ3 −W TΛ4,

Π74 = −R23 +W TΛ5 −W TΛ6,
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Φ =



Φ11 0 0 0 0 0 0 Φ18

∗ Φ22 0 0 P14 P15 P15 NT

∗ ∗ Φ33 0 0 0 0 0
∗ ∗ ∗ Φ44 0 0 0 0
∗ ∗ ∗ ∗ Φ55 0 0 0
∗ ∗ ∗ ∗ ∗ −S1 −T5 0
∗ ∗ ∗ ∗ ∗ ∗ −S1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88


,

Φ11 = M33 − 2∆1, Φ18 = MT
23 + Λ1W − Λ2W, Φ22 = −(1− u)Q33 − 2∆2,

Φ33 = Q33 −M33 +R33 − 2∆3, Φ44 = −R33 − 2∆4, Φ55 = −X1 − U1 − U2,

Φ88 = M22 + h2
1X2 + h2

12S2 +
h4

1

4
(U1 + U2) +

h4
12

4
(Z1 + Z2)−N −NT ,

Ξ1 =

[
Z1 T1 + T2

∗ Z1

]
, Ξ2 =

[
Z2 T3 + T4

∗ Z2

]
,

Ψ1[h(t)=h1] =

[
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n 0n
0n h12In 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n

]
,

Ψ1[h(t)=h2] =

[
0n 0n h12In 0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n 0n
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n

]
,

Ψ2[h(t)=h1] =

[
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n 0n
0n 0n 0n −h12In 0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n

]
,

Ψ2[h(t)=h2] =

[
0n −h12In 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n 0n
0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n

]
,

B̂ = col[(NB1 −GB2)T 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n (NB1 −GB2)T ],

Ĥ = col[HT 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n.

Furthermore, the gain matrix L is designed as L = N−1G.

Proof. The proof is divided into two parts. We first show that (2.3) holds for all nonzero ω(t) under zero-
initial conditions. Then, the globally asymptotical stability of the error system (2.3) with ω(t) = 0 will be
proven. Consider the Lyapunov functional candidate as follows:

V (et) =
10∑
i=1

Vi(et),

V1(et) = ηT1 (t)Pη1(t) + 2
n∑
i=1

[λ1i

∫ Wie(t)

0
(fi(s)− k−i s)ds+ λ2i

∫ Wie(t)

0
(k+
i s− fi(s))ds]

+ 2

n∑
i=1

[λ3i

∫ Wie(t−h1)

0
(fi(s)− k−i s)ds+ λ4i

∫ Wie(t−h1)

0
(k+
i s− fi(s))ds]

+ 2
n∑
i=1

[λ5i

∫ Wie(t−h2)

0
(fi(s)− k−i s)ds+ λ6i

∫ Wie(t−h2)

0
(k+
i s− fi(s))ds],

V2(et) =

∫ t−h1

t−h(t)
ηT2 (s)Qη2(s)ds+

∫ t

t−h1
ηT2 (s)Mη2(s)ds+

∫ t−h1

t−h2
ηT2 (s)Rη2(s)ds,

V3(et) = h1

∫ 0

−h1

∫ t

t+β
eT (s)X1e(s)dsdβ,

V4(et) = h12

∫ −h1
−h2

∫ t

t+β
eT (s)S1e(s)dsdβ,
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V5(et) = h1

∫ 0

−h1

∫ t

t+β
ėT (s)X2ė(s)dsdβ,

V6(et) = h12

∫ −h1
−h2

∫ t

t+β
ėT (s)S2ė(s)dsdβ,

V7(et) =
h2

1

2

∫ 0

−h1

∫ 0

r

∫ t

t+β
ėT (s)U1ė(s)dsdβdr, (3.5)

V8(et) =
h2

1

2

∫ 0

−h1

∫ r

−h1

∫ t

t+β
ėT (s)U2ė(s)dsdβdr,

V9(et) =
h2

12

2

∫ −h1
−h2

∫ −h1
r

∫ t

t+β
ėT (s)Z1ė(s)dsdβdr,

V10(et) =
h2

12

2

∫ −h1
−h2

∫ r

−h2

∫ t

t+β
ėT (s)Z2ė(s)dsdβdr,

where η1(t) = col{e(t), e(t − h1), e(t − h2),
∫ t
t−h1 x(s)ds,

∫ t−h1
t−h2 e(s)ds} and η2(t) = col{e(t), ė(t), f(We(t))}.

Letting α = (h(t) − h1)/h12, β = (h2 − h(t))/h12 and the time derivative of V (et) along the trajectory of
system (2.3) is given by

V̇1(et) =2ζT (t)P ζ̇(t) + 2[f(We(t))−K1We(t)]TΛ1Wė(t) + 2[K2We(t)− f(We(t))]TΛ2

Wė(t) + 2[f(We(t− h1))−K1We(t− h1)]TΛ3Wė(t− h1) + 2[K2We(t− h1)

− f(We(t− h1))]TΛ4Wė(t− h1) + 2[f(We(t− h2))−K1We(t− h2)]TΛ5Wė(t− h2)

+ 2[K2We(t− h2)− f(We(t− h2))]TΛ6Wė(t− h2),

(3.6)

V̇2(et) =ηT2 (t− h1)Qη2(t− h1)− (1− ḣ(t))ηT2 (t− h(t))Qη2(t− h(t))

+ ηT2 (t)Mη2(t)− ηT2 (t− h1)Mη2(t− h1)

+ ηT2 (t− h1)Rη2(t− h1)− ηT2 (t− h2)Rη2(t− h2),

(3.7)

V̇3(et) ≤ h2
1e
T (t)X1e(t)−

∫ t

t−h1
eT (s)dsX1

∫ t

t−h1
e(s)ds, (3.8)

V̇4(et) = h2
12e

T (t)S1e(t)− h12

∫ t−h1

t−h(t)
eT (s)S1e(s)ds− h12

∫ t−h(t)

t−h2
eT (s)S1e(s)ds

≤ h2
12e

T (t)S1e(t)−
1

α

∫ t−h1

t−h(t)
eT (s)dsS1

∫ t−h1

t−h(t)
e(s)ds

− 1

β

∫ t−h(t)

t−h2
eT (s)dsS1

∫ t−h(t)

t−h2
e(s)ds,

(3.9)

V̇5(et) ≤ h2
1ė
T (t)X2ė(t)−

∫ t

t−h1
ėT (s)dsX2

∫ t

t−h1
ė(s)ds, (3.10)

V̇6(et) = h2
12ė

T (t)S2ė(t)− h12

∫ t−h1

t−h(t)
ėT (s)S2ė(s)ds− h12

∫ t−h(t)

t−h2
ėT (s)S2ė(s)ds

≤ h2
12e

T (t)S1e(t)−
1

α

∫ t−h1

t−h(t)
ėT (s)dsS2

∫ t−h1

t−h(t)
ė(s)ds

− 1

β

∫ t−h(t)

t−h2
ėT (s)dsS2

∫ t−h(t)

t−h2
ė(s)ds,

(3.11)
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V̇7(et) =
h4

1

4
ėT (t)U1ė(t)−

h2
1

2

∫ 0

−h1

∫ t

t+β
ėT (s)U1ė(s)dsdβ

≤ h4
1

4
ėT (t)U1ė(t)− (h1e

T (t)−
∫ t

t−h1
eT (s)ds)U1(h1e(t)−

∫ t

t−h1
e(s)ds),

(3.12)

V̇8(et) =
h4

1

4
ėT (t)U2ė(t)−

h2
1

2

∫ 0

−h1

∫ t+β

t−h1
ėT (s)U2ė(s)dsdβ

≤ h4
1

4
ėT (t)U2ė(t)− (

∫ t

t−h1
eT (s)ds− h1e

T (t− h1))U2(

∫ t

t−h1
e(s)ds− h1e(t− h1)),

(3.13)

V̇9(et) =
h4

12

4
ėT (t)Z1ė(t)−

h2
12

2

∫ −h1
−h2

∫ t−h1

t+β
ėT (s)Z1ė(s)dsdβ

=
h4

12

4
ėT (t)Z1ė(t)−

h2
12

2
(h2 − h(t))

∫ t−h1

t−h(t)
ėT (s)Z1ė(s)dsdβ

− h2
12

2

∫ −h1
−h(t)

∫ t−h1

t+β
ėT (s)Z1ė(s)dsdβ −

h2
12

2

∫ −h(t)

−h2

∫ t−h(t)

t+β
ėT (s)Z1ė(s)dsdβ

≤ h2
12

4
ėT (t)Z1ė(t)−

h2
12

2

β

α

∫ t−h1

t−h(t)
ėT (s)dsZ1

∫ t−h1

t−h(t)
ė(s)ds− 1

α2

∫ −h1
−h(t)

∫ t−h1

t+β
ėT (s)dsdβ

Z1

∫ −h1
−h(t)

∫ t−h1

t+β
ė(s)dsdβ − 1

β2

∫ −h(t)

−h2

∫ t−h(t)

t+β
ėT (s)dsdβZ1

∫ −h(t)

−h2

∫ t−h(t)

t+β
ė(s)dsdβ,

(3.14)

V̇10(et) =
h4

12

4
ėT (t)Z2ė(t)−

h2
12

2

∫ −h1
−h2

∫ t+β

t−h2
ėT (s)Z2ė(s)dsdβ

=
h4

12

4
ėT (t)Z2ė(t)−

h2
12

2
(h(t)− h1)

∫ t−h(t)

t−h2
ėT (s)Z2ė(s)dsdβ

− h2
12

2

∫ −h1
−h(t)

∫ t+β

t−h(t)
ėT (s)Z2ė(s)dsdβ −

h2
12

2

∫ −h(t)

−h2

∫ t+β

t−h2
ėT (s)Z2ė(s)dsdβ

≤ h4
12

4
ėT (t)Z2ė(t)−

h2
12

2

α

β

∫ t−h(t)

t−h2
ėT (s)dsZ2

∫ t−h(t)

t−h2
ė(s)ds− 1

α2

∫ −h1
−h(t)

∫ t+β

t−h(t)
ėT (s)dsdβ

Z2

∫ −h1
−h(t)

∫ t+β

t−h(t)
ė(s)dsdβ − 1

β2

∫ −h(t)

−h2

∫ t+β

t−h2
ėT (s)dsdβZ2

∫ −h(t)

−h2

∫ t+β

t−h2
ė(s)dsdβ,

(3.15)

where

ξ(t) =col{e(t), e(t− h(t), e(t− h1), e(t− h2), ė(t− h(t)), ė(t− h1), ė(t− h2), f(We(t)), f(We(t− h(t)))

, f(We(t− h1)), f(We(t− h2)),

∫ t

t−h1
e(s)ds,

∫ t−h1

t−h(t)
e(s)ds,

∫ t−h(t)

t−h2
e(s)ds, ė(t)}.

From Lemma 2.1, we can infer if there exist matrices T5 and T6 such that (3.4) holds, then it holds that

− 1

α

∫ t−h1

t−h(t)
eT (s)dsS1

∫ t−h1

t−h(t)
e(s)ds− 1

β

∫ t−h(t)

t−h2
eT (s)dsS1

∫ t−h(t)

t−h2
e(s)ds

≤ −

[ ∫ t−h1
t−h(t) e(s)ds∫ t−h(t)
t−h2 e(s)ds

]T [
S1 T5

∗ S1

][ ∫ t−h1
t−h(t) e(s)ds∫ t−h(t)
t−h2 e(s)ds

]
,

(3.16)

and



X. J. Zhang, X. Wang, S. M. Zhong, J. Nonlinear Sci. Appl. 9 (2016), 5291–5305 5299

− 1

α

∫ t−h1

t−h(t)
ėT (s)dsS2

∫ t−h1

t−h(t)
ė(s)ds− 1

β

∫ t−h(t)

t−h2
ėT (s)dsS2

∫ t−h(t)

t−h2
ė(s)ds

− h2
12

2

β

α

∫ t−h1

t−h(t)
ėT (s)dsZ1

∫ t−h1

t−h(t)
ė(s)ds− h2

12

2

α

β

∫ t−h(t)

t−h2
ėT (s)dsZ2

∫ t−h(t)

t−h2
ė(s)ds

≤ −

[ ∫ t−h1
t−h(t) ė(s)ds∫ t−h(t)
t−h2 ė(s)ds

]T [
S2 T6

∗ S2

][ ∫ t−h1
t−h(t) ė(s)ds∫ t−h(t)
t−h2 ė(s)ds

]
.

(3.17)

Note that if h(t) = h1 or h(t) = h2, we have∫ t−h1

t−h(t)
ė(s)ds =

∫ t−h1

t−h(t)
e(s)ds = 0 or

∫ t−h(t)

t−h2
ė(s)ds =

∫ t−h(t)

t−h2
e(s)ds = 0,

respectively. So inequalities (3.16) and (3.17) still hold.
Using a similar manner, we can derive the upper bounds of the second-order reciprocally convex combi-

nations in (3.14) and (3.15) for the matrices T1, T2, T3, T4 satisfying (3.3) as

− 1

α2

∫ −h1
−h(t)

∫ t−h1

t+β
ėT (s)dsdβZ1

∫ −h1
−h(t)

∫ t−h1

t+β
ė(s)dsdβ

− 1

β2

∫ −h(t)

−h2

∫ t−h(t)

t+β
ėT (s)dsdβZ1

∫ −h(t)

−h2

∫ t−h(t)

t+β
ė(s)dsdβ

≤ −

[ ∫ −h1
−h(t)

∫ t−h1
t+β ė(s)dsdβ∫ −h(t)

−h2

∫ t−h(t)
t+β ė(s)dsdβ

]T [
Z1 T1 + T2

∗ Z1

][ ∫ −h1
−h(t)

∫ t−h1
t+β ė(s)dsdβ∫ −h(t)

−h2

∫ t−h(t)
t+β ė(s)dsdβ

]
,

(3.18)

and

− 1

α2

∫ −h1
−h(t)

∫ t+β

t−h(t)
ėT (s)dsdβZ2

∫ −h1
−h(t)

∫ t+β

t−h(t)
ė(s)dsdβ

− 1

β2

∫ −h(t)

−h2

∫ t+β

t−h2
ėT (s)dsdβZ2

∫ −h(t)

−h2

∫ t+β

t−h2
ė(s)dsdβ

≤ −

[ ∫ −h1
−h(t)

∫ t+β
t−h(t) ė(s)dsdβ∫ −h(t)

−h2

∫ t+β
t−h2 ė(s)dsdβ

]T [
Z2 T3 + T4

∗ Z2

][ ∫ −h1
−h(t)

∫ t+β
t−h(t) ė(s)dsdβ∫ −h(t)

−h2

∫ t+β
t−h2 ė(s)dsdβ

]
.

(3.19)

When h(t) = h1 or h(t) = h2, we have∫ −h1
−h(t)

∫ t−h1

t+β
ė(s)dsdβ =

∫ −h1
−h(t)

∫ t+β

t−h(t)
ė(s)dsdβ = 0,

or ∫ −h(t)

−h2

∫ t−h(t)

t+β
ė(s)dsdβ =

∫ −h(t)

−h2

∫ t+β

t−h2
ė(s)dsdβ = 0,

respectively. So the relations (3.18) and (3.19) still hold.
Under Assumption 2.1, it is not difficult to see for any positive diagonal matrices ∆i(i = 1, 2, . . . , 4), the

following inequality holds:

0 ≤2[f(We(t))−K1We(t)]T∆1[K2We(t)− f(We(t))] + 2[f(We(t− h(t)))

−K1We(t− h(t))]T∆2[K2We(t− h(t))− f(We(t− h(t)))] + 2[f(We(t− h1))

−K1We(t− h1)]T∆3[K2We(t− h1)− f(We(t− h1))] + 2[f(We(t− h2))

−K1We(t− h2)]T∆4[K2We(t− h2)− f(We(t− h2))].
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Furthermore, for any matrix N with appropriate dimension, the following zero equation holds:

2[eT (t) + ėT (t)]N [−ė(t)− (A+ LC)e(t)− LDe(t− h(t)) + f(We(t− h(t))) + (B1 − LB2)ω(t)] = 0.

And the following inequality holds

2[eT (t) + ėT (t)]N(B1 − LB2)ω(t) ≤ γ−2ξT (t)B̂B̂T ξ(t) + γ2ωT (t)ω(t). (3.20)

From the conditions (3.6) to (3.20), it can be seen that

V̇ (et) ≤ξT (t){Ξ + γ−2B̂B̂T −ΨT
1[h(t)]

[
Z1 T1 + T2

∗ Z1

]
︸ ︷︷ ︸

Ξ1

Ψ1[h(t)]

−ΨT
2[h(t)]

[
Z2 T3 + T4

∗ Z2

]
︸ ︷︷ ︸

Ξ2

Ψ2[h(t)]}ξ(t) + γ2ωT (t)ω(t),

(3.21)

where

Ψ1[h(t)] =

[
0n 0n (h(t)− h1)In 0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n 0n
0n (h2 − h(t))In 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n −In 0n

]
,

Ψ2[h(t)] =

[
0n −(h(t)− h1)In 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n 0n
0n 0n 0n −(h2 − h(t))In 0n 0n 0n 0n 0n 0n 0n 0n 0n In 0n

]
.

Define

J =

∫ ∞
0

[z̄T (t)z̄(t)− γ2ωT (t)ω(t)]dt.

Then, one has

J =

∫ ∞
0

[z̄T (t)z̄(t)− γ2ωT (t)ω(t) + V̇ (et)− V̇ (et)]dt

≤
∫ ∞

0
[z̄T (t)z̄(t)− γ2ωT (t)ω(t) + V̇ (et)]dt

≤
∫ ∞

0
ξT (t)Ξ̃ξ(t)dt,

where
Ξ̃ = Ξ + γ−2B̂B̂T −ΨT

1[h(t)]Ξ1Ψ1[h(t)] −ΨT
2[h(t)]Ξ2Ψ2[h(t)] + ĤĤT .

By Lemma 2.3, the following matrix inequality:

Ξ + γ−2B̂B̂T −ΨT
1[h(t)]Ξ1Ψ1[h(t)] −ΨT

2[h(t)]Ξ2Ψ2[h(t)] + ĤĤT < 0,

is equivalent to the following matrix inequalities

Ξ + γ−2B̂B̂T −ΨT
1[h1]Ξ1Ψ1[h1] −ΨT

2[h1]Ξ2Ψ2[h1] + ĤĤT < 0, (3.22)

Ξ + γ−2B̂B̂T −ΨT
1[h2]Ξ1Ψ1[h2] −ΨT

2[h2]Ξ2Ψ2[h2] + ĤĤT < 0. (3.23)

By applying Schur complement lemma to (3.22) and (3.23) we obtain (3.1) and (3.2), respectively. Therefore,
one has J < 0, which implies ||z̄||2 ≤ γ||ω||2 for any nonzero ω(t) ∈ `2[0,∞).

Now we show the globally asymptotical stability of the estimation error system (2.3) with ω(t) = 0. For
convenience, it is rewritten as

ė(t) = −(A+ LC)e(t)− LDe(t− h(t)) + f(We(t− h(t))). (3.24)
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We still consider the Lyapunov functional (3.5) and calculate its time-derivative along the solutions of (3.24).
Similar to the proof of (3.21), one can obtain that

V̇ (et) ≤ξT (t)(Ξ−ΨT
1[h(t)]Ξ1Ψ1[h(t)] −ΨT

2[h(t)]Ξ2Ψ2[h(t)])ξ(t)

≤0

is still guaranteed by (3.1)-(3.4).
According to the Lyapunov stability theory, the error system (2.3) with ω(t) = 0 is globally asymptoti-

cally stable. This completes the proof.

Remark 3.2. It should be noted that the proposed Lyapunov-Krasovskii functional in this paper is more
generalized, since the V9(et) and V10(et) were not considered in [1, 12, 20]. Therefore, the stability results
may be more applicable.

Remark 3.3. It can be seen from the proof that the terms

−h
2
12

2

∫ −h1
−h2

∫ t−h1

t+β
ėT (s)Z1ė(s)dsdβ,

and

−h
2
12

2

∫ −h1
−h2

∫ t+β

t−h2
ėT (s)Z2ė(s)dsdβ,

are handled by the reciprocally convex combination technique [23] and Jenson inequality. Its advantage is
that better performance can be derived by Theorem 3.1 than the results obtained in [16, 20]. It will be
illustrated by the numerical examples.

Remark 3.4. In [29], the delay-independent state estimation condition that does not consider the size of
delay is very conservative, especially in the case of short delay. While in our paper the delay-dependent is
exactly contrary, when the value of delay is small enough, the delay-dependent ones can be equivalent to
the delay-independent ones. Thus, we consider the delay-dependent one is more general to some extent.

Remark 3.5. Letting α = h(t)−h1
h12

, β = h2−h(t)
h12

yield coefficients 1
α , 1

β , β
α and α

β in the time derivative of the

Lyapunov functional, where double integral terms include 1
α and 1

β , and triple integral terms include β
α and

α
β , by Lemma 2.1 we can derive the bound for the combinations of 1

α and 1
β , and the combinations of 1

α , 1
β ,

β
α and α

β , respectively.

Remark 3.6. In (3.18) and (3.19), the relations 1
α2 = (α+β)2

α2 and 1
β2 = (α+β)2

β2 are employed and the proof

procedure is similar to that of Assumption 2.1 in [23]. The proposed method of the second-order reciprocally
convex combination is very effective in reducing the conservatism of the state estimation condition.

Remark 3.7. In [12] and [10], in order to convert nonlinear matrix inequality into LMIs, the fact −PR−1P ≤
−2P + R (R ≥ 0) is used. In this paper, we use zero equality to avoid this problem, which can give much
flexibility in solving LMIs. The effectiveness of this method will be shown in the following numerical
examples.

4. Illustrative example

In this section, two examples are provided to illustrate the advantage of Theorem 3.1 over some recent
results.

Example 4.1. Consider a class of static neural networks (2.1), the parameters given in [1] is:

A = diag{0.96, 0.8, 1.48}, W =

[
0.5 0.3 −0.36
0.1 0.12 0.5
−0.42 0.78 0.9

]
, H =

[
1 1 0
1 0 −1
0 1 1

]
, B1 =

[
0.1
0.2
0.0

]
,
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I = [0 0 0]T , B2 = −0.1, C = [1 0 − 2], D = [0.5 0 − 1], K1 = diag{0, 0, 0}, K2 = diag{1, 1, 1}.

Here the activation function is assumed to be g(x(t)) = tanh(x(t)), and the time-varying delay is taken
as h(t) = 0.5 + 0.5 cos(t). When h1 = 0.5, h2 = 1 and u = 0.5, by solving the LMI in Theorem 3.1, the
optimal H∞ performance index γ = 0.7800, while the optimal H∞ performance index obtained by [1] is
γ = 0.9784. Furthermore, as described in [29], we take noise distraction ω(t) = 0.01e−0.0005t sin(0.02t), t ≥ 0.
By using MATLAB LMI Toolbox the gain matrix is obtained as L = [−0.1261,−0.6261,−0.4078]T . Fig.1
shows that the trajectories of true state x1(t), x2(t) and x3(t) and their estimations x̂1(t), x̂2(t) and x̂3(t)
with initial values [−0.5,−0.7, 0.6]T and [−3, 0.5,−0.9]T , respectively. The response of the error e1(t), e2(t)
and e3(t) are also given in Fig.1. Therefore, the simulation results illustrate the effectiveness of Theorem
3.1 for the design of guaranteed performance H∞ state estimator of the delayed neural network.

In addition, to compare our method with the existing results in [12] and [1], we let h1 = 0 in Theorem
3.1. Then, for different values h2 and u, the optimal H∞ performance index γ can be obtained by Theorem
3.1. The comparison results are listed in Table 1. It can be clearly seen from Table 1 that much better
performance is achieved by our approach.

Example 4.2. Consider the delayed static neural networks (2.1) with the following parameters:

A = diag{1.06, 1.42, 0.88}, W =

[ −0.32 0.85 −1.36
1.10 0.41 −0.50
0.42 0.82 −0.95

]
, H =

[
1 0 0.5
1 0 1
0 −1 1

]
,

I =

[
0
0
0

]
, B1 =

[
0.2
0.2
0.2

]
, C =

[
1 0.5 0
0 −0.5 0.6

]
, D =

[
0 1 0.2
0 0 0.5

]
,

B2 = [0.4 − 0.3]T , K1 = diag{0, 0, 0}, K2 = diag{1, 1, 1}.

When h1 = 0, for different values h2 and u, the optimal H∞ performance index γ can be obtained by
using the method proposed in this paper. The comparison results are listed in Table 2. It is clear that our
results are significant better than those existing in [11, 12].

As similar to the above, the activation function is assumed to be g(x(t)) = tanh(x(t)), and the time-
varying delay is taken as h(t) = 0.5 + 0.5 sin(t) and the noise distraction is taken as ω(t) = 0.01e−0.0005t sin(
0.02t) (t ≥ 0), respectively. When the optimal H∞ performance index γ = 0.6554, by using MTLAB LMI
Toolbox the gain matrix is obtained as:

L =

[
0.7608 −0.3685
0.7944 −0.3985
0.6035 −0.1430

]
.

Fig. 2 shows that the trajectories of true state x1(t), x2(t), x3(t) and their estimations x̂1(t), x̂2(t) and
x̂3(t) with initial values [1,−2,−0.7]T and [1.2,−0.8, 0.5]T , respectively. And the response of the error e1(t),
e2(t) and e3(t) are given simultaneously. Thus, the simulation results illustrate the effectiveness of Theorem
3.1 for the design of guaranteed performance H∞ state estimator of the delayed neural network.

Table 1: Comparison of the optimal H∞ performance index γ with different (h2, u).

Methods (0.8, 0.4) (0.9, 0.7) (1.1, 0.5)

[26] 1.2989 1.3164 1.6441
[35] 0.9145 1.0123 1.4252
our results 0.8742 0.9127 1.2033



X. J. Zhang, X. Wang, S. M. Zhong, J. Nonlinear Sci. Appl. 9 (2016), 5291–5305 5303

Table 2: Comparison of the optimal H∞ performance index γ with different (h2, u).

Methods (0.8, 0.6) (0.9, 0.8) (1, 0.5) (1.1, 0.4)

[25] 0.4631 0.8121 1.2142 3.5407
[26] 0.3868 0.4704 0.7594 1.9421
our results 0.3221 0.4178 0.6554 1.2108
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Figure 1: State responses and error trajectories in Example 4.1.
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Figure 2: State responses and error trajectories in Example 4.2.

5. Conclusion

In this paper, the problem of stability analysis for a class of static recurrent neural networks with interval
time-varying delay is considered. By constructing a properly augmented Lyapunov-Krasovskii functional
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containing triple integral terms and utilizing the inverses of first-order and squared reciprocally convex
parameters techniques and zero equality, new improved delay-dependent stability criteria are proposed to
guarantee the asymptotic stability of the concerned networks with the framework of linear matrix inequalities
(LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
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