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Abstract

Based on concepts of α-admissible mappings and simulation functions, we establish some fixed point
results in the setting of metric-like spaces. We show that many known results in the literature are simple
consequences of our obtained results. We also provide some concrete examples to illustrate the obtained
results. ©2016 All rights reserved.
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1. Introduction and preliminaries

As generalizations of standard metric spaces, metric-like spaces were considered first by Hitzler and Seda
[10] under the name of dislocated metric spaces and partial metric spaces were introduced by Matthews [13]
in 1994 to study the denotational semantics of dataflow networks. Many authors obtained (common) fixed
point results in the setting of above spaces, for example see [1, 2, 4, 5, 7–9, 16]. Let us recall some notations
and definitions we will need in the sequel.
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Definition 1.1. Let X be a nonempty set. A function σ : X ×X → [0,∞) is said to be a metric-like (or a
dislocated metric) on X, if for any x, y, z ∈ X, the following conditions hold:

(σ1) σ(x, y) = 0 =⇒ x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X,σ) is then called a metric-like space.
Now, let (X,σ) be a metric-like space. A sequence {xn} in X converges to x ∈ X, if and only if

lim
n→∞

σ(xn, x) = σ(x, x).

A sequence {xn} is Cauchy in (X,σ), if and only if lim
n,m→∞

σ(xn, xm) exists and is finite. Moreover,

(X,σ) is complete, if and only if for every Cauchy sequence {xn} in X, there exists x ∈ X such that
lim

n→+∞
σ(x, xn) = σ(x, x) = lim

n,m→+∞
σ(xn, xm).

Lemma 1.2 ([4, 5]). Let (X,σ) be a metric-like space and {xn} be a sequence that converges to x with
σ(x, x) = 0. Then, for each y ∈ X one has

lim
n→∞

σ(xn, y) = σ(x, y).

Definition 1.3. A partial metric on a nonempty set X is a function p : X ×X → [0,∞), such that for all
x, y, z ∈ X

(PM1) p(x, x) = p(x, y) = p(y, y), then x = y;

(PM2) p(x, x) ≤ p(x, y);

(PM3) p(x, y) = p(y, x);

(PM4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z).

The pair (X, p) is then called a partial metric space.

It is known that each partial metric is a metric-like, but the converse is not true in general.

Example 1.4. Let X = {0, 1} and σ : X ×X → [0,∞) defined by

σ(0, 0) = 2, σ(x, y) = 1 if (x, y) 6= (0, 0).

Then, (X,σ) is a metric-like space. Note that σ is not a partial metric on X because σ(0, 0) � σ(1, 0).

In 2012, Samet et al. [17] introduced the concept of α-admissible mappings.

Definition 1.5 ([17]). For a nonempty set X, let T : X → X and α : X ×X → [0,∞) be given mappings.
We say that T is α-admissible, if for all x, y ∈ X, we have

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

The concept of α-admissible mappings has been used in many works, see for example [6, 14]. Later,
Karapinar et al. [11] introduced the notion of triangular α-admissible mappings.

Definition 1.6 ([11]). Let T : X → X and α : X×X → [0,∞) be given mappings. A mapping T : X → X
is called a triangular α-admissible if

(T1) T is α-admissible;

(T2) α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1, x, y, z ∈ X.
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Very recently, Khojasteh et al. [12] introduced a new class of mappings called simulation functions. By
using the above concept, they [12] proved several fixed point theorems and showed that many known results
in the literature are simple consequences of their obtained results. Later, Argoubi et al. [3] slightly modified
the definition of simulation functions by withdrawing a condition.

Let Z∗ be the set of simulation functions in the sense of Argoubi et al. [3].

Definition 1.7 ([3]). A simulation function is a mapping ζ : [0,∞) × [0,∞) → R, satisfying the following
conditions:

(ζ1) ζ(t, s) < s− t for all t, s > 0;

(ζ2) if {tn} and {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn = ` ∈ (0,∞), then

lim sup
n→∞

ζ(tn, sn) < 0.

Example 1.8 ([3]). Let ζλ : [0,∞)× [0,∞)→ R be the function defined by

ζλ(t, s) =

{
1 if (t, s) = (0, 0),

λs− t otherwise,

where λ ∈ (0, 1). Then, ζλ ∈ Z∗.

Example 1.9. Let ζ : [0,∞)× [0,∞)→ R be the function defined by ζ(t, s) = ψ(s)− ϕ(t) for all t, s ≥ 0,
where ψ : [0,∞) → R is an upper semi-continuous function and ϕ : [0,∞) → R is a lower semi-continuous
function such that ψ(t) < t ≤ ϕ(t), for all t > 0. Then, ζ ∈ Z∗.

2. Fixed points via simulation functions

The first main result is as follows.

Theorem 2.1. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
that there exist a simulation function ζ ∈ Z∗ and α : X ×X → [0,∞) such that

ζ (σ(Tx, Ty),M(x, y)) ≥ 0 (2.1)

for all x, y ∈ X satisfying α(x, y) ≥ 1, where

M(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
}.

Assume that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞, then there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1, for all k.

Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. By assumption (ii), there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn}
by xn = Tnx0, for all n ≥ 0.

We split the proof into several steps.
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(Step 1): α(xn, xm) ≥ 1, for all m > n ≥ 0.
We have α(x0, x1) = α(x0, Tx0) ≥ 1. Since T is α-admissible, by the induction we have

α(xn, xn+1) ≥ 1, for all n ≥ 0.

T is triangular α-admissible, then

α(xn, xn+1) ≥ 1, and α(xn+1, xn+2) ≥ 1⇒ α(xn, xn+2) ≥ 1.

Thus, by the induction
α(xn, xm) ≥ 1, for all m > n ≥ 0.

(Step 2): We shall prove
lim
n→∞

σ(xn, xn+1) = 0. (2.2)

By Step 1, we have α(xn, xm) ≥ 1, for all m > n ≥ 0. Then, from (2.1)

ζ (σ(xn, xn+1),M(xn−1, xn)) = ζ (σ(Txn−1, Txn),M(xn−1, xn)) ≥ 0,

where

M(xn−1, xn) = max{σ(xn−1, xn), σ(xn−1, Txn−1), σ(xn, Txn),
σ(xn−1, Txn) + σ(xn, Txn−1)

4
}

= max{σ(xn−1, xn), σ(xn, xn+1),
σ(xn−1, xn+1) + σ(xn, xn)

4
}.

By a triangular inequality, we have

σ(xn−1, xn+1) + σ(xn, xn)

4
≤ 3σ(xn−1, xn) + σ(xn, xn+1)

4
≤ max{σ(xn−1, xn), σ(xn, xn+1)}.

Thus
M(xn−1, xn) = max{σ(xn−1, xn), σ(xn, xn+1)}.

It follows that
ζ (σ(xn, xn+1),max{σ(xn−1, xn), σ(xn, xn+1)}) ≥ 0. (2.3)

If σ(xn, xn+1) = 0 for some n, then xn = xn+1 = Txn, that is, xn is a fixed point of T and so the proof
is finished. Suppose now that

σ(xn, xn+1) > 0, for all n = 0, 1, · · · .

Therefore, from condition (ζ1), we have

0 ≤ ζ (σ(xn, xn+1),max{σ(xn−1, xn), σ(xn, xn+1)})
< max{σ(xn−1, xn), σ(xn, xn+1)} − σ(xn, xn+1), for all n ≥ 1.

Then
σ(xn, xn+1) < max{σ(xn−1, xn), σ(xn, xn+1)}, for all n ≥ 1.

Necessarily, we have

max{σ(xn−1, xn), σ(xn, xn+1)} = σ(xn−1, xn), for all n ≥ 1. (2.4)

Consequently, we obtain

σ(xn, xn+1) < σ(xn−1, xn), for all n ≥ 1, (2.5)
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which implies that {σ(xn, xn+1)} is a decreasing sequence of positive real numbers, so there exists t ≥ 0
such that

lim
n→∞

σ(xn, xn+1) = t.

Suppose that t > 0. By (2.3), (2.4) and the condition (ζ2),

0 ≤ lim sup
n→∞

ζ (σ(xn, xn+1), σ(xn−1, xn)) < 0,

which is a contradiction. Then, we conclude that t = 0.

(Step 3): Now, we shall prove that
lim

n,m→∞
σ(xn, xm) = 0. (2.6)

Suppose to the contrary that there exists ε > 0, for which we can find subsequences {xm(k)} and {xn(k)}
of {xn} with m(k) > n(k) > k such that for every k,

σ(xn(k), xm(k)) ≥ ε. (2.7)

Moreover, corresponding to n(k) we can choose m(k) in such a way that it is the smallest integer with
m(k) > n(k) and satisfying (2.7). Then

σ(xn(k), xm(k)−1) < ε. (2.8)

By using (2.7), (2.8) and the triangular inequality, we get

ε ≤ σ(xn(k), xm(k)) ≤ σ(xn(k), xm(k)−1) + σ(xm(k)−1, xm(k))

< σ(xm(k)−1, xm(k)) + ε.

By (2.2)
lim
k→∞

σ(xn(k), xm(k)) = lim
k→∞

σ(xn(k), xm(k)−1) = ε. (2.9)

We also have

σ(xn(k), xm(k)−1)− σ(xn(k), xn(k)−1)− σ(xm(k), xm(k)−1) ≤ σ(xn(k)−1, xm(k)),

and
σ(xn(k)−1, xm(k)) ≤ σ(xn(k)−1, xn(k)) + σ(xn(k), xm(k)).

Letting k →∞ in the above inequalities and by using (2.2) and (2.9), we obtain

lim
k→∞

σ(xn(k)−1, xm(k)) = ε. (2.10)

Moreover, the triangular inequality gives that

|σ(xn(k)−1, xm(k))− σ(xn(k)−1, xm(k)−1)| ≤ σ(xm(k)−1, xm(k)).

Let again k →∞ in the above inequality and by using (2.2) and (2.10), we have

lim
k→∞

σ(xn(k)−1, xm(k)−1) = ε. (2.11)

By (2.1) and as α(xn(k)−1, xm(k)−1) ≥ 1 for all k ≥ 1, we get

0 ≤ ζ
(
σ(xn(k), xm(k)),M(xn(k)−1, xm(k)−1)

)
,
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where

M(xn(k)−1, xm(k)−1) = max{σ(xn(k)−1, xm(k)−1), σ(xn(k)−1, xn(k)), σ(xm(k)−1, xm(k)),

σ(xn(k)−1, xm(k)) + σ(xm(k)−1, xn(k))

4
}.

From (2.9), (2.10), (2.11) and (2.2)

lim
k→∞

σ(xn(k), xm(k)) = lim
k→∞

M(xn(k)−1, xm(k)−1) = ε.

On the other hand, if xn = xm for some n < m, then xn+1 = Txn = Txm = xm+1. Equation (2.5) leads
to

0 < σ(xn, xn+1) = σ(xm, xm+1) < σ(xm−1, xm) < · · · < σ(xn, xn+1),

which is a contradiction. Then xn 6= xm for all n < m. The condition (ζ2) implies that

0 ≤ lim sup
k→∞

ζ
(
σ(xn(k), xm(k)),M(xn(k)−1, xm(k)−1)

)
< 0,

which is a contradiction. This completes the proof of (2.6).
It follows that {xn} is a Cauchy sequence. Since (X,σ) is complete, there exists some z ∈ X such that

lim
n→∞

σ(xn, z) = σ(z, z) = lim
n,m→∞

σ(xn, xm) = 0. (2.12)

(Step 4): Now, we shall prove that z is a fixed point of T .
If there exists a subsequence {xnk

} of {xn} such that xnk
= z or Txnk

= Tz for all k, then σ(z, Tz) =
σ(z, xnk+1) for all k. Let k → ∞ and use (2.12) to get σ(z, Tz) = 0, that is, z = Tz and the proof is
finished. So, without loss of generality, we may suppose that xn 6= z and Txn 6= Tz for all nonnegative
integers n. Suppose that σ(z, Tz) > 0. By assumption (iii), there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), z) ≥ 1 for all k. By (2.1) and as α(xn(k), z) ≥ 1 for all k ≥ 1, we get

0 ≤ ζ
(
σ(xn(k)+1, T z),M(xn(k), z)

)
= ζ

(
σ(Txn(k), T z),M(xn(k), z)

)
,

where

M(xn(k), z) = max{σ(xn(k), z), σ(xn(k), xn(k)+1), σ(z, Tz),

σ(xn(k), T z) + σ(z, xn(k)+1)

4
}.

By Lemma 1.2 and (2.12)

lim
k→∞

σ(xn(k)+1, T z) = lim
k→∞

M(xn(k), z) = σ(z, Tz) > 0.

From the condition (ζ2)

0 ≤ lim sup
k→∞

ζ
(
σ(xn(k)+1, T z),M(xn(k), z)

)
< 0,

which is a contradiction and hence σ(z, Tz) = 0, that is, Tz = z and so z is a fixed point of T . This ends
the proof of Theorem 2.1.

By using the same techniques, we obtain the following result.

Theorem 2.2. Let (X, p) be a complete partial metric space. Let T : X → X be a given mapping. Suppose
there exist a simulation function ζ ∈ Z∗ and α : X ×X → [0,∞) such that
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ζ (p(Tx, Ty),Mp(x, y)) ≥ 0 (2.13)

for all x, y ∈ X satisfying α(x, y) ≥ 1, where

Mp(x, y) = max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
}.

Assume that

(i) T is triangular α-admissible;
(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞, then there

exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Then, T has a fixed point z ∈ X such that p(z, z) = 0.

Now, we prove the uniqueness fixed point result. For this, we need the following additional condition.

(U): For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of fixed points of T.

Theorem 2.3. By adding condition (U) to the hypotheses of Theorem 2.2, we obtain that z is the unique
fixed point of T .

Proof. We argue by contradiction, that is, there exist z, w ∈ X such that z = Tz and w = Tw with z 6= w.
By assumption (U), we have α(z, w) ≥ 1. So, by (2.13) and by using the condition (ζ2), we get that

0 ≤ ζ (p(Tz, Tw),Mp(z, w)) = ζ (p(z, w),max{p(z, w), p(z, z), p(w,w)})
= ζ (p(z, w), p(z, w)) < p(z, w)− p(z, w) = 0,

which is a contradiction. Hence, z = w.

We also state the following result.

Theorem 2.4. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
that there exist a simulation function ζ ∈ Z∗ and α : X ×X → [0,∞) such that

ζ (σ(Tx, Ty), σ(x, y)) ≥ 0 (2.14)

for all x, y ∈ X satisfying α(x, y) ≥ 1. Assume that

(i) T is triangular α-admissible;
(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞, then there

exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. By following the proof of Theorem 2.1, we can construct a sequence {xn} such that α(xn, xm) ≥ 1
for all m > n ≥ 0. {xn} is also Cauchy in (X,σ) and converges to some z ∈ X such that (2.12) holds. We
claim that z is a fixed point of T . Similarly, if there exists a subsequence {xnk

} of {xn} such that xnk
= z

or Txnk
= Tz for all k, so z is a fixed point of T and the proof is finished. Without loss of generality, we

may suppose that xn 6= z and Txn 6= Tz for all nonnegative integer n. By assumption (iii) and by using
(2.14) together with the condition (ζ1), again we deduce that

0 ≤ ζ
(
σ(Txn(k), T z), σ(xn(k), z)

)
< σ(xn(k), z)− σ(xn(k)+1, T z).

This implies
σ(xn(k)+1, T z) < σ(xn(k), z), ∀k ≥ 0.

Letting k →∞ in the above inequality and by Lemma 1.2 and (2.12), we get

σ(z, Tz) ≤ σ(z, z) = 0,

that is, σ(z, Tz) = 0 and so z = Tz.
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Theorem 2.5. By adding condition (U) to the hypotheses of Theorem 2.4, we obtain that z is the unique
fixed point of T .

Proof. We argue by contradiction, that is, there exist z, w ∈ X such that z = Tz and w = Tw with z 6= w.
By assumption (U), we have α(z, w) ≥ 1. So, by (2.14) and by using the condition (ζ2), we get that

0 ≤ ζ (σ(Tz, Tw), σ(z, w)) < σ(z, w)− σ(Tz, Tw) = 0,

which is a contradiction. Hence, z = w.

Example 2.6. Take X = [0,∞) endowed with the metric-like σ(x, y) = x + y. Consider the mapping
T : X → X given by

Tx =

{
x2

2 if x ∈ [0, 1]

x+ 1 if x > 1.

Note that (X,σ) is a complete metric-like space. Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1]

0 otherwise.

Let ζ(t, s) = s − 2+t
1+t t for all s, t ≥ 0. Note that T is α-admissible. In fact, let x, y ∈ X such that

α(x, y) ≥ 1. By definition of α, this implies that x, y ∈ [0, 1]. Thus,

α(Tx, Ty) = α(
x2

2
,
y2

2
) = 1.

T is also triangular α-admissible. In fact, let x, y, z ∈ X such that α(x, y) ≥ 1 and α(y, z) ≥ 1, this
implies that x, y, z ∈ [0, 1]. It follows that α(x, z) ≥ 1.

Now, we show that the contraction condition (2.14) is verified. Let x, y ∈ X such that α(x, y) ≥ 1. So,
x, y ∈ [0, 1]. In this case, we have

ζ(σ(Tx, Ty), σ(x, y)) = σ(x, y)− 2 + σ(Tx, Ty)

1 + σ(Tx, Ty)
σ(Tx, Ty)

= x+ y − (4 + x2 + y2)(x2 + y2)

4 + 2(x2 + y2)

=
4(1− x)x+ 4(1− y)y + (2− x)x3 + 2(1− x)xy2 + (2− y)y3 + 2x2y

4 + 2(x2 + y2)
≥ 0.

Now, we show that condition (iii) of Theorem 2.4 is verified. Let {xn} be a sequence in X such that
α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X. Then, {xn} ⊂ [0, 1] and xn+x→ 2x as n→∞. Thus, xn → x as
n→∞ in (X, |.|). This implies that x ∈ [0, 1] and so α(xn, x) = 1 for all n. Moreover, there exists x0 ∈ X
such that α(x0, Tx0) ≥ 1. In fact, for x0 = 1, we have α(1, T1) = α(1, 12) = 1. Thus, all hypotheses of
Theorem 2.4 are verified. Here x = 0 is the unique fixed point of T .

On the other, Theorem 5.1 in [15] is not applicable for the partial metric p(x, y) = max{x, y}. Indeed,
for x = 2 and y = 3, we have

ζ(p(T2, T3), p(2, 3)) = ζ(4, 3) = −9

5
< 0.

Also, the Banach contraction principle is not applicable because, for x = 2 and y = 3, we have

σ(T2, T3) = 7 > 5 = σ(2, 3).

Now, we present the following result in the setting of metric-like spaces which generalizes the result
obtained by [15].
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Theorem 2.7. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
that there exist a simulation function ζ ∈ Z∗ and a lower semi-continuous function ϕ : X → [0,∞) and
α : X ×X → [0,∞) such that

ζ (σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty), σ(x, y) + ϕ(x) + ϕ(y)) ≥ 0 (2.15)

for all x, y ∈ X satisfying α(x, y) ≥ 1. Assume that

(i) T is triangular α-admissible;

(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞, then there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Then, T has a fixed point z ∈ X such that σ(z, z) = 0 and ϕ(z) = 0.

Proof. By following the proof of Theorem 2.1, we construct a sequence {xn} such that α(xn, xm) ≥ 1 for all
m > n ≥ 0. We shall prove

lim
n→∞

σ(xn, xn+1) = 0.

Since α(xn, xm) ≥ 1 for all m > n ≥ 0, it follows from (2.15) that

ζ (σ(Txn−1, Txn) + ϕ(Txn−1) + ϕ(Txn), σ(xn−1, xn) + ϕ(xn−1) + ϕ(xn)) ≥ 0.

It means that

ζ (σ(xn, xn+1) + ϕ(xn) + ϕ(xn+1), σ(xn−1, xn) + ϕ(xn−1) + ϕ(xn)) ≥ 0.

If σ(xn, xn+1) = 0 for some n, then xn = xn+1 = Txn, that is, xn is a fixed point of T and so the proof
is finished. Suppose now that

σ(xn, xn+1) > 0, for all n = 0, 1, · · · .

Therefore, from condition (ζ1), we have

0 ≤ ζ (σ(xn, xn+1) + ϕ(xn) + ϕ(xn+1), σ(xn−1, xn) + ϕ(xn−1) + ϕ(xn))

< σ(xn−1, xn) + ϕ(xn−1) + ϕ(xn)− [σ(xn, xn+1) + ϕ(xn) + ϕ(xn+1)], for all n ≥ 1.

This leads to

σ(xn, xn+1) + ϕ(xn) + ϕ(xn+1) < σ(xn−1, xn) + ϕ(xn−1) + ϕ(xn), for all n ≥ 1, (2.16)

which implies that {σ(xn, xn+1) + ϕ(xn) + ϕ(xn+1)} is a decreasing sequence of positive real numbers, so
there exists t ≥ 0 such that

lim
n→∞

[σ(xn, xn+1) + ϕ(xn) + ϕ(xn+1)] = t.

Suppose that t > 0. From the condition (ζ2),

0 ≤ lim sup
n→∞

ζ (σ(xn, xn+1) + ϕ(xn) + ϕ(xn+1), σ(xn−1, xn) + ϕ(xn−1) + ϕ(xn)) < 0,

which is a contradiction. Then, we conclude that t = 0. Since ϕ ≥ 0, we get that

lim
n→∞

σ(xn, xn+1) = 0.

Also,
lim
n→∞

ϕ(xn) = 0. (2.17)
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From (2.16), mention that xn 6= xm for all n < m. Now, we shall prove that

lim
n,m→∞

σ(xn, xm) = 0. (2.18)

Suppose to the contrary that there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)}
of {xn} with m(k) > n(k) > k such that for every k

σ(xn(k), xm(k)) ≥ ε. (2.19)

Moreover, corresponding to n(k), we can choose m(k) in such a way that it is the smallest integer with
m(k) > n(k) and satisfying (2.19). By following again the proof of Theorem 2.1 we see that (2.9), (2.10) and
(2.11) hold. Put ak = σ(xn(k), xm(k)) and bk = σ(xn(k)−1, xm(k)−1). By (2.15) and as α(xn(k)−1, xm(k)−1) ≥ 1
for all k ≥ 1, we get

0 ≤ ζ
(
ak + ϕ(xn(k)) + ϕ(xm(k)), bk + ϕ(xn(k)−1) + ϕ(xm(k)−1)

)
.

By (2.9), (2.10), (2.11) and (2.17), we have

lim
k→∞

[ak + ϕ(xn(k)) + ϕ(xm(k))] = lim
k→∞

[bk + ϕ(xn(k)−1) + ϕ(xm(k)−1)] = ε.

From the condition (ζ2), it follows that

0 ≤ lim sup
k→∞

ζ
(
ak + ϕ(xn(k)) + ϕ(m(k)), bk + ϕ(xn(k)−1) + ϕ(xm(k)−1)

)
< 0,

which is a contradiction. This completes the proof of (2.18).
Therefore, {xn} is a Cauchy sequence. Since (X,σ) is complete, there exists some z ∈ X such that

lim
n→∞

σ(xn, z) = σ(z, z) = lim
n,m→∞

σ(xn, xm) = 0.

By referring to (2.17) and taking into account that ϕ is lower semi-continuous, we have

0 ≤ ϕ(z) ≤ lim inf
n→∞

ϕ(xn) = 0,

and so ϕ(z) = 0. Now, we claim that z is a fixed point of T . If there exists a subsequence {xnk
} of {xn}

such that xnk
= z or Txnk

= Tz for all k, then z is a fixed point of T and the proof is finished. Without
loss of generality, we may suppose that xn 6= z and Txn 6= Tz for all nonnegative integer n. By assumption
(iii), there exists a subsequence {xn(k)} of {xn} such that α(xn(k), z) ≥ 1 for all k. By using (2.15) and the
condition (ζ1), we deduce that

0 ≤ ζ
(
σ(xn(k)+1, T z) + ϕ(xn(k)+1) + ϕ(Tz), σ(xn(k), z) + ϕ(xn(k)) + ϕ(z)

)
< σ(xn(k), z) + ϕ(xn(k)) + ϕ(z)− [σ(xn(k)+1, T z) + ϕ(xn(k)+1) + ϕ(Tz)].

This implies

σ(xn(k)+1, T z) + ϕ(xn(k)+1) + ϕ(Tz) < σ(xn(k), z) + ϕ(xn(k)) + ϕ(z), ∀k ≥ 0.

By letting k →∞ in the above inequality and by taking into account that ϕ ≥ 0 and ϕ(z) = 0,

σ(z, Tz) + ϕ(Tz) ≤ σ(z, z) + ϕ(z) = 0,

that is, σ(z, Tz) + ϕ(Tz) = 0 and so σ(z, Tz) = 0. This ends the proof of Theorem 2.7.
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Theorem 2.8. By adding condition (U) to the hypotheses of Theorem 2.7, we obtain that z is the unique
fixed point of T .

Proof. We argue by contradiction, that is, there exist z, w ∈ X such that z = Tz and w = Tw with z 6= w.
By assumption (U), we have α(z, w) ≥ 1. So, by (2.15) and by using the condition (ζ2), we get that

0 ≤ ζ (σ(Tz, Tw) + ϕ(Tz) + ϕ(Tw), σ(z, w) + ϕ(z) + ϕ(w))

= ζ (σ(z, w) + ϕ(z) + ϕ(w), σ(z, w) + ϕ(z) + ϕ(w))

< σ(z, w) + ϕ(z) + ϕ(w)− [σ(z, w) + ϕ(z) + ϕ(w)] = 0,

which is a contradiction. Hence, z = w.

Example 2.9. Take X = [0,∞) endowed with the metric-like σ(x, y) = x2 + y2. Consider the mapping
T : X → X given by

Tx =

{
x2

x+1 if x ∈ [0, 1],

x2 if x > 1.

Note that (X,σ) is a complete metric-like space. Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1],

0 otherwise.

Let ζ(t, s) = 1
2s− t for all s, t ≥ 0 and ϕ(x) = x for all x ∈ X. Note that T is α-admissible. In fact, let

x, y ∈ X such that α(x, y) ≥ 1. By definition of α, this implies that x, y ∈ [0, 1]. Thus,

α(Tx, Ty) = α(
x2

x+ 1
,
y2

y + 1
) = 1.

T is also triangular α-admissible.
Let x, y ∈ X such that α(x, y) ≥ 1. So, x, y ∈ [0, 1]. In this case, we have

σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty) = (
x2

x+ 1
)2 + (

y2

y + 1
)2 +

x2

x+ 1
+

y2

y + 1

≤ 1

4
(x2 + y2) +

1

2
(x+ y)

≤ 1

2
(x2 + y2 + x+ y)

=
1

2
(σ(x, y) + ϕ(x) + ϕ(y)).

It follows that

ζ(σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty), σ(x, y) + ϕ(x) + ϕ(y))

=
1

2
(σ(x, y) + ϕ(x) + ϕ(y))− [σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty)] ≥ 0.

Now, we show that condition (iii) of Theorem 2.7 is verified. Let {xn} be a sequence in X such that
α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X. Then, {xn} ⊂ [0, 1] and x2n +x2 → 2x2 as n→∞. Thus, xn → x
as n→∞ in (X, |.|). This implies that x ∈ [0, 1] and so α(xn, x) = 1 for all n. Moreover, there exists x0 ∈ X
such that α(x0, Tx0) ≥ 1. In fact, for x0 = 1, we have α(1, T1) = α(1, 12) = 1. Thus, all hypotheses of
Theorem 2.7 are verified. Here, x = 0 is the unique fixed point of T and ϕ(0) = 0.

On the other hand, Theorem 3.2 in [15] is not applicable for the standard metric d. Indeed, for x = 2
and y = 3, we have

ζ(d(Tx, Ty) + ϕ(Tx) + ϕ(Ty), d(x, y) + ϕ(x) + ϕ(y)) = −15 < 0.

Moreover, σ(T
√

2, T
√

3) = 13 > 5 = σ(
√

2,
√

3), then T is not a Banach contraction on X.
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3. Consequences

In this section, as consequences of our obtained results, we provide various fixed point results in the
literature including fixed point theorems in partially ordered metric-like spaces.

Corollary 3.1. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
that there exist k ∈ (0, 1) and α : X ×X → [0,∞) such that

σ(Tx, Ty) ≤ kmax{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
}

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = ks− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.2. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
that there exist k ∈ (0, 1) and α : X ×X → [0,∞) such that

σ(Tx, Ty) ≤ kσ(x, y)

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Corollary 3.3. Let (X, p) be a complete partial metric space. Let T : X → X be a given mapping. Suppose
that there exist k ∈ (0, 1) and α : X ×X → [0,∞) such that

p(Tx, Ty) ≤ kmax{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
}

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that p(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = ks− t for all s, t ≥ 0 in Theorem 2.4.

Corollary 3.4. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
that there exist a lower semi-continuous function ϕ : [0,∞) → [0,∞) with ϕ(t) > 0 for all t > 0 and
α : X ×X → [0,∞) such that

σ(Tx, Ty) ≤ max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
}

− ϕ(max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
})

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = s− ϕ(s)− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.5. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist a lower semi-continuous function ϕ : [0,∞)→ [0,∞) with ϕ(t) > 0 for all t > 0 and α : X×X →
[0,∞) such that

σ(Tx, Ty) ≤ σ(x, y)− ϕ(σ(x, y))

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = s− ϕ(s)− t for all s, t ≥ 0 in Theorem 2.4.
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Corollary 3.6. Let (X, p) be a complete partial metric space. Let T : X → X be a given mapping.
Suppose there exist a lower semi-continuous function ϕ : [0,∞) → [0,∞) with ϕ(t) > 0 for all t > 0 and
α : X ×X → [0,∞) such that

p(Tx, Ty) ≤ max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
}

− ϕ(max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
})

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that p(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = s− ϕ(s)− t for all s, t ≥ 0 in Theorem 2.2.

Corollary 3.7. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist a function ϕ : [0,∞) → [0, 1) with limt→r+ ϕ(t) < 1 for all r > 0 and α : X ×X → [0,∞) such
that

σ(Tx, Ty) ≤ ϕ(max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
})

max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
})

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = sϕ(s)− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.8. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist a function ϕ : [0,∞) → [0, 1) with limt→r+ ϕ(t) < 1 for all r > 0 and α : X ×X → [0,∞) such
that

σ(Tx, Ty) ≤ ϕ(σ(x, y))σ(x, y)

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = sϕ(s)− t for all s, t ≥ 0 in Theorem 2.4.

Corollary 3.9. Let (X,σ) be a complete partial metric space. Let T : X → X be a given mapping. Suppose
there exist a function ϕ : [0,∞)→ [0, 1) with lim

t→r+
ϕ(t) < 1 for all r > 0 and α : X ×X → [0,∞) such that

p(Tx, Ty) ≤ ϕ(max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
})

max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
})

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = sϕ(s)− t for all s, t ≥ 0 in Theorem 2.2.

Corollary 3.10. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist an upper semi-continuous function ϕ : [0,∞) → [0,∞) with ϕ(t) < t for all t > 0 and α :
X ×X → [0,∞) such that

σ(Tx, Ty) ≤ ϕ(max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
})

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.
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Proof. It suffices to take a simulation function ζ(t, s) = ϕ(s)− t for all s, t ≥ 0 in Theorem 2.1.

Corollary 3.11. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist an upper semi-continuous function ϕ : [0,∞) → [0,∞) with ϕ(t) < t for all t > 0 and α :
X ×X → [0,∞) such that

σ(Tx, Ty) ≤ ϕ(σ(x, y))

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = ϕ(s)− t for all s, t ≥ 0 in Theorem 2.4.

Corollary 3.12. Let (X, p) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist an upper semi-continuous function ϕ : [0,∞) → [0,∞) with ϕ(t) < t for all t > 0 and α :
X ×X → [0,∞) such that

p(Tx, Ty) ≤ ϕ(max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
})

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that p(z, z) = 0.

Proof. It suffices to take simulation function ζ(t, s) = ϕ(s)− t, for all s, t ≥ 0 in Theorem 2.2.

Corollary 3.13. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist k ∈ (0, 1) and a lower semi-continuous function ϕ : X → [0,∞) and α : X ×X → [0,∞) such
that

σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ k[σ(x, y) + ϕ(x) + ϕ(y)]

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = ks− t for all s, t ≥ 0 in Theorem 2.7.

Corollary 3.14. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist two lower semi-continuous function ϕ,ψ : X → [0,∞) with ψ(t) > 0 for all t > 0 and α :
X ×X → [0,∞) such that

σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ σ(x, y) + ϕ(x) + ϕ(y)− ψ(σ(x, y) + ϕ(x) + ϕ(y))

for all x, y ∈ X, satisfying α(x, y) ≥ 1. Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. It suffices to take a simulation function ζ(t, s) = s− ψ(s)− t for all s, t ≥ 0 in Theorem 2.7.

Remark 3.15. We can obtain other fixed point results in the class of metric-like spaces via α-admissible
mappings by choosing an appropriate simulation function. Moreover, if we take α(x, y) = 1 we can obtain
known fixed point results in the literature.

Corollary 3.16. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exists a simulation function ζ ∈ Z∗ such that

ζ (σ(Tx, Ty),M(x, y)) ≥ 0

for all x, y ∈ X, where

M(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
}.

Then, T has a fixed point z ∈ X such that σ(z, z) = 0.
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Proof. It suffices to take α(x, y) = 1 in Theorem 2.1.

Corollary 3.17. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exists a simulation function ζ ∈ Z∗ such that

ζ (σ(Tx, Ty), σ(x, y)) ≥ 0

for all x, y ∈ X. Then, T has a unique fixed point z ∈ X such that σ(z, z) = 0.

Corollary 3.18 ([15], Theorem 5.1). Let (X,σ) be a complete partial metric space. Let T : X → X be a
given mapping. Suppose there exists a simulation function ζ such that

ζ (p(Tx, Ty), p(x, y)) ≥ 0, for all x, y ∈ X.

Then, T has a unique fixed point z ∈ X such that p(z, z) = 0.

Corollary 3.19. Let (X,σ) be a complete metric-like space. Let T : X → X be a given mapping. Suppose
there exist a simulation function ζ ∈ Z∗ and a lower semi-continuous function ϕ : X → [0,∞) such that

ζ (σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty), σ(x, y) + ϕ(x) + ϕ(y)) ≥ 0, for all x, y ∈ X.

Then, T has a unique fixed point z ∈ X such that σ(z, z) = 0 and ϕ(z) = 0.

Proof. It suffices to take α(x, y) = 1 in Theorem 2.7.

Corollary 3.20 ([15], Theorem 3.2). Let (X, d) be a complete metric space. Let T : X → X be a mapping.
Suppose there exist a simulation function ζ and a lower semi-continuous function ϕ : X → [0,∞) such that

ζ (σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty), σ(x, y) + ϕ(x) + ϕ(y)) ≥ 0, for all x, y ∈ X.

Then, T has a unique fixed point z ∈ X such that ϕ(z) = 0.

Now, we give some fixed point results in partially ordered metric-like spaces as consequences of our
results.

Definition 3.21. Let X be a nonempty set. We say that (X,σ,�) is a partially ordered metric-like space
if (X,σ) is a metric-like space and (X,�) is a partially ordered set.

Definition 3.22. Let T : X → X be a given mapping. We say that T is non-decreasing if

(x, y) ∈ X ×X, x � y ⇒ Tx � Ty.

Corollary 3.23. Let (X,σ,�) be a complete partially ordered metric-like space. Let T : X → X be a given
mapping. Suppose there exists a simulation function ζ ∈ Z∗ such that

ζ (σ(Tx, Ty),M(x, y)) ≥ 0

for all x, y ∈ X satisfying x � y, where

M(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty),
σ(x, Ty) + σ(y, Tx)

4
}.

Assume that

(i) T is non-decreasing;

(ii) there exists an element x0 ∈ X such that x0 � Tx0;
(iii) if {xn} is a sequence in X such that xn � xn+1 for all n and xn → x ∈ X as n→∞, then there exists

a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.
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Then, T has a fixed point z ∈ X such that σ(z, z) = 0.

Proof. Let α : X ×X → X be such that

α(x, y) =

{
1 if x � y;

0 otherwise.

Then, all hypotheses of Theorem 2.1 are satisfied and hence T has a fixed point.

Corollary 3.24. Let (X, p,�) be a complete partially ordered partial metric space. Let T : X → X be a
given mapping. Suppose there exists a simulation function ζ ∈ Z∗ such that

ζ (p(Tx, Ty),Mp(x, y)) ≥ 0

for all x, y ∈ X satisfying x � y, where

M(x, y) = max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

2
}.

Assume that

(i) T is non-decreasing;

(ii) there exists an element x0 ∈ X such that x0 � Tx0;
(iii) if {xn} is a sequence in X such that xn � xn+1 for all n and xn → x ∈ X as n→∞, then there exists

a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

Then, T has a fixed point z ∈ X such that p(z, z) = 0.

Corollary 3.25 ([3], Theorem 3.7). Let (X, d,�) be a complete partially ordered metric space. Let f : X →
X be a given mapping. Suppose the following conditions hold:

(i) f is non-decreasing;

(ii) there exists x0 ∈ X such that x0 � fx0;
(iii) if {xn} is a non-decreasing sequence with xn → z, then xn � z for all n ∈ N;

(iv) there exists a simulation function ζ such that for every (x, y) ∈ X ×X with x � y, we have

ζ (d(fx, fy),M(f, x, y)) ≥ 0,

where

M(f, x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
}.

Then, {fnx0} converges to a fixed point of f .

Corollary 3.26. Let (X,σ,�) be a complete partially ordered metric-like space. Let T : X → X be a
given mapping. Suppose there exist a simulation function ζ ∈ Z∗ and a lower semi-continuous function
ϕ : X → [0,∞) such that

ζ (σ(Tx, Ty) + ϕ(Tx) + ϕ(Ty), σ(x, y) + ϕ(x) + ϕ(y)) ≥ 0

for all x, y ∈ X satisfying x � y. Assume that

(i) T is non-decreasing;

(ii) there exists an elements x0 ∈ X such that x0 � Tx0;
(iii) if {xn} is a sequence in X such that xn � xn+1 for all n and xn → x ∈ X as n→∞, then there exists

a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

Then, T has a fixed point z ∈ X such that σ(z, z) = 0 and ϕ(z) = 0.
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