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Abstract

In this paper, the bifurcation problems of twisted double homoclinic loops with resonant condition
are studied for (m + n)-dimensional nonlinear dynamic systems. In the small tubular neighborhoods of
the homoclinic orbits, the foundational solutions of the linear variational systems are selected as the local
coordinate systems. The Poincaré maps are constructed by using the composition of two maps, one is
in the small tubular neighborhood of the homoclinic orbit, and another is in the small neighborhood of
the equilibrium point of system. By the analysis of bifurcation equations, the existence, uniqueness and
existence regions of the large homoclinic loops, large periodic orbits are obtained, respectively. Moreover,
the corresponding bifurcation diagrams are given. (©2016 all rights reserved.
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1. Introduction and hypotheses

In the studies of many research areas and its application problems of nonlinear science, there are a
large number of nonlinear dynamical systems with complex dynamical behaviors. Homoclinic, heteroclinic
orbits and the corresponding bifurcation phenomena are the very important source of complex dynamical
behavior, and have been becoming a hot topic in the study of nonlinear dynamical systems. Using classical
Cartesian coordinate system and the successor function method, many scholars have studied the bifurcation
problems of low dimensional systems and achieved many breakthrough results. Recently, the research of
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bifurcation problems of homoclinic and heteroclinic loops have been increasing widespread, and the research
scope have been developing from low dimensional systems to high dimensional systems. Since the 1980s,
Wiggins, Kovacic, Luo, Han, et al. studied some low dimensional systems and some systems with special
forms (e.g. Hamilton) by using the well-known Melnikov methods [2), 3, 15, 18, 20, 2I]. In 1990, Chow
et al. studied the high dimensional non-degenerate homoclinic orbits bifurcations in [I]. Since then, the
related studies were mostly by use of the traditional construction method of Poincaré map. In 1998, by using
the generalized Floquet method to construct the local coordinate system and the Poincaré map, Zhu and
Xia discussed the bifurcation problems of non-degenerated homoclinic and heteroclinic loops in [23] 24]. In
2000, Jin and Zhu [8] studied the bifurcations of degenerate homoclinic loop for higher dimensional system
by using the foundational solutions of the linear variational system of the unperturbed system along the
homoclinic orbit as the local coordinate systems to construct the Poincaré map. This method not only
has important theoretical significance, but also has good maneuverability in the application. From then
on, Jin, Zhu, Huang, Liu, et al. studied the bifurcations and stability of homoclinic and heteroclinic loops
for higher dimensional systems [4-6, 9-14], 16]. In [7, 22], Jin and Zhang studied the double homoclinic
loops bifurcations under the non-twisted condition. For twisted double homoclinic loops, Lu studied the
bifurcation problems under the non-resonant condition in [17]. In this paper, we study the bifurcations of
twisted double homoclinic loops under the resonant condition for the higher dimensional systems. In this
case, we obtain the existence, uniqueness and existence regions of the large homoclinic loops, large periodic
orbits, respectively. Moreover, the corresponding diagrams are given.
Suppose that the C" system

where r > 5, z € R"™"™ satisfies the following hypotheses.

(H1) (Hyperbolicity) z = 0 is the hyperbolic equilibrium point of system (L.1)), the stable manifold W§
and the unstable manifold W' of z = 0 are m-dimensional and n-dimensional, respectively. A;
and —p; are simple eigenvalues of D f(0), such that any other eigenvalue o of D f(0) satisfies either
Reo < —pyp < —p1 < 0 or Reoc > Mg > A1 > 0, where Ay and pg are some positive numbers.

(H2) (Non-degeneration) System ((1.1) has a double homoclinic loops I' = T'; UTy, T'; = {z = ri(t) : t €
R,7i(£o00) = 0}, i = 1,2. For any P € I, codim(TpWy' + TpW§) = 1, where TpWy and TpW{' are
the tangent spaces of Wj and W' at P, respectively.

(H3) (Strong inclination) Denote e = . lim 7;(t)/|74(t)], e; and e; are the unit eigenvectors corresponding
—Foo

to A1 and —p1, respectively. Let ToWy' = ToWi" © ej, ToWs = ToW§® @ e;, where ToW§ and ToWy'
are the tangent spaces of Wi and W' at z = 0, W§* and W are the strong stable manifold and
the strong unstable manifold of z = 0, ToW® and To Wi are the tangent spaces of W3 and Wi at
z = 0, respectively. The following strong inclination hold:

lim (T, yWs + Tr, iy Wo') = ToWs & ToWg™,

t——+o0

m (T, yWo + T,y Wo') = ToWg® © ToWy',

li
t—

where i = 1, 2.

Remark 1.1. Obviously, ef = —e;, e; = —e,, ToW? is the generalized eigenspace corresponding to those
eigenvalues with smaller real part than —pg, ToW* is the generalized eigenspace corresponding to those
eigenvalues with larger real part than Ag.

(H4) (Resonance condition) p; = Aj.
Now, we consider the bifurcation problems of the following C" perturbed system

2= f(2) +g(2 p), (1.2)

where p € RY, 1>5,0 < |u| < 1, g(0, 1) = g(2,0) = 0.
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2. Local coordinate systems

Suppose that (H1)~(H4) are established, then, in the small enough neighborhood U of z = 0, we can
introduce successively two transformations (see [22]) such that system (1.2 has the following form:

[M(p) + heot]x+ Ow)[O(y) + Ov)],
[=p1(p) + h.ot.]y + O)[O(z) + O(u)],
[Bi(p) + h-ot.]u+ O(x)[O(x) + O(y) + O(v)],
- )+ O],

where z = (z,y,u*,v*)*, 2 € R}, y € R, u € R" !, v € R™™!, ¥ means transposition, A\;(0) = p1(0) = Ay,
Reo(B1(p)) > Mo, Reo(—Ba(p)) < —po, and the “h.o.t.” means higher order term. Thus, the unstable
manifold, stable manifold, strong unstable manifold, strong stable manifold and local homoclinic orbits have
the following forms, respectively

(2.1)

SEE SN
I

Bo(p) + h.ot]v+O(y)[O(x) + O(y

m%C:{yZOU:O} VVISOC:{:U:O,UZO,},
loc {l’—Oy—OU—O} m2i2{$207u:0ay20}a
LinWi.={y=0,v=0,u=u;(z)}, LinWe,.={z=0,u=0,v=uv(y)},

where i = 1,2, u;(0) = 4;(0) = 0, v;(0) = v;(0) = 0.

Denote rz( )= (rf(t),rf( ), (rit ()", (rf (£))*)*, i = 1,2. Suppose that r1(=T1) = (6,0, 67 ,,,0%)*, r1(T1) =
(0,6,0%, 07,)", m2(=T2) = (=6,0,03,,0%)", ro(T2) = (0,-4,0%, d3,)*, where, T; > 0, i = 1,2, ¢ is small
enough, such that {(z,y,u,v) :|z|,|y|,|ul,|v] < 20}C U. Obviously, [0;u|, |0i.| at least are O(6¥), w =

min{ feotPau)) feglly > g,

Con51 er the hnear variational system

2= (Df(ri(t)))z. (2.2)

Similar to [6, [7, 16l 17, 22], (2.2) has a fundamental solution matrix Z;(t) = (2}(t), 22(t), 23(t), 2}(t))
satisfying

2 (t) € (T, yW*)* N (T, yW™)",
27 (t) = (=1)'7:(t) /[P (Ty)| € T, ¢y W* N T,y W,
2 = (1), 2" TH) € (T, W) N (T, )W) = Tpyy W™,
4,1 4m—1 s u\c ss
2t = (271 (@t), 2T () € (T We) N (T iy W™)E = Ty W,
and
1 0 wf’l 0 wl-n w?l 0 w?l
0 1 wi? 0 w2 0 0 wh
Zi(L) = 0 0 wf’g’ 0|’ Zi(-Ti) = wil?’ wi23 I w?B ’
wit, w owt T 0, O 0 wi
where ¢ = 1, 2, wl-21<0, wim#() detw?’?’;&O det 447&0 and \wilj( 12) 1\<<1 j#2 |w2]( ) 1|<<1

j=&¢wﬁwfrw<1y¢3hu< N <1, 5 #4

Denote ®;(t) = (¢;(t), ¢ ( ), ¢2(t), <;54( t) = (Zl-_l(t))*, i = 1,2, so, ®;(t) is a fundamental solution
matrix of the adjoint system d) = (Df(rZ t)))*¢ of (2.2), and ¢;(t) € (T, (W) (T, yW™)¢ is bounded
and tends to zero exponentially as ¢ — too [7, [8, [I7] 19 22 23].

We select 2} (t), 22(t), 23(t), z}(t) as the local coordinate systems along I';, i = 1, 2.

Let A; = w2-12/|w}2|, 1 = 1,2. We say that I'; is non-twisted if A; = 1, and twisted if A; = —1. In this
paper, we consider the case of twisted.
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3. Poincaré maps and the bifurcation equations with single twisted orbit
(H5) (Single twisted condition) A} =1, Ay = —
Denote h;(t) = ri(t) + Z;(t)N;(t), ( (n},0,(n)*, (nH*)*, i = 1,2, and let S; = {z = hi(-T;) :

(2

t) =
lz|, |yl, |ul, |v| < 26} C U, SiF = {z = hi(T}) : |zl, |yl, |ul, |v] < 26} C U be the cross sections of T; at t = —T;
and t = T;, respectively.

11 F?

Ay =1,Ay = —

Figure 1

Now, we set up Poincaré maps. . ‘

In U, denote Fy : S = ST, Foi(qy) = ¢t Fio - ST = Sy, Fia(gY) = 7Y B ST = ST
Fl@)y =g B S§ — Sy, FHGY) = 7™ where i = 1,2, j =0,1,---.

In the tubular neighborhood of I';, denote by F?, the map from S, to S+ Due to Ay =1, Ay = —

2j+1 2j+2 _2j+1 ,22 2j+1 ,22 9i+1 2j+2
(]+) 7+ Ff(q1]+) ]+ FQ( J+> J+ FQ( ]+): J+

we denote F1 q @ where i = 1,2,

j=0,1,2,--- (Figure|l
At ﬁrst, we set up the relationship between the Cartesian coordinates and the normal coordinates of the
points in the neighborhood of homoclinic loop. Let

2])*7 1}2])* *

25,23 27
q@']( Z])yz )( i l) ( )N‘]a

(0)*)* = ri( ;

@) (@7, g7, @), (07)) = r(Ty) + Zy(T) N,

q2j+1($2j+1 2]+1’ (u2g+1)*, (U2j+1)*)* ( T,
) = ri(—

2

i i Y i i =ri(-T) + Z(-T;) jHa
a7 @ g @ @) = (T + 2T
N = ("0, ("), ()7,
N12j+1 _ (n?jJrl’l,O, (n2j+1 ) ( 2j+1, 4) ) ’
N7 = @0, (a7,
lejﬂ _ (7_%2]#1,1’ 0, (T_L?j+1,3)*’ (T_lej+1,4)*)*‘

By Z1(T;), Z;1(~T;) and some simple calculations, we get

(2 (2

Yl b, T s, i a6, 2P g, (3.1)
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and 2j+1,1 12\—17, 2j+1 420 44\—1, 2j+1
;i = (w;") [y —wit(wit) e,
n?jﬂ’?’ _ u?j+1 — Oy + bi(w?)_ly?jH + ai(w§4)_1vi2j+1, (3.2)
n?j+1’4 _ (w?‘l)*lvfﬁl,
! = o —wl wP)
i = ) 33
n?j’4 = —wz? 4 e (wP) T 0 — by,
where, b; = wlw?(w2) ! — w3, ol = —wH + (W) w2, 63 = —w + wB W) w2, a; = ad —
w23 (w? ) Lal, ¢ = (wlwdt + w?wd? — wdt).

As well, the relatlonshlp between the two kinds of coordinates of ql , q? IT1 also satisfies (13.1), (3.2), and
E3).

Now, we consider the map F?. Substituting transformation z = h;(t) into (1.2), and using 7;(t) =
F(ri(8), Zi(t) = Df(ri(t)) Zi(t), we get

Zi(t)(n},0,(n?) , (nd) )* = gu(ri(t),0)pu + h.o.t..
Multiplying the both sides of the above equation by ®(t) and using ®}(t)Z;(t) = I, we have

(n,0,(n?) , (n) )" = @} ()gu(ri(t), 0)p + hoot..
Integrating it, we have F? defined by the following

nBE 2 ot
ot =T e M ot (3.4)
ﬁ§j+2’k = n3j+1’k + MEu+hot., T '
p2HE 2R gk g o
where, MF = [T2°(¢F (1)) g, (rs(t),0)dt, k = 1,3,4, i = 1,2 [7,18, [I7, 22, 23).

Next, we consider the map in U. Without loss of generality, we may assume that the resonance condition
has the following form for the system ([1.2]).

p1(p) = (14 a(u)Mi(p), where, a(u) € R, |a(p)| < 1, a(0) = 0.

Assume that 737 is the time from ¢ to ¢f, 712 is the time from ¢¥ to ¢, 71 is the time from @ to 41,
and 79 is the time from (jg to q%. Set s; = e~ MW7 j =21,12,1,2, which are called the Silnikov times. By

(2.1) we have

x=eMWUTi=T)g L hot., y=e QtwDMWE=T)y, 4 hot.
w=eBrWt-Ti=m)y 4 hot., v=e BTy 4 hot.

Neglecting the higher order terms, the above formulas defined the following maps for z1, yo, u1, vy and ¢
take the corresponding values.

Fl: 20 ~ds, i ~ 5S§1+a(u)), @d ~ Slel(u)/M(u)—% 7!~ 5132(/‘)/)\1(/1)2—}?’ (3.5)
Fl: 20~ 650,53 ~ —63(1+a(“)),a8 ~ th(u)/x\l(u)u2 ol ~ sBa(u)/M(u)q—}g’ (3.6)
Foy: o~ dsor,yf & =0y 0 0 & s M 0 o e sy 00 00, (3.7)
Fio: 2%~ —s12, 43 ~ 5s§1+a( )),U? ~ S%(u)/h(u)u%’v% ~ 8%(#)/&(#)@9 (3.8)

At last, by (3.1) ~ (3.4) and (3.5) ~ (3.8]), we can get Poincaré maps as follows.
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Fi=FloF!: Sf— S, (@) =& :
72,1 = (w 12)7158(1+a(u)) + Mg+ hot.,
ﬁf?’ = @} — 81y + by ()L M) LAY+ ot
a2t = (wit) =P G0 L A 4 ot
Fy=FloFy: Sfw S Fi(d)) =¢ :
ny! = (w%2)_1(58§11+a(“)) + Mip+ hot.,
?3 =ui — b1y — by (w 12)_155(1+a(“)) + Mip+ hot.,
%4 — (w 4114)—18232( 1)/ X1 (p) W+ M+ hot..
Fy=F}oFis: ST — S5, Fa () =45 :
_g Y= (w %2)_153514'&(”)) + M+ hot.,
’% B = ud — gy + by(ws )*153(1%‘(“)) + Mju+ h.ot.,
ﬁ§,4 _ (wém)—lslfz( 1)/A1 (1) )0 0 ¢ Miu+ hot.
Fy=FZoF}: Sf — S5, F5(@) =¢3:
g = (w%Q)_lénga(M)) + Myp+ heot.,
n%’?’ = U3 — gy — bg(w%Q)_lénga(“)) + M3+ hoo.t.,
ng4 = (w ‘214)*15232(“)/)‘1(“)178 + M u+ hot..
Meanwhile, we get the successor functions as follows:
Gl(sl,u},vl) (G, G3,GY) = (F1(3)) — @?) is given by
Gl =5[(w!2) s _ o) Ml hot.,
G3 =a! — 81y + by (w) )—15551%(#)) — (W) 1s Bl(#)/Al(ﬂ)ﬂ% + M3+ hot.,
Gt =~} + 01 + witdsy + (wi*) ™! BQ(“)/’\I(“) O 4L M+ ho.t.
Ga(s2, U3, 05) = (G3,G3, G3) = (F2(@3) — @3) is given by
G’% :5[_(w12)—18(1+a(u)) + s9] + Mglﬂ + h.ot.,
G3 =t — Goy — bo(w %Q)flésglﬁ‘a(ﬂ)) — (w33)~ 51(#)//\1(u)ﬂ% + M3+ hot.,
G = =09 + 62 — wy'dsy + (wiy) Lz MG 4 M+ hot.,
G1(s12, 521, ub, ud, v, v9) = (G}, G3,G}) = (F1(q)) — ¢?) is given by
Gl =5[—(w!?) W) g1+ M+ heot.,
G3 =u! — 51y — by (w! )—1585114—&(#)) — (w33)1s Bl(u)/k1(u)u1 + M3+ hodt., (3.9)
Gi = — o + 01y — widsio + (wit) Lsg2 WM L A+ ot
Ga(s12, 82, up, Uy, 0], 73) = (G3,G3, G3) = (F2(q}) — @) is given by
G =6](w?) s L go) + Mip+ heot.,
G3 =uh — 8oy, + ba(wh?) "L as{hTM) — (w§’3)—1s§1(“)/*1(“)a5 + M3y + hot., (3.10)

G% —_ 1_22 + 0oy — wQ (582 + (w1214)—1811322(u)/>\1(ﬂ)v(1) + Mﬁl,u + hot.
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Ga(s21, 82, ui, i3, v9,09) = (C;%, C?%,C?%) = (F2(38) — ¢9) is given by

G% :5[_(711%2)713&1%6(“)) — so1] + M21,u + h.o.t.,

G3 =13 — 9y — bz(w%2)_155§1+a(“)) - (w§’3)_15%(“)/)‘1(”)u% + M3+ heo.t., (3.11)
G = — 09 + Ggp + whtdsgy + (wih) 1PN WG0 L Ak 4 ot

Thus, we get the three bifurcation equations as follows:

Gi(s1,u1,70) = (G1,G3,GY}) =0, (3.12)
Ga(s2, 13, 05) = (G3,G3,G3) =0, (3.13)
G(Slg,821,Sg,u%,u%,’l}?,vg,ﬂ%,’l_)g) = (Gl,GQ,éQ) =0. (3.14)

Obviously, for system , there is a one to one correspondence between the solutions of the bifurcation
equations satisfying s; > 0, j = 1,2, 21,12, and the 1-homoclinic loops and 1-periodic orbits bifurcated from
'y, T'g, I' =T UT9, respectively.

We call the 1-homoclinic loop and 1-periodic orbit bifurcated from the single homoclinic loop I'; as small
homoclic loop and small period orbit, respectively; call the 1-homoclinic loop and 1-periodic orbit bifurcated
from I' = T'; U9 as large homoclic loop and large period orbit, respectively.

4. Bifurcations with the single twisted orbit

At first, by the analysis of the existence of solutions of the equations and which satisfy
sj > 0, 7 = 1,2, we can get the bifurcations of the single homoclinic loop I';, i = 1,2, for the case of
non-twisted and the case of twisted, respectively. About the details, one can see [6, [IT] and their references.

Now, in this paper, we discuss the large 1-homoclinic loops and large 1-periodic orbits bifurcated by
[' = T; U, that is, discuss the solutions Q(sia, 521,52, ui,ud,v?,v9,4d,08) of the bifurcation equation
which satisfy s15 > 0, s91 > 0, s9 > 0.

By , , , for 0 < s19, 891, 89, || < 1, the equation (G?,G%,G%,G%,G%,ég) = 0 has

. : 1 1 1 1
always a unique solution ul = ul(sa1, 812,82, 1), us = ul(s21, 812,82, 1), v = v{(s21, 812,52, 1), v =
0 | 0 _ =0 Y 1 A1 Ay
v9(S21, S12, 82, 1), Uy = Uy(S21,S12, 52, 1), Uy = Us(S21,S12,S2, ). Substituting it into (G, G5, G3) = 0,

we have
5[ (w!2) 1S L go) 4 M+ hoot. =0,

5(ws?) s gl 4+ Mg p+ hoot. =0, (4.1)
§[—(wi?) LS _ oo ]+ Mip+ hoot. = 0.

Thus, for system ([1.2)), there is a one to one correspondence between the large 1-homoclinic loops and
large 1-periodic orbits bifurcated from I' = I';y U T’y and the solutions of the bifurcation equation (4.1))
satisfying si19 > 0, s12 > 0, so > 0, respectively.

4.1. a(p) =0

Theorem 4.1. Suppose that (H1)~(H5) hold. If a(p) = 0, (wi?)~Y(wi?)72 # 1, rank{ M}, M}} = 2, then,
for |u| < 1, system has at most one large 2-1 homoclinic loop, or one large 1-1 homoclinic loop, or
one large 2-1 double homoclinic loop, or one large 1-1 double homoclinic loop, or a large 2-1 periodic loop
i the small neighbourhood of I' = I'y N 's. Moreover, these orbits do not coexist.

Proof. In this case, (4.1]) becomes
—(wi*) Yso1 + s19+ 6 "ML p+ hoot. = 0,
(W) "Ls12 4 52 + 6 Mg+ heot. = 0, (4.2)
_(W%Q)_lsz — 821 + 5_1M21u + h.o.t. = 0.
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That is

(wi?)™! —1 0 $21 M g
0 —(wiH=t -1 si2 | =61 Miu | +hot.
1 0 (wy?)~! 52 Mg pu
(wi?)~! -1 0
Denote B = 0 —(wi?)~t -1 DI B =1 — (wi?) 1 (wi?)72 # 0, then, (4.2) has a
1 0 ( 12)—
unique solution 0 < s19(p), S21(p (1) < 1 satisfying s12(0) = s21(0) = s2(0) = 0, that is,
Mip Mip
Mip | +hot.=6YB| 'B*| Mlu | +hot.
Ml Ml
oM o 12# (4.3)
— (w3 M ( Y+ 1) M3
=5 B [+ M1 ( +1) M} p | +hot.
[( 2)~ 1]\/[1 ( (wl wy )_1) M21] K

If s91 =0, 512 >0, 59 >0, or s19 =0, 591 >0, s0 >0, or s9 =0, s12 >0, so01 > 0, then, system
has a large 2-1 homoclinic loop (Figures .

If s91 =0, s9 =0, s19 > 0, or s15 =0, so = 0, s91 > 0, then, system has a large 1-1 homoclinic
loop (Figures 5] [6).

If s91 =0, s12 =0, s2 > 0, then, system has a large 2-1 double homoclinic loop (Figure @

If s19 =0, s21 =0, s2 = 0, then, system has a double 1-1 homoclinic loop (Figure .

If s91 > 0, s12 > 0, s9 > 0, then, system has a large 2-1 periodic loop (Figure @

Thus, the theorem is established. O

s91 =0, 519 =0, _0 s2 = 0,821 =0,
S12 > 0,89 >0 Ss91 > 0,80 >0 So1 ;20_812, <0 S12 >0
Figure 2 Figure 3 Figure 5

Figure 4

(<)

591 =0,512=0 —
821 = 07 S12 = 07 . S92 ’:1(2) ’ 521 > 07 S12 > 07

s9 >0 s9 >0

| ‘t p //\‘
sg = 0,512 =0,
Ss91 >0

Figure 6 Figure 8

Figure 7 Figure 9

Theorem 4.2. Suppose that (H1)~(H5) hold. If a(u) = 0, (wi?)~Y(wi?)=2 # 1, rank{ M}, M}} = 2, then,
for |ul < 1, there exist surfaces L9y, Ly, LY, LY 5, LYy, LY 19, L9 155, and a region H, such that
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(1) For p € LY, (&2) has a solution sy1 = 0, s12 > 0, so > 0, that is, system (1.2) has a large 2-1
homoclinic loop (Figure .

(2) For p € LY, (A2) has a solution s12 = 0, s91 > 0, s9 > 0, that is, system (1.2) has a large 2-1
homoclinic loop (Figure .

(3) For u € LY, (&2) has a solution sy = 0, s12 > 0, s91 > 0, that is, system (L.2)) has a large 2-1
homoclinic loop (Figure [4)).

(4) For p € L81,2’ (4.2) has a solution s9; = 0, so = 0, s12 > 0, that is, system (1.2)) has a large 1-1
homoclinic loop (Figure .

(5) For u € L?2’2, (4.2) has a solution s12 = 0, sy = 0, s > 0, that is, system (L.2) has a large 1-1
homoclinic loop (Figure |§|)

(6) For p € LgLn, (4.2) has a solution sa1 = 0, s12 = 0, sy > 0, that is, system (1.2) has a large 2-1
double homoclinic loop (Figure .

(7) For € L3171272, (4.2) has solution s12 = 0, s21 = 0, so = 0, that is, system (1.2]) has a double 1-1
homoclinic loop T = T9(u) UTY(u) (Figure .

(8) For u e H, (4.2) has a solution sa1 > 0, s12 > 0, s > 0, that is, system (1.2) has a large 2-1 periodic
loop (Figure @)
Proof. By (4.3)), we get
(1). In the region Ry, = {u : ||B|~"- [—Mip+ (wi?)™t (W)™ + 1) Map] + hot. > 0} N {p 1B~ -
[(w3?) "' Mip— (1+ (wi?) Y (wi?)™') M3 p] + h.o.t. > 0}, there is an (I — 1)-dimensional surface
L) ={p: —(w3?) 2Mip+ [(wi?) ™' + 1] Myp + h.ot. = 0},
which has normal vector —(w3?) 2M{ + [(w3?)~'+ 1] M3 at p = 0, such that for p € LY, ([4.2) has a
solution s9; = 0, s12 > 0, s > 0, that is, system ((1.2) has a large 2-1 homoclinic loop.
(2). In the region R% = {u : ||B| " - [(w3?) ' Mip— (1+ (wi?wi®)™) M3p] + hoot. > 0} N {p: |B|| -
[—(w3?) 2Mip+ ((w3?)t 4+ 1) Myp] + h.ot. >0 }, there is a (I — 1)-dimensional surface
19, = {p: —M}p+ (i)™ [(wi?) ™) + 1] M+ hot. = 0},
which has normal vector —M{ + (w{?)™! [(w3?)~! + 1] My at p = 0, such that for p € LY,, ([4.2) has a
solution sjo = 0, s21 > 0, s3 > 0, that is, system ([1.2]) has a large 2-1 homoclinic loop.
(3). In the region RY = {u: || B|| ™" [~ (ws?) 2Mip+ ((wi?)~' +1) Mjp] +h.ot. >0} N {u: |B| " [-M]u
+ (wi?) 7! (wd?) ™ + 1) M3p] + h.o.t. > 0}, there is an (I — 1)-dimensional surface
LY ={p: (w*) ' Mip— (1+ (wiw3®)™') Myp + h.ot. = 0},
which has normal vector (w3?) " 'M] — (1 + (wi?)"H(w3?)~') M3 at p = 0, such that for 4 € LY, (4.2) has a
solution s = 0, s12 > 0, s91 > 0, that is, system ((1.2) has a large 2-1 homoclinic loop.
(4). In the region RS, 5 = {y : |B||~* [—M{p+ (wi?) ™ ((w3?)~t 4+ 1) M3 p] + h.o.t. > 0}, there is an (I —2)-
dimensional surface
IR = I N IS =(e: —(ud?) Mt + ((ud?) " + 1) M+ heot. = 0}
N {p: (wy?) "M — (1 + (wi?wy®) ™) Myp+ hoo.t. = 0},

which has normal plane span{—(w3?) "2 M{ + ((w3*) ™' + 1) My, (w3?) "' M{ — (1+ (wi?w3?) 1) My} at p =0,
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such that for p € L81,27 (4.2) has a solution so; = 0, so = 0, s12 > 0, that is, system (|1.2]) has a large 1-1
homoclinic loop.

(5). In the region RY 5 = {p : B! [—(wd?) 2Mip+ (wi?) ™' + 1) M3p] 4 h.ot. > 0}, there is an (I — 2)-
dimensional surface
LYp =LY N LY ={p: =Mip+ (wi®) " ((ws®) ™" + )My p + hoot. = 0}
N s (W) 7 M — (1+ (wiwy?) ™) Myp+ hoot. = 0},
which has normal vector span{—M] + (wi?)~! ((w3?)~! +1) My, (wi?)"'M] — (1 + (wi?w3?)"")M3} at

=0, such that for pu € L?Q’Q, (4.2) has a solution s12 = 0, s3 = 0, s91 > 0, that is, system ({1.2)) has a large
1-1 homoclinic loop.

(6). In the region R, 1, = {u : 1Bt [(w3?) ' Mip — (1+ (wi?w?) ™) M3p] + h.o.t. > 0}, there is an
(I — 2)-dimensional surface

Lo1qo = Ly N LYy = {p: —(w3®) 2Mip+ ((w3®) ™" +1) Myp + h.ot. = 0}
A M+ (@) () 1) Mg+ hot. =0},

which has normal vector span{—(w3?)2M] + ((wi?) ™1 + 1) M}, —M{ + (wi?) "1 ((wi?) "1 +1)M3} at p =0,
such that for u € L81,12’ (4.2) has a solution s9; = 0, s12 = 0, s2 > 0, that is, system ([1.2)) has a large 2-1

double homoclinic loop.
(7). There is a surface

L1120 = L1 N LN LY = {p: —(w3?) 2Mjp + ((w3?) ™ + )My + heot. = 0}
A {p: —Mip+ ()™ (i)™t +1) M3p+ hot. =0}
N B M= (1 + 0l Mb+ heot. = 0},

which has normal vector

M = span{—(wf) 2ME+ (i)™ +1) M3, (i) = (1 + i) wf) ) M,
- M4 (i) (wd?) 1) M)

at u = 0, such that, for u € LngQ’Q, has solution sj9 = 0, sg; = 0, so = 0, that is, in the small
neighborhood of T', system has a double 1-1 homoclinic loop I'" = I'{(1) U TY(1).

Notice that dimM=2, || B*|| # 0, so, indeed, the surface LY, },, is an (I — 2)-dimensional surface which
has normal plane M at p = 0. In fact, Lgmmz{u : Mip+ hot. =0} {u: Miu+ h.ot. =0}

(8). Denote

H= {M B [~ (wi?) M+ (wi?) ™t + 1) Mip] + hot. > o}
N {u BT [~ Mg+ (w7 (i) + 1) Mip] + hot. > 0}
N {u Bt [(w3*) "M — (1 + (wi?wy?) ™) Map] + hot. > 0} .

For € H, (4.2) has a solution sa; > 0, s12 > 0, s9 > 0, that is, system (1.2]) has a large 2-1 periodic loop.
About the bifurcation diagrams for the cases —1 < w}? < 0, 0 < wi? < 1 and wi% > 1, wi? > 1, see

Figures [10] and O
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-1l<wi?<0,0<wiz<1

Figure 11

Figure 10

4.2. 0<a(p) <1
Theorem 4.3. Suppose that (H1)~(H5) hold. If 0 < a(p) < 1, rank{M;, M3} = 2, then, for |u| < 1,

system has at most one large 2-1 homoclinic loop, or one large 1-1 homoclinic loop, or one large 2-1
double homoclinic loop, or one large 1-1 double homoclinic loop, or a large 2-1 periodic loop in the small
neighborhood of I' = T'y Ny, and, these orbits do not coezist.

Moreover, there exist surfaces Ly, Lo, L1 2, L%%,% L%,% L%1,127 L%f’Q, L%’Q, L;l’u, and a region R?1:122
such that:

For € Ly, system has a unique small 1-homoclinic loop in the small neighborhood of T'1.

For p € Ly, system has a unique small 1-homoclinic loop in the small neighborhood of T's.

For pn € Ly 2, system has a unique double homoclinic loops in the small neighborhood of I' = I'1 UT'g,
that is, double homoclinic loop is preserved (Figure

For p € L2 2 U L12 92 system ) has a large 1-1 homoclmzc loop (Figures |5 and |§I)

For € L21 12, system (1.2 has a large 2-1 double homoclinic loop (Fzgure

For p € Lg 2 U L% 2y Lgl 12, system (1.2)) has a large 2-1 homoclinic loop (Figures and .
For € R?Y122 system (1.2) has a large 2—1 periodic loop (Fz'gure@)

Proof. In this case, by ., we have that M

9(s12,82,521) ’812=82=821=0
according to the implicit function theorem, we have that (4.1) has a unique solution

= diag(1,1,—1) is a full rank matrix, so,

) 1+oc(u)) 5‘1M11,u + h.o.t.,
(i)~ 1+a(u)) — 6 M+ heot., 44
(w?) s 1+a(u))+5 M3+ heot.,

s12 = (w]

in the small neighborhood of s12 = s5 = s91 = 0. Thus, the uniqueness and non-coexistence are proved.
1). If (4.4) has a solution sj2 = sg = s91 = 0, then (4.1)) is turned to

Mip+hot =0,
Mjp+ h.ot. = 0.

If M{ # 0, then, there exists an (I — 1)-dimensional surface L1y = {u : Miu + h.o.t. = 0} which has
normal vector M at u = 0, such that, for u € Ly, system has a unique small 1-homoclinic loop I'; ()
in the small neighborhood of I';.

If M3 # 0, then, there exists an (I — 1)-dimensional surface Ly = {y : Mgju + h.o.t. = 0} which has
normal vector M21 at u = 0, such that, for y € Lo, system has a unique small 1-homoclinic loop I'y(p)
in the small neighborhood of I's.
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Thus, if rank{M}, M3} = 2, then, there exists an (I — 2)-dimensional surface L1o = L1 N Ly = {u :
Mip+ hot. =0, Mip+ h.o.t. = 0} which has normal plane span{M{, Mj} at u = 0, such that, for
p € Ly 2, system has a unique double homoclinic loop I'() = I'1 (1) UT'2() in the small neighborhood
of I' = I'y U T, that is, double homoclinic loop is preserved (Figure .

(2). If (4.4) has a solution sj2 > 0, s3 = s21 = 0, then (4.1)) is turned to
S12 = —5_1M11,u + h.o.t.,
sgl;ro‘(“)) + 0w My + hoot. = 0,
6 'Myp+ h.ot. =0,

Thus, in the region Rjf 5 = {p: =6 'M{p+ h.o.t. > 0,0 'wy> M3 p + h.o.t. < 0}, we get the equation
of bifurcation surface L%iz of large 1-1 homoclinic loop as follows (Figure .

{ (=6 My + hoot)3+oW) 4 5= 1wl2 Ml 1+ hoot. =0, (4.5)

S Mjyp+ hot. =0.
(3). If (4.4) has a solution s9; > 0, so = s12 = 0, then (4.1)) is turned to
— sélfra(“)) + 5_1w%2M11,u, + h.o.t. =0,

6 M+ hoot. =0,
S91 = 5_1M21,u + h.o.t..

Thus, in the region Ry}, = {p: 6 "My + h.o.t. > 0,6 wi* M+ h.o.t. > 0}, we get the equation of
bifurcation surface L%g of large 1-1 homoclinic loop as follows (Figure @

(67 M o+ hoot) 3w — 5=t 0 Ly 4 hot. =0,
— 8 ' M3u+ hot. = 0.
(4). If (4.4) has a solution s > 0, so1 = s12 = 0, then (4.1)) is turned to

S IMlp+ h.ot. =0,
s9=—6"'Mlp+hot., (4.6)
—nga(“)) + 6 twi2 M+ h.ot. = 0.

Thus, in the region R3; 15 = {p : =6 'Myp + h.o.t. > 0}, we get the equation of bifurcation surface
L%1,12 of large 2-1 double homoclinic loop as follows (Figure .

{ — (=07 M3y + hoot )W) L 57 2 ML 1+ hoot. = 0, (4.7)

6 *Mip+ hot.=0.
(5). If has a solution so > 0, s15 > 0, s91 = 0, then is turned to
S10 = —(5_1M11M + h.o.t.,
S9 = —(w%Z)flsglera(“)) — 6 M+ hot., (4.8)
— séHa(“)) + 6 L2 Ml + hoot. = 0.

Thus, in the region Ry:? = {u: =0~ '"M}p+ h.ot. > 0} N {p: 6 'wi2M}p + h.ot. > 0}, we get the
equation of bifurcation surface L%%’Q of large 2-1 homoclinic loop as follows (Figure .

— [~ (W) "N (=6 M p)AFe) — 1ALy (rafu) | S w2 Ml + h.ot. = 0. (4.9)
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6). If has a solution so > 0, s91 > 0, sj2 = 0, then is turned to
— Séll—i-a(u)) + 6w M p + hot. =0,
sy = —0 'MJpu + h.o.t., (4.10)
S91 = —(w?)’lnga(“)) + (571M21,u + h.o.t..
Thus, in the region R2y% = {u: =0 " Mlp+ h.ot. > 0} N {p : —(wd?) (=6~ Mip + h.o.t.)0 o) 4

STIMIp + hot. > 0} N {p: 6~ 'wi2M! 'y + h.o.t. > 0}, we get the equation of bifurcation surface L23? of
large 2-1 homoclinic loop as follows (Figure [3]).

(I+a(w)
[ i) =6 g ) 5] s+ bt = 0.

7). If (4.4) has a solution so; > 0, s12 > 0, sy = 0, then (4.1)) is turned to

s19 = (wi2) LS ) _ 57l 4 hoit,
sihT) L 5Ll M+ hot. = 0, (4.11)
s91 =0 'Mip+ h.ot..

21,12

Thus, in the region R; " = {p : § 'Mip + h.ot. > 0} N {p : ( 12) WS Mpu + heot.) (o) —

S M} + h.ot. > 0}, we get the equation of bifurcation surface L % of large 2-1 homoclinic loop as
follows (Figure [4]).

[(wi2) =1 (5~ M) et — 5=1pgt ] WMD) L s=Lpl2 gl 4+ hoot. = 0. (4.12)

8). If (4.4) has a solution s31 > 0, s12 > 0, so > 0, then differentiating (4.4]), and denoting by (si)ﬂ the
gradient of s;(u) with respect to u, we get

(s12)u = ()" (1 + ()51 (s21) = 67" M{ + Dot
(52)p = —(wE) " (1 + ()5 (s12) — 67" M3 + hot, (4.13)
(521)5 = —(Wi2) " (1 + a(p))so ¥ (s2) + 6 M3 + hoo.t..
(i). If p is situated in the neighborhood of L21 12 , then, substituting (4.11)) into , we get
(s12)p = (WD) + () (6 Mg g+ heot ) (s91),, — 6 M} + hoit.,

a(p)
(52)u = —(w3*) 7 (1 + o)) (=0 wy® My pu + h.o£.) 15009 (s12), — 6~ My + h.oit.,
(s91)y = 0 1My + h.o.t..

So, (s2)y = —6"'M3 +0O <(—5_1w%2M21/,L + h.o.t.)% + h.o.t., this means that so = sa(u) increases
along the direction —M3 in the small neighborhood of L%l 12
(ii). If p is situated in the neighborhood of Lg 2, then, substituting (4.8)) into , we get
(s12)p = —6 ' M{ + h.o.t.,

(s2) = — (w371 + a(w) (=0 Mip + h.0.t.)* W (s19),, — 6 M3 + h.o.t.,
a(p)
(591) = —(wi?) 11 + () (6 wd2 M3 p + h.o.t.) a0 (s9),, + 6~ M3 + h.o.t..

o(p)
So, (s21)u = (5*1M21 + 0 ((51w52M21u + h.o.t.)1+a7ﬂ>) + h.o.t., this means that so; = s91(u) increases

along the direction MJ in the small neighborhood of Lg 2,
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(iii). If p is situated in the neighborhood of L%’;l, then, substituting (4.10) into (4.13)), we get

o (p)

(512)p = (W) A+ () (6 wi2 M p + hoo.t.) FeW (s91), — 6 ' MY + h.o.t.,
(s9), = =6~ 'My + h.o.t.,

(s91)p = —(w3H) T (1 + a(p)) (=6 "My + h.O.t.)a(M)(SQ)‘u + 6 M) + hot..

a(p)
So, (s12), = =0 'M{+0 <(5_1w%2M11,u + h.o.t.) 1+a<#>> + h.o.t., this means that sj2 = s12() increases

along the direction —M7 in the small neighborhood of L%’;l.

Denote by R?112:2 the region which is bounded by L%%’Q, L%’;l, L31,127 the vector Ml1 point out of it

from L%2217 the vector M3 point out of it from L;l’u, and the vector MJ point into it from L;?’Q. By the

discussion of above, we get (4.4)) has solution so; > 0, s12 > 0, s3 > 0 for u € R*\122 that is, system (1.2)
has a large 2-1 periodic loop (Figure [9).

At last, by (@3), (@7), (E9), (E12) and (H5), we get

—1,.12q4s1 —1,.12 74 r1 —1,.12q4r1 —1,.12q4s1
-0 Wy MQ,U/’Lgl,12> -0 Wo MZ/’L|L%%2> —0 Wo MQ/,L‘L2> -0 Wy MQ,U/’L2

—o twli? i
2> 2 Myp |22,

—1,.12q4r1 —1,.12q4r1 —1,,12 7 r1

12

Thus, we obtain the bifurcation diagram as Figure O

21,12
11:2 1;2 ’

_ T21 _
21,12
Ly Liza 24

L2 - .
21,12 L§1,12 1
21,2 7212
L5 Lig” —
e Ly e
Ly
7122 Ly? :
L%le Ly
0<a -l<a(p) <0
Figure 12 Figure 13

4.3 -1 < afn) <0

Theorem 4.4. Suppose that (H1)~(H5) hold. If —1 < a(p) < 0, rank{M{, M3} = 2, then, for |u| < 1,
system has at most one large 2-1 homoclinic loop, or one large 1-1 homoclinic loop, or one large 2-1
double homoclinic loop, or one large 1-1 double homoclinic loop, or a large 2-1 periodic loop in the small
neighborhood of I' =1'1 N 'y, and, these orbits do not coezist.

Moreover, there exist surfaces L1, Lo, L 2, E%%’Q, E%’Q, [_131’12, E%?’Q, E%;’Q, Egl’u, and a region R?%1%2,
such that:

For u € Ly, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of T'y.

For ji € Lo, system has a unique small 1-homoclinic loop in the small neighborhood of T's.

Forp e 5172, system has a unique double homoclinic loops in the small neighborhood of I' = I'1 UT'g,
that is, the double homoclinic loops are preserved (Figure .

For € Z%%Q U I_L%Q, system has a large 1-1 homoclinic loop (Figures |5 and |§I)

For pn € f/%l,lg, system has a large 2-1 double homoclinic loop (Figure
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For p € I*é%? U E%Q U E%l’u, system (L.2)) has a large 2-1 homoclinic loop (Figures and .
For p € R?1122 system (1.2)) has a large 2-1 periodic loop (Figure @)
The bifurcation diagram for this case (see the Figure .

1 1
Proof. In this case, 1 + a(u) < 1, by times scale transformations sj2 — (s12)1FeW | s91 — (s91) TFo@),
1
Sg — (s2) 1+ | (4.1)) becomes
1
S[—(wi®) " tsa1 + (s12) Fe®@ ] + My + h.ot. =0,
1
5[(10%2)_1812 + (s2) TG ] + M+ h.ot. =0, (4.14)

1
6[—(w3?) " tsy — (s21) W | + My p + h.o.t. = 0.
Similar to that of Theorem (4.14]) has a unique solution

1
91 = wiZ(s12) oW + 6 YwiMlp + h.o.t.,

1
S12 = —'UJ%Q(SQ) 1+a(p) — 5*1w%2M21,u + h.O.t., (415)

1
S = —wa?(s91) e 4+ 6 Lwd2 My + hoo.t.,

in the small neighborhood of s12 = s5 = s91 = 0. Thus, we get the uniqueness and non-coexistence.
(1). If (4.15) has a solution sja2 = s3 = s91 = 0, then (4.14]) is turned to
M+ hot. =0,
M3y + h.ot. = 0.

If M{ # 0, then, there exists an (I — 1)-dimensional surface Ly = {p: M}p+ h.ot. = 0} which has
normal vector Ml1 at p = 0, such that, for p € L1, 0 < |p| < 1, system (1.2 has a unique 1-homoclinic loop
I'1 (1) in the small neighborhood of T';. )

If M} # 0, then, there exists an (I — 1)-dimensional surface Ly = {u : M} + h.o.t. = 0} which has
normal vector MJ at u = 0, such that, for u € Ly, 0 < |u| < 1, system (I.2) has a unique 1-homoclinic loop
I'y(p) in the small neighborhood of T's. B o

So, if rank{M{, MJ} = 2, then, there exists an (I — 2)-dimensional surface L1o = L1 N Ly = {u :
Mip + hot. =0, Mju+ h.ot. = 0} which has normal plane span{Mi, M1} at u = 0, such that, for
p€ Lig, 0 < |u| <1, system (1.2) has a unique double homoclinic loop I'(i) = T'1 () UT3(p) in the small
neighborhood of I' = I'; UT'9, that is, the double homoclinic loops are preserved (Figure .

(2). If (4.15) has a solution siz > 0, s = s21 = 0, then (4.14)) is turned to

(Slg)m + 6 'Mip+ hot =0,
s19 = —0 wd M+ h.o.t.,
§'Mip+ h.ot. = 0.
Thus, in the region Ryf 5 = {p: =6 'wy>Mgp + h.o.t. > 0,6 ' M{p + h.o.t. < 0}, we get the equation
of bifurcation surface E%%Q of large 1-1 homoclinic loop as follows (Figure 5.
(=0 YWl My + hot) oW + 6~ My + hoot. =0,
{ 5 'Myp+ hot.=0.
(3). If has a solution s91 > 0, s5 = s12 = 0, then is turned to

s91 = 0 twi?Mipu+ hot.,

S MY+ h.ot. =0,

- (321)% + 6 "M+ hot. =0.
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Thus, in the region Ry}, = {p: 6 'wi? M}y + h.o.t. > 0,67 Mypu + h.o.t. > 0}, we get the equation of
bifurcation surface E%Q of large 1-1 homoclinic loop as follows (Figure @
S IMJpu+ hot. =0,
1
— (6'wi My + hoot.) @ + §MI 4 hoot. = 0.
. . as a solution sg > 0, 591 = s12 = 0, then (4. is turned to
4). If (4.15) h luti 0 0, then (4.14) i d
ST'Mlp+hot =0,
1
(59)TFe00 + 6 M+ h.ot. =0,
s9 = 6w Map + h.o.t..

Thus, in the region R%Ll? = {p: 07w Mlp + h.ot. > 0}, we get the equation of bifurcation surface
E%l,u of large 2-1 double homoclinic loop as follows (Figure [7)).

6 *Mip+ hot. =0,
(6~ wi2 Ml T —1q/1 _
My + h.ot.)Few) + 6 Mypu+ h.ot. =0.

(5). If (4.15) has a solution sg > 0, s12 > 0, s21 = 0, then (4.14) is turned to

1
(519) el + 6 M+ h.ot. =0,

1
519 = —ws2(s9) e — § Ll Ml + hoo.t., (4.16)
s9 =0 ‘wy*Myp + h.o.t..

Thus, in the region Ré%i = {p : 07 wi2Mlp + hot. > 0y N {p : 5 IMip+ hot. < 0} N {p :
jwlz(é_lw%QMQIM + h.o.t.) e — §Lwl?Mipu + h.ot. > 0}, we get the equation of bifurcation surface
Lg’ of large 2-1 homoclinic loop as follows (Figure .

1
} T+a(p)

1
[—@2(5_1%0521\421#) el — 0wy My p + 6 "Ml + hot. =0.

(6). If (4.15) has a solution sy > 0, s91 > 0, s12 = 0, then (4.14)) is turned to

s91 = 0 twi?Mipu+ h.ot.,

1
(89)TFal0 + 6 M)y + h.ot. =0, (4.17)
1
Sy = —wa?(s91) T + 6 Lwd2Mlp + hoo.t..
Thus, in the region R?éz = {p: 0 'wiPMlp + hot. > 0} N {p : S 'Mlp + h.ot. < 0}, we get the
equation of bifurcation surface E%’Z of large 2-1 homoclinic loop as follows (Figure .
1
L 1
[—w%2(5_1w%2M11,u) Tra(u) 4 5_1w%2M21:“} R S M}y + h.ot. = 0.

(7). If (4.15) has a solution sa1 > 0, s12 > 0, so = 0, then (4.14)) is turned to

1
91 = wiZ(s12) W + 6 Lwi?Mip + h.o.t.,
s12 = —0 ‘wy M3+ h.o.t., (4.18)

1
— (891) T + 6 M+ h.ot. = 0.



Y. Jin, et al., J. Nonlinear Sci. Appl. 9 (2016), 5579-5620 5595

1
Thus, in the region R21 2= wi2 (=0 wBMlp + hoot.)F e + 5 w2 My + hot. > 0} N {u:

S IMJpu+h.ot. > 0}, we get the equation of bifurcation surface L21 12

(Figure 4)).

of large 2-1 homoclinic loop as follows

1
1 TFald)
- [ 126wl M p) 7o + 5 hwl2Mip| T 4 5 MY+ heot. = 0.

8). If (4.15) has a solution s9; > 0, s12 > 0, s2 > 0, then, differentiating (4.15)), and denoting by (Si)u the
gradient of s;(u) with respect to u, we get

1 —a(p)
(s21)p = (WP)W(SH)”O‘(“ (s12)p + 0wl M7 + hoo.t.,
1 —a(p)
(s12)p = —(W%Q)m(@) ol (s9), — 5‘1w;2M21 + h.o.t., (4.19)
1 —a(p) _
(s2)u = —(W%Q)m(sm) THe() (s91)y + 6 Ywi? My + h.ot..

(i). If p is situated in the neighborhood of L21 12’ then, substituting (4.18) into (4.19)), we get

12 ()
(s21)p = #;()( S w2 My + hoo.t. )Ha(u) (s12)p + 6 twi?M{ + h.ot.,
(s12)y = =6 twy*My + h.o.t.,
w2 - -
(s2)p = Tof(u)(a LM+ hoot) W (s91),, 4+ 6 wd2 M3 + heo.t..

So, (s2)u = 0 'wiM3 + O (6~ 'Myp + h.o.t.)™ (“)) + h.o.t., this means that sy = sa(u) increases along

the direction —M. in the small neighborhood of Lgl 2,

(ii). If p is situated in the neighborhood of Lé? ?_ then, substituting (& into (4.19), we get

12

w

(821)u = T;()(_‘S_lMllﬂ + hoot) "W (519, + 0 Lw2M} + hoot.,
—wy’ 1, 1271 =), 12

(s12)p = m(é_ wy“ My p + h.o.t.)Few (s9), — 51 w3 M2 + h.o.t.,

(s2), = 0 tw3? My + h.o.t..

So, (s21) = 6 twi?M{ + O ((—6 ' Mip+ h.ot.)™™ o )) + h.o.t., this means that sa; = s21(p) increases

along the direction M in the small neighborhood of Lg 2,

(iii). If p is situated in the neighborhood of L%;l, then, substituting (4.17) into (4.19), we get

(321)u =5tw 12M11 + h.o.t.,

(s12)p = ——2— (=0 Mg p + hoot.) =W (s3),, — 6 Lwd2 M} + h.o.t.,

a(p)
(s2)u (0 'wi*Mip+ hot. )”a(“) (s91) + 0 'wi? M3 + h.o.t..

~ 1+a(p

So, (s12) = =6 'wi2 ML + O (=6~ Mp + h.o.t.)~*W) + h.o.t., this means that si2 = s12(u) increases

along the direction My in the small neighborhood of L2 21
2,21

Denote by R?!12:2 the region which is bounded by L21 12 E;% 2, L12 , the vector MJ point out of it from
E§1,12 the vector M7 point into it from L;? 2, and the vector MJ point into it from Lf;l By the discussion
of above, we get (4.15) - has solution sg; > 0, 512 > 0, s > 0 for u € R?1122 that is, system (1.2]) has a large

2-1 periodic loop (Figure @ O]
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5. Poincaré maps and the bifurcation equations with double twisted orbits
(H6) (Double twisted conditions) A; = —1, Ay = —1.

In this case, in the tubular neighborhood of T;, due to Ay = —1, Ay = —1, we have F?(q ]H) cj?jH,

_2j+1
F (qzj+

) = .2j 2 Jefined by

where, M} = f+oo Pr(t)

7

_2j+2k

ni] )
2742,k

n JTak

n?jJrl’k + MFu+hot.,
AT L MEu 4 heot.,

))*gu(ri(t),0)dt, k=1,3,4,i=1,2, j = 0,1,2,--- (Figure .

Ay =2NAy=—

Figure 14

Moreover, the Poincaré maps Fi, Iy, F» and I, have the following forms.

Fy

B

Fy

A2l _
ny
23
ny’

24 _
U3

2,1
ny’

23

2,4
nl -

21

ny’

723 _
U

24 _
ny’

:F120F21: S;'-)SY;Fl(q(Q))ZQ%

nl +M1,u+h0t
nl S+ M+ hot.
”1 +M1,u+h0t

:FfoFll: STHST, Fl((j?):q%:

nl -l—Ml,u—i-hot

—(wi?)~ 158(1+a( m) 4 Mip+ ho.t.,

uj — 01y — b1 (wi )*1(53;11%6(“)) + M u+ heot.,

(i) ~LsP200 A0 4ty 4ot

(wi2) et W) Ll 4 hot,

= al? b MBp+ heot. = at — 5y + by (w!2) 785U L AB L+ hoot
A Mot = (PPN Aty o,

:F220F121 SfHS;rg FQ(q(l)):q_%

n2 Y Mg+ hot. = (wi)esS ) Lovly 4 hot,
S M3+ hoot. = ub — Gay + by(wh?)"16sSTM) L A3+ hoot.,

+M2M+h0t

(wit)~ 18%( )//\1(”)11[1) + M3+ h.o.t..
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Fy=F}oF): S S, Fy(q)) = 5 :
n2t = bt 4 M+ hot. = —(w?2)7esS ) 4 Ay 4 heot,
2 e ﬁ; S M3+ hot. = @b — Gy — bg(w%Q)_léséHa(“)) + M3+ h.o.t.,
ng A= Al L M+ hot. = (wit)TLsPMWE0 Lt 4 hot..
Let @ =40, ¢ = ¢, @ = 39, 4% = ¢), we get the successor functions as follows.
G1(s1, 821, ut, ud, 09,09) = (G1,G3,GY) = (F1(¢9) — @) is given by
Gl = 5[—(wi2)"Ls( W) _ g1+ M+ hot.,
G3 = ul — 61y — by (wi?) 71as5y T — (W) TP MG L A 1 ot (5.1)
G = 0 1 61y + wios) + (wzlm)—lSQBlz(u)//\l(u)Ug + M+ hot.
G1(s1, 512, 0}, ub, 9, 89) = (GL,G3,GY) = (FL(D) — ¢?) is given by
Gl = 5[(w12)_15(1+a(“)) + s12] + Mip + h.o.t.,
G3 = a} — 61y + by (wi2)TLesi AU (q38y LB/ My Ly sy ot (5.2)
Gt = =) + 61y — witdsio + (wi )7151192(“)/)‘1(“)17? + M+ hot.
Ga(s12, 82, up, Uy, 07, 73) = (G3,G3, G3) = (Fa(q}) — G3) is given by
Gl = 5[(wd?) s o)+ My + heott.,
G3 = ul — Goy + bo(w} )—155(1+a(u)) — (W)Ll Bi(w)/ M) g Ly M3u+ hodt., (5.3)
Gh = 08 + 8py — whdsy + (wih) N2 M+ heot..
Ga(s21, 82, ul, 03,19, 09) = (G3, G5, G3) = (F2(@9) — ¢3) is given by
Gl = 5[—(wi?) 1) ool + Mip+ heott.,
G3 = al — Gay — bQ(w12)—153(1+a(u)) — (W) Ls Bl(u)/h(u)u1 + M3y + hodt., (5.4)
G5 = —v3 + 69y + witds91 + (wih) 7! Bz(“)/)‘l(“) o9 + Myp + h.o.t..
Thus, we get the bifurcation equations as follows.
G(s21, 51, 512, 82, ui, @i, ud, a3, 09, 59,09, 79) = (Gl,Gl,Gg,Gg) (5.5)

6. Bifurcations with the double twisted orbits
0

NOW we discuss the solutions Q(sa1, 51,812, 52, ui, ul,ud, wd, v, 99,09, 49) of the bifurcation equation

which satisfy s12 > 0, s21 > 0, s >0, 51 > 0.

By (.1)~(5.4), for 0 < 512,591, 52, 51, || < 1, the equation (G3, G, G3,GY, G3,G3,G3,G3) = 0 has
always a unique solution uj = uf(sa1,s12, 52,51, 1), U] = U1 (s21, 12,52, 51, 1), Uy = uz(s21, S12, 2, 51, 1),

=1

09 = 09 (891, 12, 82, 81, i1). Substituting it into (G%,G%, Gl,éé) =0, we have

§[—(wi?) sy, (el _ g1+ M+ hot =0,

S[(wi?) ™! (Ha(“ s12] + Mip+ h.ot. =0,

S[(wi2) s W) gl 4 MEp+ hoot. = 0,

]
s12]
s2]
]

o[—(wy*) ™! SM(“ — sp1] + Mip+ hoot. =0.

1 0 _ .0 70 — 50 0_ .0
Uy = Up(s21, S12, 82, 81, 1), V] = v7(S21, S12, S2, 51,,1{), vy = 07 (821, 812, 82, 81, 1), V3 = v3(S21, 12, 82, S1, 1),

(6.1)
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Thus, for system ([1.2)), there is a one to one correspondence between the large homoclinic loops and large
periodic orbits bifurcated from I' = I'y U 'y and the solutions of the bifurcation equation (6.1) satisfying
s12 > 0, s12 >0, s0 > 0, s; > 0, respectively.

6.1. a(u) =0

Theorem 6.1. Suppose that (H1)~(H4) and (H6) hold. If a(u) = 0, (wi?wi?)™2 # 1, rank{ M, M}} = 2,
then, for |u| < 1, system has at most one large 2-2 homoclinic loop, or one large 2-1 homoclinic loop,
or one large 1-2 homoclinic loop, or one large 2-2 double homoclinic loops, or one large 1-1 homoclinic loop,
or one large 1-2 double homoclinic loops, or one large 2-1 double homoclinic loops, or a large 2-2 periodic

loop, or one large 1-1 double homoclinic loops in the small neighborhood of I' = I'y N 's. Moreover, these
orbits do not coexist.

S91 = 0,81 >0
S12 > 0,80 >0

Figure 15

Figure 19

S921 :0,51 >0
512 =0,89 >0

Figure 23

S91 >0781=0
S12 > 0,89 >0

Figure 16

Ss91 >0,51 =0
312:0,82>0

Figure 20

|

\ 5\///——'(

T,

f\\\JQ

S91 > 0,51 =0
So1 > O, s9 =20
Figure 24

Figure 24

S921 >0,51 >0
812:0,82>0

Figure 17

S91 > 0,81 >0
812:0,82:0

Figure 21

)

NN

S21 >0,81:0
812:0,82:0

Figure 25

S01 > 0,51 >0
512>0,82:O

Figure 18

(/

N —

821:0,81 >0
s12 > 0,50 =0

Figure 22

Figure 26
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S (o~ )
S$91 = 0, S1 — 0
821:0,81>0 812:0,82:0 S21>0’81>0
s12 =0, =0 s12 > 0,89 >0
Fi 2
Figure 27 Figure 28 igure 29 Figure 30
Proof. In this case, (6.1]) becomes
6[—(wi?) s — s1] + Mip+ hot. =0,
S[(wi?) sy + s12) + Mip+ hot. =0, (6.2)
5[(w%2)_1512 + so] + M21,u + h.o.t. =0, '
6[—(w3?) sy — s91] + My + h.o.t. = 0.
That is
( %2) 1 1 0 0 $21 Mllu
0 —(wi?)~t —1 0 s1 | 1| Miu
O 0 _(w%2)71 _1 1 = 6 M21/,L + hOt
1 0 0 (wi?)~! 59 Mlp
(wi?)=! 1 0 0
0 —(wi?)~! -1 0 12
Denote B = 0 0 (w?)! 1 ,if | B|| = (wi?wi?)™2 — 1 # 0, then, (6.2)) has
1 0 0 (wi?)~!
a unique solution 0 < s91(p), s1(p), s12(p), s2(p) < 1,
$21 Mip Mip
51 _ s—1p-1 Mip S| 1 | Mip
82 M M;p
satisfying s21(0) = s1(0) = s12(0) = s2(0) = 0, where,
(wi?) ™! (wy?) 2 1(211)%21)7212 , —(w % )t -l
B _ -1 —(wi?) N wy?) 7 (w] ) Hws ) (w1”)”
(wi?)~! 1 —(wi?) P (w?)~h = (wi?) 72
ST () 1 (w}2) 2 (wf?) !

Thus, we get the uniqueness and non-coexistence.

If821:0, S1 >0, 812>0, 52>0,0r321>0, 81:07 812>0,82>O,OI‘821>0, 81>0, 812:0782>0,
or so1 > 0, 851 > 0, s12 > 0, s2 = 0, then, system has a large 2-2 homoclinic loop (Figures
and .

If s99 =0, 1 =0, s19 >0, s9 >0, or s91 >0, s1 =0, s12 =0, so0 > 0, then, system has a large 2-1
homoclinic loop (Figures [19] and [20)).

If s91 >0, 51 >0, 519 =0, s9 =0, or s91 =0, s1 > 0, s12 > 0, so = 0, then, system has a large 1-2
homoclinic loop (Figures 21] and [22)).

If s91 =0, 51 >0, 519 =0, s9 >0, or s91 >0, s1 =0, s12 >0, so =0, then, system has a large 2-2
double homoclinic loop (Figures 23] and [24)).
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If 591 > 0,51 =0, s19 =0, s$20 =0, or s91 =0, s1 =0, s12 > 0, so =0, then, system has a large 1-1
homoclinic loop (Figures [25|and .

If s91 =0, s1 > 0, s120 = 0, s9 = 0, then, system has a large 1-2 double homoclinic loop (Figure .

If s91 =0, s1 =0, s12 =0, so > 0, then, system has a large 2-1 double homoclinic loop (Figure .

If 591 =0, s1 =0, s12 = 0, so = 0, then, system has a 1-1 homoclinic loop, that is, the double
homoclinic loop is preserved (Figure .

If s91 > 0, 51 > 0, s12 > 0, s > 0, then, system has a large 2-2 periodic loop (Figure .

Thus, the theorem is established. O

Denote
$91 = 0 " Moy + hoot.,

s1 = 5_1M1u + h.o.t.,
S12 = 5_1./\/[12# + h.o.t.,
s9 =06 *Mop + h.ot.,

(6.3)

where

Moy = ||B|| 7 [((w )72 (W) )M — ((wy®) ™!+ )My,

M =B~ [( 1- “Hwy?)T?) M+ (i) T (wd?) T+ (wi?) ) My,
Muz = ||B 7 [((wi®) ™! + 1) M = ((w*) 72 (w®) ™" + (wi®) ™) My,

Mo =BII7" [(- (wiz) Hw?)™h = (w)Th) MY+ (14 (wi?) 7 (wy?) ) My]

Due to ||B*| # 0, if rank{M}, M3} = 2, then, rank{M;, M;} = 2 for i # j, i = 21,1,12,2, j =
21,1,12,2. Notice that M; € span{ M, M1}, i =21,1,12,2, so, rank{ Mg, M1, M9, Ms} = 2.
Thus, we get the following theorem.

Theorem 6.2. Suppose that (H1)~(H4) and (H6) hold. If a(p) = 0, (wi?wi?)=2 # 1, rank{ M}, M}} =
then , for |u| < 1, there exist surfaces £21: El, 612, ﬁg, Egm, £(1]712, L'1272, £2,21, 521,12, 51727 £171272, £21’1’2,
52171272, 52171712, 5217171272, and a region H, such that:

(1) For u € LY, (6.2) has a solution sg1 = 0, 51 > 0, s12 > 0, s2 > 0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure .

(2) For ue LY, (6.2) has a solution sa1 >0, s1 =0, s12 > 0, s2 > 0, that is, system (1.2)) has a large 2-2
homoclinic loop (Figure .

(3) For u € LY, (6.2) has a solution sg1 > 0, 51 > 0, s12 = 0, s3 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure .

(4) For e LY, (6.2) has a solution sa1 >0, s1 >0, s120 > 0, 52 = 0, that is, system (1.2)) has a large 2-2
homoclinic loop (Figure .

(5) For € 5(2)1,17 (6.2) has a solution so; =0, s1 =0, s12 > 0, so > 0, that is, system (1.2)) has a large
2-1 homoclinic loop (Figure .

(6) For ue £1 125 has a solution so1 > 0, s1 =0, s12 =0, so > 0, that is, system (1.2) has a large
2-1 homoclinic loop (Figure [20)).

(7) For u e £12 2 has a solution so1 > 0, s1 > 0, s12 = 0, sy = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure .

(8) For u € LY 215 . ) has a solution s91 = 0, s1 > 0, s12 > 0, so = 0, that is, system (1.2]) has a large
1-2 homoclinic loop (Figure [22) .)
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(9) For u € 581712, (6.2) has a solution se1 =0, s1 >0, s12 =0, so > 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure .

(10) For u € E?Q, 6.2) has a solution s91 > 0, s1 =0, s12 > 0, so = 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure .

(11) For p € [,(1)71272, (6.2) has a solution s2; > 0, s1 =0, s12 =0, sy =0, that is, system (1.2)) has a large
1-1 homoclinic loop (Figure .

(12) For u € £21 1.2 ) has a solution s9p =0, s1 =0, s12 > 0, s9 = 0, that is, system (1.2) has a large
1-1 homoclinic loop (Fzgure.)

(13) For p € £21 12,25 ) has a solution sa1 =0, s1 > 0, s12 =0, so =0, that is, system (1.2) has a large
1-2 double homoclmzc loop (Fzgure.)

(14) For p € 531’1’12, (6.2) has a solution s2; = 0, s1 =0, s12 =0, so > 0, that is, system (1.2)) has a large
2-1 double homoclinic loop (Figure .

15) For u € L9 ,0< < 1, (6.2) has solution sa1 =0, s1 =0, s10 =0, sg =0, that is, in the small
1% 21,1,12,2 2
neighborhood of T', system (1.2)) has a 1-1 double homoclinic loop T® = T (u) UTY(u (Fzgure.)

(16) For u € H, (6.2) has a solution s91 > 0, s1 > 0, s12 > 0, s > 0, that is, system (1.2)) has a large 2-2
periodic loop (Figure .
Proof. By (6.3)), we get
(1). In the region {u : 5 *Myu + h.ot. >0} N {u: 5 * Mg+ hoot. > 0} N {p: 6" Mou + h.ot. > 0},
there is an (I — 1)-dimensional surface
531 ={u: 5_1M21u + h.o.t. = 0},
which has normal vector ./\/121 at u =0, such that for p € £21, has a solution so; = 0, s; > 0, s12 > 0,
s9 > 0, that is, system ((1.2)) has a large 2-2 homoclinic loop.
(2). In the region {u : 5_1M21M +hot. >0 N {p: 6 Mugu+ hot. >0} N {u: 5 Maop + h.ot. > 0},
there is an (I — 1)-dimensional surface
L) ={p:6 "Myp+ hot. =0},
which has normal vector M; at p = 0, such that for u € £7, (6.2)) has a solution sg; > 0, 51 = 0, s12 > 0,
s9 > 0, that is, system (|1.2]) has a large 2-2 homoclinic loop.
(3). In the region {p : 6 *Mojp + hot. >0} N {p: 6 *Myp+ hot. >0} N {p: 6~ Maop + hoot. > 0},
there is an (I — 1)-dimensional surface
£ = {u: "My + h.ot. = 0},
which has normal vector M12 at = 0, such that for p € £12, has a solution s9; > 0, s1 > 0, s12 = 0,
s9 > 0, that is, system (|1.2]) has a large 2-2 homoclinic loop.
(4). In the region {u : 5_1/\/121,u + hot. >0}y N {p: 6 *Mip+ hot. >0} N {p: " Miap + h.ot. > 0},
there is an (I — 1)-dimensional surface

LY = {u: 0 *Mou+ h.ot. =0},

which has normal vector Ms at p = 0, such that for u € £3, (6.2)) has a solution sg1 > 0, 51 > 0, s12 > 0,
s9 = 0, that is, system ((1.2)) has a large 2-2 homoclinic loop.
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(5). In the region {u : 6 ' Miop + h.o.t. > 0} N {p: 5" I Map + h.o.t. > 0}, there is an (I — 2)-dimensional
surface
L5, =LY NLY ={p:6 "Map+hot. =00 {u: 6 " Myp+ hot =0},
which has normal plane span{Mas;, M1} at © = 0, such that for p € Egl’l, 6.2) has a solution s9; = 0,
s1 =0, s12 > 0, s > 0, that is, system (1.2]) has a large 2-1 homoclinic loop.

(6). In the region {p : 6 *Maypu + h.ot. > 0} N {u: 5~ Mou + h.o.t. > 0}, there is an (I — 2)-dimensional
surface

5(1),12 =L LY ={u: 6" Myp+hot.=0yn{p: 6 " Migu+ h.ot. =0},
which has normal plane span{Mj, M2} at p = 0, such that for u € 59712, 6.2) has a solution s9; > 0,
s1 =0, s19 =0, s9 > 0, that is, system (1.2 has a large 2-1 homoclinic loop.

(7). In the region {p : 6 Moy + h.ot. > 0} N {u: 57 Myu + h.ot. > 0}, there is an (I — 2)-dimensional
surface
5(1)2,2 =LY% NLY={p: 6 "M+ hot.=0} N {u: 6 " Maou+ h.ot. =0},

which has normal plane span{ M2, M} at p = 0, such that for p € E?Q’Q, 6.2) has a solution s9; > 0,
s1 >0, s12 =0, sg =0, that is, system (1.2 has a large 1-2 homoclinic loop.

(8). In the region {p: 6 *Myp+ h.ot. >0} N {p: 6 Miau + h.ot. > 0}, there is an (I — 2)-dimensional
surface
L9 =L5NLY ={pn:6 "Map+hot.=0}N{p: 6 " Marp+ hot. =0},

which has normal plane span{ Mgy, M} at g = 0, such that for p € 53,21, 6.2) has a solution s9; = 0,
s1 >0, s12 >0, so =0, that is, system ([1.2) has a large 1-2 homoclinic loop.

(9). In the region {p : 6 'Mip+ h.ot. > 0} N {p: 6 *Maou + h.o.t. > 0}, there is an (I — 2)-dimensional
surface
L9 09=LYNLYy ={p: 6" Marp+ hot. =0} N {p: 6" Miop+ hot. =0},

which has normal plane span{Mas;, M2} at p = 0, such that for p € [,81’12, 6.2) has a solution so; = 0,
s1 >0, s12 =0, so > 0, that is, system (1.2 has a large 2-2 double homoclinic loop.

(10). In the region {p: 6 Mo+ h.ot. >0} N {pu: 5 I Myau+ h.ot. > 0}, there is an (I — 2)-dimensional
surface
L’?,z =L9NLY = {p: 0" Myp+hot.=0}N{pw: 0" *Mou+ h.ot. =0},

which has normal plane span{Mj, My} at u = 0, such that for u € E?’Q, 6.2)) has a solution s9; > 0, s1 =0,
s12 > 0, s = 0, that is, system ([1.2]) has a large 2-2 double homoclinic loop.

(11). In the region {u : 6 *Maip + h.o.t. > 0}, there is an (I — 2)-dimensional surface

LY 190 =LYNLY N LY ={p: 6" Myp+ hot. =0y N {p: 6 " Mg+ hot =0}
N {p: 6 Map + hoot. =0},

which has normal plane span{ M, M2, Ma} at u = 0, such that for u € [,[1)71272, 6.2)) has a solution s9; > 0,
s1 =0, s12 =0, sg =0, that is, system (1.2 has a large 1-1 homoclinic loop.

(12). In the region {p : 5 *Miap + h.o.t. > 0}, there is an (I — 2)-dimensional surface

L10=LHNLYNLY ={p: 6" Map+ hot. =0} N {p: 6 "M+ hot. =0}
N{p: 6 " Mop + h.ot. = 0},

which has normal plane span{ M, M1, My} at u = 0, such that for u € [,81,172, 6.2)) has a solution s9; = 0,
s1 =0, s12 >0, so = 0, that is, system (1.2 has a large 1-1 homoclinic loop.
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(13). In the region {u : 6 *Myu + h.o.t. > 0}, there is an (I — 2)-dimensional surface

£3171272 = £81 N £(1)2 N ﬁo :{ILL . 571M21,LL + h.o.t. = 0} N {,u : 571M12,u + h.o.t. = 0}
N{p: 6 Map + h.ot. =0},
which has normal plane span{Ma;, M2, M2} at u = 0, such that for u € 68171272, (6.2) has a solution
s91 =0, 81 > 0, s12 =0, s3 = 0, that is, system (|1.2)) has a large 1-2 double homoclinic loop.
(14). In the region {u : 6 *Mau + h.o.t. > 0}, there is an (I — 2)-dimensional surface

Egl,l,lQ = 681 N £(1) N 6[1)2 :{M H (571M21,U/ + h.ot. = O} N {,LL H 671/\/‘1/46 + h.o.t. = 0}
N{p: 6 *Miap + hoot. = 0},
which has normal plane span{May;, M1, M2} at p = 0, such that for p € ,68171712, (6.2) has a solution
s91 =0, 81 =0, s12 =0, s2 > 0, that is, system (|1.2)) has a large 2-1 double homoclinic loop.

(15). There is a surface

£81,1,12,2 =Ly NLYNLY N LY
={p: 0 Mo+ hot. =0 N {u: 5 *Mip+ hot. =0}
N{p: 6 " Miap+ hoot. =0} N {p: 6" Map + h.ot. = 0},

which has normal vector M = span{Ma1, M1, M12, M2} at u = 0, such that, for u € 5817171272, 0< |ul <1,
has solution so; = 0, s; = 0, s12 = 0, so = 0, that is, in the small neighborhood of I', system has
a 1-1 double homoclinic loop T? = T'{(u) U TY(u).

Notice that dimM=2, ||B*|| # 0, so, indeed, the surface L3, | |5, is a (I — 2)-dimensional surface which
has normal plane M at p = 0. In fact, £3; | 1o o={p : M{p + h.ot. =0} 0 {p: Mg+ h.o.t. =0}

(16). Denote

H={p: 0 "Map+hot. >0}N{u: 6 Myp+ hot >0}
N{p: 6 " Mogp + hoot. >0} N {pw: 6 " Mou+ h.ot. > 0}.

For pn € H, (6.2) has a solution so; > 0, s1 > 0, s12 > 0, so > 0, that is, system (|1.2]) has a large 2-2 periodic
loop.
About the bifurcation diagrams for the cases —1 < w}? < 0, 0 < wi? < 1 and wi? > 1, wi? > 1, see

Figures [31] and [32 O

Figure 31 Figure 32
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6.2. 0<a(p) <1

Theorem 6.3. Suppose that (H1)~(H4) and (H6) hold. If 0 < a(u) < 1, rank{ M, M]} = 2, then, for
lu| < 1, system has at most one large 2-2 homoclinic loop, or one large 2-1 homoclinic loop, or one
large 1-2 homoclinic loop, or one large 2-2 double homoclinic loops, or one large 1-1 homoclinic loop, or one
large 1-2 double homoclinic loops, or one large 2-1 double homoclinic loops, or a large 2-2 periodic loop, or
one large 1-1 double homoclinic loops in the small neighborhood of I' = I'y N T'y, and, these orbits do not
coexist.

Moreover, there exist surfaces Ly, Lo, Loy 1190, L¥90, £33 10, L1120, L1112 Lot1s L145, L1os,
E;g, 55’12’12, 5%712,12} £§,112,2’ £%1,12,2’ £§§’1’2, £§1,1,127 and a region R, such that

(1) For p € Ly, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of T';.
For p € Lo, system (1.2)) has a unique small 1-homoclinic loop in the small neighborhood of T's.

For pn € L9 1129, (6.1) has solution sa1 =0, s1 =0, s12 =0, s9 = 0, that is, in the small neighborhood
of T =T Uy, system (1.2) has a unique 1-1 double homoclinic loops T = T'9(u) UTY(p), that is,
double homoclinic loops are preserved (Figure .

(2) Forpu € ﬁ%,lu,z’ (6.1) has a solution s2; > 0, s1 =0, s12 =0, sy =0, that is, system (1.2)) has a large
1-1 homoclinic loop (Figure .

(3) Forpu e 'C%%7172’ 6.1) has a solution so1 =0, s1 =0, s12 >0, so =0, that is, system (1.2)) has a large
1-1 homoclinic loop (Figure [26)).

(4) For u € E%Ll?,?’ (6.1) has a solution se1 =0, s1 > 0, s12 =0, s = 0, that is, system (L.2]) has a large
1-2 double homoclinic loop (Figure .

(5) Forp € 531’1,12, (6.1) has a solution s2; =0, s1 =0, s12 =0, sy > 0, that is, system (1.2)) has a large
2-1 double homoclinic loop (Figure .

(6) For u e E%i%, 6.1) has a solution sg1 =0, s; =0, s12 > 0, s > 0, that is, system (1.2)) has a large
2-1 homoclinic loop (Figure .

(7) For u e E%’ll’g, 6.1) has a solution so1 > 0, s1 =0, s12 =0, so > 0, that is, system (1.2)) has a large
2-1 homoclinic loop (Figure .

(8) For € E%%, 6.1) has a solution sa1 > 0, s1 > 0, sj2 =0, s = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure .

(9) For u e L%;f, (6.1) has a solution sg1 = 0, s1 > 0, s12 > 0, so = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure .

(10) For p € E;’fu, 6.1) has a solution s21 =0, s1 >0, s12 =0, s2 > 0, that is, system (1.2)) has a large
2-2 double homoclinic loop (Figure .

(11) For u € E%}Q’u, 6.1) has a solution s91 > 0, s1 =0, s12 > 0, so =0, that is, system (1.2|) has a large
2-2 double homoclinic loop (Figure .

(12) For u € 55’112’2, 6.1) has a solution so1 =0, s1 >0, s12 >0, s9 > 0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure .

(13) Forp € £%1,12,2) 6.1) has a solution so1 > 0, s1 =0, s12 > 0, s3 > 0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure .

(14) For p € [’%,172’ 6.1) has a solution s91 >0, s1 > 0, s12 =0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure .



Y. Jin, et al., J. Nonlinear Sci. Appl. 9 (2016), 5579-5620 5605

(15) For p € £21 L 12, 6.1) has a solution so1 > 0, s1 >0, s12 > 0, so =0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure .

(16) For p € R, (6.1) has a solution s21 >0, s1 > 0, s12 > 0, s9 > 0, that is, system (1.2) has a large 2-2
periodic loop (Figure .
a(G1,G1,GL,GY)

Proof. In this case, by (6.1)), we have that ORI
matrix, so, according to the implicit function theorem, we have that (| has a unique solution

|31:512:52:521:0 = diag(—1,1,1,—1) is a full rank

—(wi?)~s{ret) 45— 1M1u+h0t
s12 = —(wi?) 7! 1+a(“ — 0 'Mlp+ hot., (6.4)
—(w3*)™! 1+a(“ . "M3u+ hot., '
591 = —(wi?) ™! Ha(“ + 0" M3p + heott.,

in the small neighborhood of s1 = s12 = s9 = s91 = 0. Thus, the uniqueness and non-coexistence are proved.
1). If (6.4) has a solution s9; = s1 = s12 = s9 = 0, then (6.1)) is turned to

{ M+ h.ot. =0,

M3+ h.ot. = 0. (6:5)

Thus, if rank{M{, M}} = 2, then, there exists an (I — 2)-dimensional surface L21.1,12,2 defined by
which has normal plane span{Mll,M%} at i = 0, such that, for p € L211,122, system has a unique
double homoclinic loop I'(xr) = I't (i) UT'2(p) in the small neighborhood of I' = I'; U T, that is, the double
homoclinic loops are preserved.

Furthermore, if M{ # 0, then, there exists an (I — 1)-dimensional surface £1 = {u: Miu + h.o.t. = 0}
which has normal vector M{ at u = 0, such that, for u € £y, system has a unique small 1-homoclinic
loop I'1 (1) in the small neighborhood of I'y.

Similarly, if MJ # 0, then, there exists an (I — 1)-dimensional surface Lo = {u : Mju + h.o.t. = 0}
which has normal vector M21 at = 0, such that, for u € Lo, system has a unique small 1-homoclinic
loop T'a(u) in the small neighborhood of T's.

2). If (6.4) has a solution s9; > 0, 51 = s12 = s2 = 0, then (6.1)) is turned to

— S§11+a(#)) + 5_1w}2M11,u + h.o.t. =0,
§*Mip+ hot. =0,
S IMip+ hot. =0,
So1 = 5_1M21,u + h.o.t..
Thus, in the region R4, = {p: 6 'wi>M{ p+h.o.t. > 0,67 Mg pu+ h.o.t. > 0}, we get the equation of
bifurcation surface ﬁ%,l12,2 of large 1-1 homoclinic loop as follows.
— (67 MY+ hoot)IFeW) L 57120l + heot. = 0,
S My + hot. =0,
6§ *Myp+ h.ot. =0,
3). If (6.4) has a solution s12 > 0, s21 = s1 = s2 = 0, then (6.1)) is turned to

S'Mip+ hot. =0,
S19 = —5_1M11,u + h.o.t.,
sgl;ra(”)) + 6w My + hoot. =0,

6 'Myp+ h.ot. =0,
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Thus, in the region R%%,lﬂ ={p:—6"Mlp+hot >0 wi2M}p+ h.ot. <0}, we get the equation
of bifurcation surface E%il,z of large 1-1 homoclinic loop as follows.

(=6 M+ heot )W) 4 5712 il + hoot. = 0,
S Ml + hot. =0,
6 'Myp+ h.ot. =0,
(4). If has a solution s; > 0, s91 = $12 = $9 = 0, then is turned to

51 = 5_1M11'u + h.o.t. = 07
s{ ) 4 5 w2 M+ hoot. = 0,
5_1M21lu =+ h.ot.=0.

Thus, in the region R%1,12,2 ={p: 6 Mip+ hot. >0, 6 1wiMiu+ h.ot. <0}, we get the equation
of bifurcation surface E%le of large 1-2 double homoclinic loop as follows.

(67 M}y + hoot) 3w 4 5= Lwt2 ML+ hot. =0,
6 *Myp+ h.ot. =0,

(5). If has a solution s > 0, s91 = $1 = s12 = 0, then is turned to
ST M+ hot. =0,
so = —0 Mlp+ hot.,
— s;Ha(“)) + 6 twi2 M+ hoot. = 0.

Thus, in the region R%I,LH ={p:—6"'Mlp+hot >0, 6 wi2M}u+h.ot. > 0}, we get the equation
of bifurcation surface E%l,l,lZ of large 2-1 double homoclinic loop as follows.

{ ST'Mlp+ hot. =0,

— (=07 M3 p+ hot)3TW) 4 57 Ll2 0 4 hoot. = 0.
(6). If (6.4) has a solution sj2 > 0, s2 > 0, s2; = s; = 0, then (6.1) is turned to

6§ *Mip+ h.ot. =0,

S19 = —5*1M11,u + h.o.t.,

—(wy”

_ sg1+a(ﬂ)) + 6 wd? M+ hoot. = 0.

52

)_lsgl;ra(“)) — 6 Mip+hot.,

Thus, in the region R;f% ={p: =0 *Mlu+hot. > 0yN{u: s wi2Mlp + h.ot. > 0}, we get the
equation of bifurcation surface Eé%% of large 2-1 homoclinic loop as follows.

6 *Mip+ hot. =0,

1+
- (‘(W%Q)_l (=0 patp) o0 5_1M21M>( o (u)

+ 6wy M3 + hot. = 0.
(7). If (6.4) has a solution s9; > 0, s1 =0, s12 = 0, s3 > 0, then (6.1)) is turned to

— sgll+a(”)) + 6 twi2 My + hot. =0,
S'Mlp+ hot =0,
s9 = —0 'M}p+ hot.,

521 = —(w%2)_18§+a(#)) +6 7 Myp + h.ot. = 0.
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Thus, in the region Rfllg = {p: =0 "MIp+ hot. >0yN{p: —(wi?) (=0 "M + h.o.t.)d+ew) 4
SIMIp+ hot. > 0y N {p: 6 twi?Mlp + h.ot. > 0}, we get the equation of bifurcation surface Eill’g of
large 2-1 homoclinic loop as follows.

1 e N _ (1+a(u)
— (— 3 (07 Mg ) ) 67 )

6 'Mlu+ h.ot.=0.

+ 0w Ml + hot. = 0,

8). If (6.4) has a solution s9; > 0, s1 > 0, s12 =0, s2 = 0, then (6.1)) is turned to

51 = —(wi?)” 13(1+a(“)) + 0 "Mip+ hot.,
nga( W) 45— Ywi?Mip + h.ot. =0,
6 *Miyp+ h.ot. =0,
So1 = 5_1M21M + h.o.t..
Thus, in the region ’R%% ={pu: 0" Miu+ hot. >0} N {p: 5w Mip+ hot. < 0}, we get the

equation of bifurcation surface E%; of large 1-2 homoclinic loop as follows.

1 e o _ (I+a(w)
(—(i) @ M) o) 4 5 )

S Myp+ hot. = 0.

+ 0w Ml + hot. =0,

9). If (6.4) has a solution s9; =0, s1 > 0, s12 > 0, s2 = 0, then (6.1)) is turned to
s1 =0 "Mip+ hot.,
s10 = —(wi?)~” lnga(“)) — 6 M+ hot.,
(H_a(“)) + 6wy My + heot. =0,
5 1M2u + h.o.t. = 0.

Thus, in the region R;llg = {p: 0 *Miu+ hot. > 0yn{p : S wlMlp + hot. < 0} N {u :

—(wi?)7H My + hoot) W) — §=IML 4 hoot. > 0}, we get the equation of bifurcation surface

E;llg of large 1-2 homoclinic loop as follows.

(= (i) a0 — 5Tty
S Myp+ hot. =0.

(I+a(w)
) g + 6wy Myp + hot. = 0,

(10). If (6.4) has a solution so; =0, s1 > 0, s12 =0, so > 0, then (6.1]) is turned to
s1 = 5’1M11,u + h.o.t.,
sgl—m(“)) + 6_1w%2M11,u + h.o.t. =0,
s9 = —0 'Mypu+ h.ot.,
— séHa(”)) + 6 twi? Ml + hoot. = 0.
Thus, in the region R;le = {p: 6 Mip+hot. >0 N {u: -5 My + hot > 0}, we get the
equation of bifurcation surface ['512,12 of large 2-2 double homoclinic loop as follows.
(67 M}y + hoot.)3FW) 4 5= Vwl2 a4 hot. =0,
— (=6 M+ hoot.) 3T £ 5L 2 M+ hoot. = 0.
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(11). If (6.4) has a solution s9; > 0, s1 = 0, s12 > 0, so = 0, then (6.1]) is turned to
— sélfra(“)) + 6w Mlp + hot. =0,
S12 = —(S_lMll,u + h.o.t.,
s§12+a(“)) + 6 wd2 My + hoot. =0,
So1 = 6_1M21,u + h.o.t..

Thus, in the region R%}Q’m ={p: =" Mlpu+hot >0yN{p: 5 Mip+ hot > 0}, we get the

equation of bifurcation surface 53}2’12 of large 2-2 double homoclinic loop as follows.

(=6 M+ heot )W) 4 5712 il + hoot. = 0.
(12). If has a solution s91 = 0, s1 > 0, s12 > 0, s3 > 0, then is turned to
s1 = 6*1M11,u + h.o.t.,
S12 = —(wP)_lnga(“)) — 0 *Mlpu+ hot.,
89 = —(w%Q)_ls§12+a(“)) — 5_1M21u + h.o.t.,
— séHa(“)) + (5_1w%2M21u + h.ot.=0.

{ — (07 M+ hoot )W) 4 5= 2 ML+ heot. = 0,

(6.6)

Thus, in the region Ré’llzg = {pu: 0 *Mipu+ hot. > 0y N {p : 07 wi2Mlpy + hot. > 0} N {u :
—(w) 6T M p+ heot)0HeW) —§=IM L4 huo.t. > 0}, we get the equation of bifurcation surface E;,lm,z

of large 2-2 homoclinic loop as follows.

>( ) 5_1M21u)

— () (Gl e — 5t
+ 6wy My + heot. = 0.
(13). If (6.4) has a solution s9; > 0, s1 =0, s12 > 0, so > 0, then (6.1]) is turned to
— sgllJra(“)) + 671w%2M11M + h.o.t. =0,
s19 = —0 'Mipu+ h.o.t.,
S9 = f(w%2)_15512+a(“)) — 6 Mip+hot.,
891 = _(w%Q)_lnga(“)) + 5_1M21,u + h.o.t..

(6.7)

Thus, in the region R2'*% = {1 : =6 "M+ h.ot. > 0} N {p: —(wi2) (=6 MLy + h.o.t.)IHelm) —
STIMIp+ hoot. > 0} N {p s —(wi?) = (w?) (=0~ M p + h.ot )W) — 5=IML Y + hoo.t (el 4

S M}y + h.ot. > 0}, we get the equation of bifurcation surface 551’12’2 of large 2-2 homoclinic loop as
follows.
(1+a(p)) (1+a(p))
- <—<w¥>—1 L L S R V2 77) R 5_1M21u>

+ 0w My + hot. = 0.

(14). If has a solution s91 > 0, 51 > 0, s12 = 0, s9 > 0, then is turned to
s1 = —(wi?) LS LTI+ hot,
nga(“)) + 6 Ywi?Mip + h.ot. =0,
sy = —0"*M}p+ hot.,
so1 = —(wi?) 8T L Il 4 heodt.,
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Thus, in the region R = {u : =6 "My + hot. > 0} N {p : 6 w2Mly + h.ot. < 0y N {p :
—(wi?)~ 1( ST Myp + hoot.)3FeW) 4 571N+ hot. > 0}, we get the equation of bifurcation surface

535,1,2 of large 2-2 homoclinic loop as follows.

(I4a(w)

(-~ (a0 4 s tadu) T

+ 0w My + hot. = 0.

)(Ha(u))

(15). If (6.4) has a solution s2; > 0, s1 > 0, s12 > 0, so = 0, then (6.1]) is turned to

51 = —(w}Q)_lsglfLa(“)) + 0 'Mip+ hot.,

s12 = —(w %2)71 (I+a(uw) _ SIMip+ heot.,

6.9
S(l—i—a( n) ( )

)+5 w22M2M+h0t—0
S91 =0 1M2u+h.o.t..

Thus, in the region R21’1’12 ={pu: 0 "Mlp+hot. >0} N {p: —(wi2)" (0 MIp) W) 4 5=+
hot. >0y N {p: —(wi) = (wl?) =16~ M ) A+t 4 5= prl ) Ate) — s=10 4 heot. > 0}, we get
the equation of bifurcation surface £7 122 of large 2-2 homoclinic loop as follows.

B o N B (+a(m) (I+a(u)
(- (i) g 5ty - 5 ard)

+ 6w My + hoot. = 0.

(16). If (6.4]) has a solution s9; > 0, s1 > 0, s12 > 0, so > 0, then, differentiating (6.4), and denoting by (si)u
as the gradient of s;(u) with respect to u, we get

(6.10)

(). If p is situated in the neighborhood of E;lzl 12 then, substituting into (6.10), we get

((s1), =6 *M{ + h.ot.,
(s12) = —(WI) T A + a(w) (6 Mip + hot )W (sy), — 1M} + h.o.t.,
a(p)
() =~ + o) (27 07 0l w000 — 57 4 hot) ™ (s10),
— 67t My + heo.t.,

_a(p)

(s21)p = —(w3?) (1 + a(w) (6 w3 My + h.o.t.) oW (s9), + 6~ M3 + h.o.t..

ap)
So, (s21) = 6 "My + O((0 'wi? M3 + h.o.t.) 7o) ) + h.o.t., this means that sp1 = s21(u) increases

along the direction MJ in the small neighborhood of E%fl "2,
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(ii). If p is situated in the neighborhood of £21 122 then, substituting into (6.10), we get

( _a(p)

(51) = —(wi*) 71+ a(w)) ((5_1w Mlp+ ho.t. ) e (s21) + §IM] + hot.,

p= — (W) 4 () (=6 ML+ ho.t.)* W) (s12), — TLMS + heot.,

_ _ o _ o(p)
(s20) = —(wh?) (1 + () (—(wd?) 7 (=7 M) 0D — 5T M+ hot ) (s2),

a(p)
So, =6 M +O((6twi?Miu + ho.t. Tra(m + h.o.t., this means that s; = s1(u) increases along
1 1
the dlrectlon M in the small neighborhood of £21 )

(iii). If p is situated in the neighborhood of £21’1’2 then, substituting into (6.10), we get

a(p)
(s1) = — (i) (1 + ) (= (i) (=57 M) 0D 4 57 0t hot ) (sa0)

+ 6 M + hot.,

_o(p)
(s12)p = —(w1*) ' (1 + a(p) (=6 'wi> M p + hoo.t.) T (s1), — 6 ' M| + h.o.t.,

(Sg)u = —(571M21 + h.o.t.,
(s21)p = —(wi) LA + () (=0 M3 p 4 ho.t.) ¥ (s3), + 61 M3 + h.oit..

o(p)
So, (s12)u = —5‘1M11 + 0 <(—5‘1w%2M11,u + h.o.t.) 1+“(“)> + h.o.t., this means that sjo = s12(u) increases

along the direction —M7 in the small neighborhood of [,21’1’2

(iv). If p is situated in the neighborhood of 521’1’12 then, substituting into (6.10)), we get

;

(s51)p = — (W) 21+ () (0 My + hoo.t.)*W (s91),, + 6 M} + heo.t.,

a(p)
(512 = ~(@}2)7 (1 + a() (~(@) @ ME) 0D 50t hot ) (s1),

— 6 'M! + hot.,

_op)
(s2)p = —(w3?) "1 + o)) (=0 wi> My pu + h.o.t.) 5000 (s12), — 6 1 M3 + h.o.t.,
(321)u = 571M21 + h.o.t..

a(p)
So, (s2), = —6"*M} + O <(—5‘1w%2M21u + h.o.t.) 1+a‘?“>), this means that sy = so(p) increases along

the direction —MJ in the small neighborhood of 521’1’2

Denote by R the region which is bounded by 5%112 2, L’?l 12,2 E% L 2, L’;LLQ the vector MJ point into

it from L7122 , the vector M{ point into it from £21 122 , the vector M{ point out of it from £21’1’2 and the
21 1 1

vector M} pomt out of it from 521’1’2

By the discussion of above, we get (6.4]) has solution so1 > 0, s1 > 0, s12 > 0, s2 > 0 for u € R, that is,
system has a large 2-2 periodic loop.

About the bifurcation diagram, see Figure where E;flz = E%Ll,m N E%le, 53}2’12 El 122 N

12
/521,1,2- [
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Figure 33

6.3. -1 < a(p) <0
Theorem 6.4. Suppose that (H1)~(H4) and (H6) hold. If —1 < a(u) < 0, rank{ M}, M}} = 2, then,
for |u| < 1, system has at most one large 2-2 homoclinic loop, or one large 2-1 homoclinic loop, or
one large 1-2 homoclinic loop, or one large 2-2 double homoclinic loops, or one large 1-1 homoclinic loop,
or one large 1-2 double homoclinic loops, or one large 2-1 double homoclinic loops, or a large 2-2 periodic
loop, or one large 1-1 double homoclinic loops in the small neighborhood of I' = I't NIy, and, these orbits
do not coexist.

Moreover, there exist surfaces L1, Lo, Lo 1 159, L3492, £31120 Lo 1000 L311020 Lovts Liis Lioa,
/:'éi, 5%712,127 E_ilz’m, 2%112,27 531’12’2, 5%1,27 531’1’12, and a region R, such that:

(1). For u € Ly, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Ty .
For yi € Lo, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of T'3.
For € 2217171272, (6.1) has solution sa1 =0, s1 =0, s12 =0, s2 = 0, that is, in the small neighborhood

of I =T1UTy, system (1.2) has a unique 1-1 double homoclinic loop T° = T (u) UTY (1), that is, the
double homoclinic loops are preserved (Figure .

(2). For u € E%}u,w 6.1) has a solution s91 >0, s1 =0, s12 =0, s9 =0, that is, system (1.2) has a large
1-1 homoclinic loop (Figure .

(3). Forp € E_%%,LQ, (6.1) has a solution s9; =0, s1 =0, s12 > 0, sy =0, that is, system (1.2]) has a large
1-1 homoclinic loop (Figure .

(4). For p e 5%1’12’2, (6.1) has a solution s2; =0, s1 > 0, s12 =0, sy =0, that is, system (1.2)) has a large
1-2 double homoclinic loop (Figure .

(5). Forpu € 231,1,12, (6.1) has a solution s21 =0, s1 =0, s12 =0, so > 0, that is, system (1.2)) has a large
2-1 double homoclinic loop (Figure .

(6). For p € Z%f%, 6.1) has a solution so1 = 0, s1 =0, s12 > 0, so > 0, that is, system (1.2)) has a large
2-1 homoclinic loop (Figure .

(7). For p € E_ill’g, (6.1) has a solution so1 > 0, s1 =0, s12 = 0, so > 0, that is, system (1.2)) has a large
2-1 homoclinic loop (Figure .
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or | € , as a solution so1 > 0, s1 > 0, s12 =0, so = 0, that is, system (|L. as a large
8). Fi Ll G A luti 0 0 0 0, that is, system (L.2) has a |

1-2 homoclinic loop (Figure [21] .)

. For € , as a solution s9p = 0, s1 > 0, s12 > 0, so = 0, that is, system (|I. as a large

9). F Lys:, 6 A luti 0 0 0 0, that is, system (1.2) has a |

1-2 homoclinic loop (Figure [22] .)

(10). For u € 521 195 . ) has a solution so1 =0, s1 > 0, s12 =0, so > 0, that is, system (1.2)) has a large

2-2 double homoclinic loop (Fzgure.)
(11). For u € 5%1212, . ) has a solution so1 > 0, s1 =0, s12 >0, so =0, that is, system (1.2)) has a large
2-2 double homoclinic loop (Fzgure.)

(12). For u € 55112 2, 6.1) has a solution so1 =0, s1 >0, s12 >0, s9 > 0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure .

(13). For p e £21 12, 2, 6.1) has a solution so1 > 0, s1 =0, s12 > 0, so > 0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure .

(14). For u € E% L 2, 6.1) has a solution so1 > 0, s1 >0, s19 =0, s2 > 0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure|17]).

(15). For p € £21 L 12, 6.1) has a solution so1 > 0, s1 >0, s12 > 0, so =0, that is, system (1.2)) has a large
2-2 homoclinic loop (Figure .

(16). For p € R, (6.1) has a solution sa1 > 0, s1 > 0, s12 > 0, s3 > 0, that is, system (1.2)) has a large 2-2

periodic loop (Figure .

1
Proof. In this case, 1 + a(u) < 1, by times scale transformations sg; — (s21) e,

1 1
512 — (812) 12, 59 — (s2) T+, (6.1]) becomes
6 (—(wf?
6 ((w}?

)_1821 —

+M1/J/+h0t —0

)18t + (s12) T >)—I-M1u+hot =0,

+M2/,L+h0t —0

Similar to that of Theorem (6.11]) has a unique solution

521 = —

S12 = —Ww

\

w1 (
W} (s12) T
(3 )H—a(u)
wy?(

s1) BT + 6w Mip + heoot.,

— 0wt Mip+ hot.,
o~ leMl,u + h.o.t.,

s21) TraG + 6w My + hoo.t.,

H>) + Mjp+ hot.=0.

1
S1 — (81)1+a(l‘)7

(6.11)

(6.12)

in the small neighborhood of so1 = s1 = s12 = s5 = 0. Thus, we get the uniqueness and non-coexistence.

1). If (6.12) has a solution so1 = 81 = $12 = $9 =0,

then (6.11)) is turned to

M+ hot. =0,
M+ h.ot. = 0.

(6.13)

Thus, if rank{M{, M3} = 2, then, there exists an (I — 2)-dimensional surface L211,12,2 defined by (6.13)
which has normal plane span{M;, M]} at p = 0, such that, for u € L£211122, system (1.2) has a unique
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double homoclinic loop I'(xr) = I'1 (i) UT'2(1) in the small neighborhood of I' = I'; U T, that is, the double
homoclinic loops are preserved.

Furthermore, if M{ # 0, then, there exists an (I — 1)-dimensional surface £1 = {u: Miu+ h.o.t. = 0}
which has normal vector M11 at u = 0, such that, for p € £y, system has a unique small 1-homoclinic
loop I'1(p) in the small neighborhood of T'y.

Similarly, if MJ # 0, then, there exists an (I — 1)-dimensional surface Lo = {u : Mju + h.o.t. = 0}
which has normal vector Mj at p = 0, such that, for u € L, system has a unique small 1-homoclinic
loop I'y(p) in the small neighborhood of T's.

(2). If (6.12) has a solution s9; > 0, s1 = s12 = s2 = 0, then (/6.11) is turned to

591 = 6 wiMipu+ h.o.t.,
S M+ hot. =0,
S Map + h.ot. =0,

1
— (591)T® + 5 M+ h.ot. = 0.

Thus, in the region R4, = {p: 6 'wi*M{ p+ h.o.t. > 0,6 ' Mg p+ h.o.t. > 0}, we get the equation of
bifurcation surface E%,l12,2 of large 1-1 homoclinic loop as follows.

§'Mlp+ hot. =0,
SIMY A+ hoot. =0,
— (6wt M + h.o.t.)ﬁ(w + 0 ' Myp+ h.ot. = 0.
(3). If has a solution s15 > 0, $91 = $1 = 9 = 0, then is turned to
S Mip+ hot. =0,

1
(512) @ + 6~ My + hot. =0,
S12 = —5_1w52M21u + h.o.t.,
§IM3p+ hot. = 0.

Thus, in the region R33 ;5 = {p: 6 'M{p+h.o.t. < 0,6 'wi> Mg p+ h.o.t. < 0}, we get the equation of
bifurcation surface 23%7172 of large 1-1 homoclinic loop as follows.
1
(=6 wi M3 p + hoot.) e + 5 Ml p+ hot. =0,
S IMip+ hot. =0,
6 'Myp+ h.ot. =0,
(4). If (6.12) has a solution s1 > 0, s91 = s12 = s2 = 0, then (6.11]) is turned to
1

— (51) T + 61 Mlp+ hot. =0,

s1= =0 twi*Mip+ h.ot.,

6 *Myp+ h.ot. = 0.

Thus, in the region 7_2%1,1272 = {p: 5 *Mlp+ h.ot. > 0}, we get the equation of bifurcation surface
2%171272 of large 1-2 double homoclinic loop as follows.

1
— (=0 Mwit My + hoot)Fe® + 5 M+ hot. =0,
6§ *Myp+ h.ot.=0.
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5). If (6.12)) has a solution sg > 0, s91 = s1 = s12 = 0, then (6.11)) is turned to
S My + hot. =0,
1
(59)TFe® + 6 1My + h.ot. =0,
s9 = 0w’ My + h.o.t..

Thus, in the region R3; | 15 = {p: 6 'Map + h.ot. < 0}, we get the equation of bifurcation surface
/33171712 of large 2-1 double homoclinic loop as follows.

6 *Mip+ hot. =0,
{(5 Lol MY+ hoot) 750 4+ 6 MLy + hoot. = 0.
6). If has a solution s19 > 0, s9 > 0, s91 = s; = 0, then is turned to
6 *Mip+ hot. =0,
(slg)m + 6 ' Mp+ hot. =0,
S12 = —w%2(32)1++<#) — 5wt Myp+ hooot.,

sy =0 twi?Mlp + hot..

_ 1
us, In the region ’ no:o- u+ hot < Ny : - w+ h.ot.)t+ew) —
Thus, in the region Ry} = 5~ M}u + h. 0 wi (6 w2 M p + h. )
ST Ml M+ hot. > 0y N {p: 07wl M3y + hoo.t. > 0}, we get the equatlon of bifurcation surface £21 1
of large 2-1 homoclinic loop as follows.

SIMlp+ hot =0,
( ((S w22M1 )1+a#) —5 w22M2 )1+a(ﬂ) +5 1M1M+h0t —0

7). If has a solution so; > 0, s1 =0, s;2 =0, so > 0, then is turned to
so1 = 0 twiMip + heot.,
6 *Mip+ hot. =0,
(32)1++(“> + 5_1M%,u, + h.ot. =0,
59 = —wa?(s21) TR 4§~ Ywi M3+ ho.t..
Thus, in the region R%llg ={p: 0 Mipu+ hot. < 0}N{p: 5 w2 Mip+ hot. > 0}, we get the

equation of bifurcation surface [,Ll’g of large 2-1 homoclinic loop as follows.

S *Mip+ hot. =0,

( 12(5- 1 20t ) TR 4 6Ll )““(‘” 4+ 67 My + hoot. =0,
8). If has a solution s3; > 0, s1 > 0, s12 =0, s3 = 0, then is turned to

S
S91 = —U}%Q(Sl) T+a(p) 4 571w%2M11,u, + h.O.t.,
s1= =0 twi?Mlpu+ h.ot.,
S Myp + h.ot. =0,

1
— (591)T® + 6 My + h.ot. = 0.
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_ 1
Thus, in the region R%é = {p: 0 'Mipu+ hot. > 0}N{p: —wi(—=6twiMipu + h.ot.) el +

SrwiPMip+hot. >0} N {u: =5 twi2Miu+ h.o.t. > 0}, we get the equation of bifurcation surface /j%;

of large 1-2 homoclinic loop as follows.
§*Myp+ h.ot. =0,
1
L -
<—w%2(—5_1w%2M11,u) Ta(u) + 5_1w%2M11U> e ' M3p+ h.ot. = 0.
(9). If (6.12) has a solution sg; =0, s1 > 0, s12 > 0, s2 =0, then (6.11)) is turned to

1
— (s1) T 4 6 My + h.ot. =0,
1
51 = —wi?(s19) e — 5 Ll Mip + hoot.,
s19 = —0 ‘wi M3+ h.o.t.,
6 'Myp+ h.ot.=0.
Thus, in the region 7@%113 = {p: 6 Mlp+hot. >0yN{p: =0 wi?Miu+ h.ot. > 0}, we get the

equation of bifurcation surface /35’11; of large 1-2 homoclinic loop as follows.

1
1 [
(-wP(—Ylw%Qleu) el — 5’1w}2M}u) W 5Nyt hot. = 0,
S My + hot. = 0.
(10). If (6.12) has a solution s9; = 0, s1 > 0, s12 = 0, s > 0, then (6.11]) is turned to
1
— (s1) TG 4 6 My + h.ot. =0,
s1= =0 twi?M{p+ h.ot.,
1
(82) a0 + 6 Mypu+ h.ot. =0,
sy =0 twi?Mlp + hot..

Thus, in the region 7@;’12712 ={p: 5 Mip+hot. >0 N{p: 0" Mlp+h.ot. <0}, we get the equation
of bifurcation surface 25’12712 of large 2-2 double homoclinic loop as follows.
1
— (=6 wi My + hot)Te®@ + 5 M+ hot. =0,
1
(6~ w3 My pu+ h.o.t.)Few + 5~ Mjp+ h.ot. = 0.
(11). If (6.12) has a solution so; > 0, s1 =0, s12 > 0, so = 0, then (6.11]) is turned to
s91 = 6 TwitMipu+ h.o.t.,

1
(512) @ + 5 M+ hot. =0,
519 = —0 w2 Mpu+ h.o.t.,

1
— (591)T® + 5 M+ hot. = 0.

Thus, in the region 7?%712’12 ={p: 5 I Mip+hot. <0yN{p: 0" Mlp+h.ot. > 0}, we get the equation

of bifurcation surface 23}2’12 of large 2-2 double homoclinic loop as follows.

1
(=0 Lwi2 M}y + hot )T + 5 Mip + h.ot. =0,
1
— (67w My + hoot) e + 5 M+ hoo.t. = 0.
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(12). If (6.12) has a solution s9; = 0, s1 > 0, s12 > 0, s2 > 0, then (6.11)) is turned to

1
— (1) TFeG) + 6‘1M11u + h.o.t. =0,

— _qwi2 TFal) — 12
51 wi?(s12) o0 — 6w M{p + heot., (6.14)

s12 = —wy(s2) e — 6 fwy? Myp+ hoot.,
s9 = 0wy Myp + h.o.t..

1,12,2

Thus, in the region Ry, = = {u : 6 'Miu + hot. > 0} N {p : 6 'wiMiu + hot. > 0} N {u :

12(6 Lwl2?Mlp + hoo.t. )Ha(u — 0 Ywi?Mlp + h.oot. > 0}, we get the equation of bifurcation surface
E%ll of large 2-2 homoclinic loop as follows.

1
I+o(p)

- (-l (b6 it ol ) ™ 5wl
+0 M+ hot. = 0.
(13). If has a solution sg; > 0, s1 =0, s12 > 0, sg > 0, then (6.11)) is turned to
o1 = 0 twi?Mipu+ hot.,
(slg)m + 6 My + hot. =0,
519 = —wa>(s2) ol — §— Ywy? M3+ heo.t., (6.1
59 = —wh2(591) T 4 5 wlMIu+ heot..
2122 _ (2 67 M+ hod. < 0} N {p s —wl2(67 wi2M I + heo.t.) a0 +
ST rwPMip + hot. > 0} N {p @ —wi?[(—wi? (6wl Miu + h.o.t. )1++(#> + 6 twd2 M + h.o.t.]ﬁ(#) —

§twi2 M3 i+ h.o.t. > 0}, we get the equation of bifurcation surface E21 122
follows.

Thus, in the region R]

of large 2-2 homoclinic loop as
1 1+01¢( 1+;(u)

(-ul? (~u Gl ™ + 5 uard) T - 5 )

+ 0 M+ hot. = 0.
(14). If (6.12) has a solution s31 > 0, s1 > 0, s12 =0, so > 0, then (6.11]) is turned to

1
s91 = —wiZ(sy) e + 6 twl?Mip + hoo.t.,
s1 = =0 twi?Mlp + hot.,
Taty 4 5-1as1 (6.16)
(s9) e + 5 " Myu+ h.o.t. =0,
1
S = —wa?(s91) e + 5 wd2Mlp + hoo.t..
Thus, in the region R%’l’z = {p: 5 Mlp+ hot. <0yN{p: =5 wiMip+ hot. > 0} N {u:

wi? (=6~ twi2Mip + h.o.t.)Ha(N) + 6 twi?Mlp + h.o.t. > 0}, we get the equation of bifurcation surface
2%1’12’2 of large 2-2 homoclinic loop as follows.

1
I+o(p)

1 a
<—w%2 (—w}z(—(sflw?Mll,u)W + 0w Ml p >1+ Wy Lwd? M) >

+ 0 ' M3p+ hot. = 0.
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(15). If (6.12) has a solution s9; > 0, s1 > 0, s12 > 0, so = 0, then (6.11) is turned to

s91 = —wiZ(s1) T + 6w Mip + heot.,

51 = —wi*(s12) TeGT — - Ywi? My + heo.t.,

(6.17)
s19 = —0 w2 M3+ h.o.t.,

1
— (891) T + 6 My + h.ot. = 0.

1
Thus, in the region Rgl L2 g (5_1M21,u + hot. > 0y N {p s —wi2 (=0 w2 Mlp + h.ot.) e —

1 1
STrwiMip + hot. > 0} N {p @ —wi[—wi?(=twi?Miu + h.o.t.) e — w2 Mlp + h.ot]™ e +
S twi? M+ h.ot. > 0}, we get the equatlon of bifurcation surface £21 122 of large 2-2 homoclinic loop as
follows.

1 Tt R
— <—w%2 (—w%Q(—é_lw%QMg,u) Tl — §~ w2 M} ,u) ety 5o Lwi2 u)

+ 0 MYy + heot. = 0.

(16). If (6.12) has a solution so; > 0, s1 > 0, s12 > 0, so > 0, then, differentiating (6.12)), and denoting by
(si),, as the gradient of s;(n) with respect to p, we get

4 1 —a(
(S21)u_ —( 12)m(31)1+a(”)( ) +0" w12M1 + h.o.t.,
12 1 —(p) 12
(s1)p = —( )m(sn)ua(u) (s12)p —o ! wi M1 + h.o.t.,
12 1 o). —1,,.123s1 (6‘18)
(SlQ)M = —(w2 )W(SQ) 14+a(u) (82)M — (5 w2 M2 + h.O.t.,
12 1 o). 12
(SQ)N (w2 )m(!ﬁzl) 1+a(p) (821) —+ 5 w3y M2 —+ h.o.t..
(). If p is situated in the neighborhood of E%fl 12 then, substituting (6.14) into (6.18), we get

(s21) = —(wi?) (0L MEp+ hoot) W (sy), 4+ 6wl M} + heo.t.,

1+ afp)

—a(p)
1 L a
(s0) = 1) o (Cod O A 7w — 5w+ hot) T (o),
— 0w M} + h.o.t.,

1 a(p) _
(512)u (wéz)m(é U}QQMQIJ/ + h.o.t. )H"‘(” (52) -4 lw%2M21 + h.o.t.,

(s2), = 6 twy* My + h.o.t..

So, (s21), = 0 'wi?M{ + O((6 "M}y + h.o.t.)=®®)) 4+ h.o.t., this means that sy = s21(u) increases

along the direction w12M1 in the small neighborhood of ﬁl 2112
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(ii). If p is situated in the neighborhood of £21 12,2 , then, substituting (6.15)) into (6.18]), we get

(s91)p = 0 'wi*M{ + h.o.t.,
1

(Sl)u = —(w%2)m(—5ilMﬁﬂ+h.O.t.)ia(u)(812) -0 'LU]_2M1 +h0t
1 —i(u)

(s12)p = —(w%2)m (— (0w My )”“W + 6wy My i+ heot. ) T (s9)
ap

— 6 wi? M} + hoot.,
—a(p)
(SQ)M (wéz)m(éilwilelu + h.O.t.) 1‘“"(‘;) (Sgl)u + 5*1w%2M21 + h.o.t..
So, (s1)y = =6 twi2M} + O((—=6'M}u + h.o.t.)=*W) + h.o.t., this means that s; = s1(u) increases

along the direction —wi2M] in the small neighborhood of E_fl’lm.

(iii). If p is situated in the neighborhood of L’21’1’2 then, substituting (6.16)) into (6.18)), we get

( 12 1 ~1. 12 erlye) 127 71
(s21)p = —(wy )T()(—é w2 M} + hoo.t.) o6 (s1),, + 6 'wi2M] + h.o.t.,
[0
(51) = =0 twi? M} + h.o.t.,
1
(812),11, = —(w%Q)m(—(silMQlu + h.O.t.)ia(y{) (SQ)M — (Silw%QMQl —+ h.O.t.,
1 Tt
(52)p = *(w?)m (* (=0 wi* M p )H“(“) + 6 wi*M{p+ heo t) " (s91)
\ + 5 1U22M2 + h o.t..

So, (s12), = =6 wi2M} + O((=6~*Mip + h.o.t.)"*W) + h.o.t., this means that sj2 = s12(u) increases

along the direction —wi?MJ in the small neighborhood of 521’1’2

(iv). If u is situated in the neighborhood of 521’1’12 then, substituting (6.17)) into (6.18]), we get

(s21)p = —(wiz)l_i_la(u)

+ 6wl M + hot.,

. ()
(—w (=6~ w22M1 YT — §~ w12M1u+h t)lmm(l)“

1 —a(p)
(s1)u = (w%Q)m( 6wy My pu 4 h.o.t.) 5o (s19),, — 6 twi*M] + h.o.t.,
(s12) = =0 twy* My + h.o.t.,
(s2), = —(w3?) (0 My + hoot.) W (s91),, 4+ 6~ wd2 M3 + h.o.t..

1+ ap)

So, (s2), = 6 tw M} + O((67 M pu+ h.o.t.)~®M)) + h.o.t., this means that sy = s2(y) increases along
the direction wi?MJ in the small neighborhood of £21 1,2

Denote by R, the region which is bounded by £§112 2, £%1’12’2, E?é’l’z, 531’1’2, and, the vectors wi?M},

—w12M1, —w22M2, and w 2M2 point into it from El 12, 2, 521,12,2’ E_%l’z, and 531’1’2, respectively.
By the discussion of above, we get - ) has solutlon s91 >0, 51 >0, s19 >0, s9 >0 for p € R, that
is, system (|1.2]) has a large 2-2 periodic loop.

. . . . 1,2 ~ ~ 721,12
About the bifurcation diagram, see Figure where L5775 = 5%171272 N £%1,1,12’ L5 £1 122 N

512
521,1,2- [
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21,1
L3755
- 12,2 331,1,12

52171,2 ['21,1,12_
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5122
i e

i 71\\
L1715 LZ
72
L£51112

-l<a(p) <0
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