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Abstract

In this paper, the bifurcation problems of twisted double homoclinic loops with resonant condition
are studied for (m + n)-dimensional nonlinear dynamic systems. In the small tubular neighborhoods of
the homoclinic orbits, the foundational solutions of the linear variational systems are selected as the local
coordinate systems. The Poincaré maps are constructed by using the composition of two maps, one is
in the small tubular neighborhood of the homoclinic orbit, and another is in the small neighborhood of
the equilibrium point of system. By the analysis of bifurcation equations, the existence, uniqueness and
existence regions of the large homoclinic loops, large periodic orbits are obtained, respectively. Moreover,
the corresponding bifurcation diagrams are given. c©2016 all rights reserved.
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1. Introduction and hypotheses

In the studies of many research areas and its application problems of nonlinear science, there are a
large number of nonlinear dynamical systems with complex dynamical behaviors. Homoclinic, heteroclinic
orbits and the corresponding bifurcation phenomena are the very important source of complex dynamical
behavior, and have been becoming a hot topic in the study of nonlinear dynamical systems. Using classical
Cartesian coordinate system and the successor function method, many scholars have studied the bifurcation
problems of low dimensional systems and achieved many breakthrough results. Recently, the research of
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bifurcation problems of homoclinic and heteroclinic loops have been increasing widespread, and the research
scope have been developing from low dimensional systems to high dimensional systems. Since the 1980s,
Wiggins, Kovacic, Luo, Han, et al. studied some low dimensional systems and some systems with special
forms (e.g. Hamilton) by using the well-known Melnikov methods [2, 3, 15, 18, 20, 21]. In 1990, Chow
et al. studied the high dimensional non-degenerate homoclinic orbits bifurcations in [1]. Since then, the
related studies were mostly by use of the traditional construction method of Poincaré map. In 1998, by using
the generalized Floquet method to construct the local coordinate system and the Poincaré map, Zhu and
Xia discussed the bifurcation problems of non-degenerated homoclinic and heteroclinic loops in [23, 24]. In
2000, Jin and Zhu [8] studied the bifurcations of degenerate homoclinic loop for higher dimensional system
by using the foundational solutions of the linear variational system of the unperturbed system along the
homoclinic orbit as the local coordinate systems to construct the Poincaré map. This method not only
has important theoretical significance, but also has good maneuverability in the application. From then
on, Jin, Zhu, Huang, Liu, et al. studied the bifurcations and stability of homoclinic and heteroclinic loops
for higher dimensional systems [4–6, 9–14, 16]. In [7, 22], Jin and Zhang studied the double homoclinic
loops bifurcations under the non-twisted condition. For twisted double homoclinic loops, Lu studied the
bifurcation problems under the non-resonant condition in [17]. In this paper, we study the bifurcations of
twisted double homoclinic loops under the resonant condition for the higher dimensional systems. In this
case, we obtain the existence, uniqueness and existence regions of the large homoclinic loops, large periodic
orbits, respectively. Moreover, the corresponding diagrams are given.

Suppose that the Cr system
ż = f(z), (1.1)

where r ≥ 5, z ∈ Rm+n satisfies the following hypotheses.

(H1) (Hyperbolicity) z = 0 is the hyperbolic equilibrium point of system (1.1), the stable manifold W s
0

and the unstable manifold W u
0 of z = 0 are m-dimensional and n-dimensional, respectively. λ1

and −ρ1 are simple eigenvalues of Df(0), such that any other eigenvalue σ of Df(0) satisfies either
Reσ < −ρ0 < −ρ1 < 0 or Reσ > λ0 > λ1 > 0, where λ0 and ρ0 are some positive numbers.

(H2) (Non-degeneration) System (1.1) has a double homoclinic loops Γ = Γ1 ∪ Γ2, Γi = {z = ri(t) : t ∈
R, ri(±∞) = 0}, i = 1, 2. For any P ∈ Γ, codim(TPW

u
0 + TPW

s
0 ) = 1, where TPW

s
0 and TPW

u
0 are

the tangent spaces of W s
0 and W u

0 at P , respectively.

(H3) (Strong inclination) Denote e±i = lim
t→∓∞

ṙi(t)/|ṙi(t)|, e+i and e−i are the unit eigenvectors corresponding

to λ1 and −ρ1, respectively. Let T0W
u
0 = T0W

uu
0 ⊕ e

+
i , T0W

s
0 = T0W

ss
0 ⊕ e

−
i , where T0W

s
0 and T0W

u
0

are the tangent spaces of W s
0 and W u

0 at z = 0, W ss
0 and W uu

0 are the strong stable manifold and
the strong unstable manifold of z = 0, T0W

ss
0 and T0W

uu
0 are the tangent spaces of W ss

0 and W uu
0 at

z = 0, respectively. The following strong inclination hold:

lim
t→+∞

(Tri(t)W
s
0 + Tri(t)W

u
0 ) = T0W

s
0 ⊕ T0W uu

0 , lim
t→−∞

(Tri(t)W
s
0 + Tri(t)W

u
0 ) = T0W

ss
0 ⊕ T0W u

0 ,

where i = 1, 2.

Remark 1.1. Obviously, e+1 = −e+2 , e−1 = −e−2 , T0W
ss
0 is the generalized eigenspace corresponding to those

eigenvalues with smaller real part than −ρ0, T0W uu
0 is the generalized eigenspace corresponding to those

eigenvalues with larger real part than λ0.

(H4) (Resonance condition) ρ1 = λ1.

Now, we consider the bifurcation problems of the following Cr perturbed system

ż = f(z) + g(z, µ), (1.2)

where µ ∈ Rl, l ≥ 5, 0 ≤ |µ| � 1, g(0, µ) = g(z, 0) = 0.
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2. Local coordinate systems

Suppose that (H1)∼(H4) are established, then, in the small enough neighborhood U of z = 0, we can
introduce successively two transformations (see [22]) such that system (1.2) has the following form:

ẋ = [λ1(µ) + h.o.t.] x+O(u)[O(y) +O(v)],

ẏ = [−ρ1(µ) + h.o.t.] y +O(v)[O(x) +O(u)],

u̇ = [B1(µ) + h.o.t.] u+O(x)[O(x) +O(y) +O(v)],

v̇ = [−B2(µ) + h.o.t.] v +O(y)[O(x) +O(y) +O(u)],

(2.1)

where z = (x, y, u∗, v∗)∗, x ∈ R1, y ∈ R1, u ∈ Rn−1, v ∈ Rm−1, ∗ means transposition, λ1(0) = ρ1(0) = λ1,
Reσ(B1(µ)) > λ0, Reσ(−B2(µ)) < −ρ0, and the “h.o.t.” means higher order term. Thus, the unstable
manifold, stable manifold, strong unstable manifold, strong stable manifold and local homoclinic orbits have
the following forms, respectively

W u
loc = {y = 0, v = 0}, W s

loc = {x = 0, u = 0, },
W uu
loc = {x = 0, y = 0, v = 0}, W ss

loc = {x = 0, u = 0, y = 0},
Γi ∩W u

loc = {y = 0, v = 0, u = ui(x)}, Γi ∩W s
loc = {x = 0, u = 0, v = vi(y)},

where i = 1, 2, ui(0) = u̇i(0) = 0, vi(0) = v̇i(0) = 0.
Denote ri(t) = (rxi (t), ryi (t), (rui (t))∗,(rvi (t))∗)∗, i = 1, 2. Suppose that r1(−T1) = (δ, 0, δ∗1,u, 0

∗)∗, r1(T1) =
(0, δ, 0∗, δ∗1,v)

∗, r2(−T2) = (−δ, 0, δ∗2,u, 0∗)∗, r2(T2) = (0,−δ, 0∗, δ∗2,v)∗, where, Ti > 0, i = 1, 2, δ is small
enough, such that {(x, y, u, v) :|x|,|y|,|u|,|v| < 2δ}⊂ U . Obviously, |δi,u|, |δi,v| at least are O(δω), ω =

min{Reσ(B2(µ))
ρ1(µ)

, Reσ(B1(µ))
λ1(µ)

} > 1.
Consider the linear variational system

ż = (Df(ri(t)))z. (2.2)

Similar to [6, 7, 16, 17, 22], (2.2) has a fundamental solution matrix Zi(t) = (z1i (t), z2i (t), z3i (t), z4i (t))
satisfying

z1i (t) ∈ (Tri(t)W
s)c ∩ (Tri(t)W

u)c,

z2i (t) = (−1)iṙi(t)/|ṙyi (Ti)| ∈ Tri(t)W
s ∩ Tri(t)W

u,

z3i (t) = (z3,1i (t), · · · , z3,n−1i (t)) ∈ (Tri(t)W
s)c ∩ (Tri(t)W

u) = Tri(t)W
uu,

z4i (t) = (z4,1i (t), · · · , z4,m−1i (t)) ∈ (Tri(t)W
s) ∩ (Tri(t)W

u)c = Tri(t)W
ss,

and

Zi(Ti) =


1 0 w31

i 0
0 1 w32

i 0
0 0 w33

i 0
w14
i , w24

i w34
i I

 , Zi(−Ti) =


w11
i w21

i 0 w41
i

w12
i 0 0 w42

i

w13
i w23

i I w43
i

0, 0 0 w44
i

 ,

where i = 1, 2, w21
i < 0, w12

i 6= 0, detw33
i 6= 0, detw44

i 6= 0, and |w1j
i (w12

i )−1| � 1, j 6= 2; |w2j
i (w21

i )−1| � 1,

j = 3, 4; |w3j
i (w33

i )−1| � 1, j 6= 3; |w4j
i (w44

i )−1| � 1, j 6= 4.
Denote Φi(t) = (φ1i (t), φ

2
i (t), φ

3
i (t), φ

4
i (t)) = (Z−1i (t))∗, i = 1, 2, so, Φi(t) is a fundamental solution

matrix of the adjoint system φ̇ = −(Df(ri(t)))
∗φ of (2.2), and φ1i (t) ∈ (Tri(t)W

s)c ∩ (Tri(t)W
u)c is bounded

and tends to zero exponentially as t→ ±∞ [7, 8, 17, 19, 22, 23].
We select z1i (t), z2i (t), z3i (t), z4i (t) as the local coordinate systems along Γi, i = 1, 2.
Let ∆i = w12

i /|w12
i |, i = 1, 2. We say that Γi is non-twisted if ∆i = 1, and twisted if ∆i = −1. In this

paper, we consider the case of twisted.
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3. Poincaré maps and the bifurcation equations with single twisted orbit

(H5) (Single twisted condition) ∆1 = 1, ∆2 = −1.

Denote hi(t) = ri(t) + Zi(t)Ni(t), Ni(t) = (n1i , 0, (n
3
i )
∗, (n4i )

∗)∗, i = 1, 2, and let S−i = {z = hi(−Ti) :
|x|, |y|, |u|, |v| < 2δ} ⊂ U , S+

i = {z = hi(Ti) : |x|, |y|, |u|, |v| < 2δ} ⊂ U be the cross sections of Γi at t = −Ti
and t = Ti, respectively.
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Figure 1

Now, we set up Poincaré maps.
In U , denote F21 : S+

2 → S−1 , F21(q
2j
2 ) = q2j+1

1 ; F12 : S+
1 → S−2 , F12(q

2j
1 ) = q2j+1

2 ; F 1
1 : S+

1 → S−1 ,

F 1
1 (q̄2j1 ) = q̄2j+1

1 ; F 1
2 : S+

2 → S−2 , F 1
2 (q̄2j2 ) = q̄2j+1

2 where i = 1, 2, j = 0, 1, · · · .
In the tubular neighborhood of Γi, denote by F 2

i , the map from S−i to S+
i . Due to ∆1 = 1, ∆2 = −1,

we denote F 2
1 (q2j+1

1 ) = q2j+2
1 , F 2

1 (q̄2j+1
1 ) = q̄2j+2

1 ; F 2
2 (q2j+1

2 ) = q̄2j+2
2 , F 2

2 (q̄2j+1
2 ) = q2j+2

2 where i = 1, 2,
j = 0, 1, 2, · · · (Figure 1).

At first, we set up the relationship between the Cartesian coordinates and the normal coordinates of the
points in the neighborhood of homoclinic loop. Let

q2ji (x2ji , y
2j
i , (u

2j
i )∗, (v2ji )∗)∗ = ri(Ti) + Zi(Ti)N

2j
i ,

q̄2ji (x̄2ji , ȳ
2j
i , (ū

2j
i )∗, (v̄2ji )∗)∗ = ri(Ti) + Zi(Ti)N̄

2j
i ,

q2j+1
i (x2j+1

i , y2j+1
i , (u2j+1

i )∗, (v2j+1
i )∗)∗ = ri(−Ti) + Z(−Ti)N2j+1

i ,

q̄2j+1
i (x̄2j+1

i , ȳ2j+1
i , (ū2j+1

i )∗, (v̄2j+1
i )∗)∗ = ri(−Ti) + Z(−Ti)N̄2j+1

i ,

N2j
i = (n2j,1i , 0, (n2j,3i )∗, (n2j,4i )∗)∗,

N2j+1
i = (n2j+1,1

i , 0, (n2j+1,3
i )∗, (n2j+1,4

i )∗)∗,

N̄2j
i = (n̄2j,1i , 0, (n̄2j,3i )∗, (n̄2j,4i )∗)∗,

N̄2j+1
i = (n̄2j+1,1

i , 0, (n̄2j+1,3
i )∗, (n̄2j+1,4

i )∗)∗.

By Z−1i (Ti), Z
−1
i (−Ti) and some simple calculations, we get

y2j1 ≈ δ, x
2j+1
1 ≈ δ, y2j2 ≈ −δ, x

2j+1
2 ≈ −δ, (3.1)
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and 
n2j+1,1
i = (w12

i )−1[y2j+1
i − w42

i (w44
i )−1v2j+1

i ],

n2j+1,3
i = u2j+1

i − δiu + bi(w
12
i )−1y2j+1

i + ai(w
44
i )−1v2j+1

i ,

n2j+1,4
i = (w44

i )−1v2j+1
i ,

(3.2)


n2j,1i = x2ji − w

31
i (w33

i )−1u2ji ,

n2j,3i = (w33
i )−1u2ji ,

n2j,4i = −w14
i x

2j
i + ci(w

33
i )−1u2ji + v2ji − δiv,

(3.3)

where, bi = w11
i w

23
i (w21

i )−1 − w13
i , a1i = −w41

i + w11
i (w12

i )−1w42
i , a3i = −w43

i + w13
i (w12

i )−1w42
i , ai = a3i −

w23
i (w21

i )−1a1i , ci = (w14
i w

31
i + w24

i w
32
i − w34

i ).

As well, the relationship between the two kinds of coordinates of q̄2ji , q̄2j+1
i also satisfies (3.1), (3.2), and

(3.3).
Now, we consider the map F 2

i . Substituting transformation z = hi(t) into (1.2), and using ṙi(t) =
f(ri(t)), Żi(t) = Df(ri(t))Zi(t), we get

Zi(t)(ṅ1i , 0,
˙(n3i )
∗
, ˙(n4i )

∗
)∗ = gµ(ri(t), 0)µ+ h.o.t..

Multiplying the both sides of the above equation by Φ∗i (t) and using Φ∗i (t)Zi(t) = I, we have

(ṅ1i , 0,
˙(n3i )
∗
, ˙(n4i )

∗
)∗ = Φ∗i (t)gµ(ri(t), 0)µ+ h.o.t..

Integrating it, we have F 2
i defined by the following

n2j+2,k
1 = n2j+1,k

1 +Mk
1 µ+ h.o.t.,

n̄2j+2,k
1 = n̄2j+1,k

1 +Mk
1 µ+ h.o.t.,

n̄2j+2,k
2 = n2j+1,k

2 +Mk
2 µ+ h.o.t.,

n2j+2,k
2 = n̄2j+1,k

2 +Mk
2 µ+ h.o.t.,

k = 1, 3, 4, (3.4)

where, Mk
i =

∫ +∞
−∞ (φki (t))

∗gµ(ri(t), 0)dt, k = 1, 3, 4, i = 1, 2 [7, 8, 17, 22, 23].
Next, we consider the map in U . Without loss of generality, we may assume that the resonance condition

has the following form for the system (1.2).
ρ1(µ) = (1 + α(µ))λ1(µ), where, α(µ) ∈ R1, |α(µ)| � 1, α(0) = 0.
Assume that τ21 is the time from q02 to q11, τ12 is the time from q01 to q12, τ1 is the time from q̄01 to q̄11,

and τ2 is the time from q̄02 to q̄12. Set sj = e−λ1(µ)τj , j = 21, 12, 1, 2, which are called the Silnikov times. By
(2.1) we have

x = eλ1(µ)(t−Ti−τi)x1 + h.o.t., y = e−(1+α(µ))λ1(µ)(t−Ti)y0 + h.o.t.,

u = eB1(µ)(t−Ti−τi)u1 + h.o.t., v = e−B2(µ)(t−Ti)v0 + h.o.t..

Neglecting the higher order terms, the above formulas defined the following maps for x1, y0, u1, v0 and t
take the corresponding values.

F 1
1 : x̄01 ≈ δs1, ȳ11 ≈ δs

(1+α(µ))
1 , ū01 ≈ s

B1(µ)/λ1(µ)
1 ū11, v̄

1
1 ≈ s

B2(µ)/λ1(µ)
1 v̄01, (3.5)

F 1
2 : x̄02 ≈ −δs2, ȳ12 ≈ −δs

(1+α(µ))
2 , ū02 ≈ s

B1(µ)/λ1(µ)
2 ū12, v̄

1
2 ≈ s

B2(µ)/λ1(µ)
2 v̄02, (3.6)

F21 : x02 ≈ δs21, y11 ≈ −δs
(1+α(µ))
21 , u02 ≈ s

B1(µ)/λ1(µ)
21 u11, v

1
1 ≈ s

B2(µ)/λ1(µ)
21 v02, (3.7)

F12 : x01 ≈ −δs12, y12 ≈ δs
(1+α(µ))
12 , u01 ≈ s

B1(µ)/λ1(µ)
12 u12, v

1
2 ≈ s

B2(µ)/λ1(µ)
12 v01. (3.8)

At last, by (3.1) ∼ (3.4) and (3.5) ∼ (3.8), we can get Poincaré maps as follows.
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F̄1 = F 2
1 ◦ F 1

1 : S+
1 7→ S+

1 , F̄1(q̄
0
1) = q̄21 :

n̄2,11 = (w12
1 )−1δs

(1+α(µ))
1 +M1

1µ+ h.o.t.,

n̄2,31 = ū11 − δ1u + b1(w
12
1 )−1δs

(1+α(µ))
1 +M3

1µ+ h.o.t.,

n̄2,41 = (w44
1 )−1s

B2(µ)/λ1(µ)
1 v̄01 +M4

1µ+ h.o.t..

F1 = F 2
1 ◦ F21: S

+
2 7→ S+

1 , F1(q
0
2) = q21 :

n2,11 = −(w12
1 )−1δs

(1+α(µ))
21 +M1

1µ+ h.o.t.,

n2,31 = u11 − δ1u − b1(w12
1 )−1δs

(1+α(µ))
21 +M3

1µ+ h.o.t.,

n2,41 = (w44
1 )−1s

B2(µ)/λ1(µ)
21 v02 +M4

1µ+ h.o.t..

F2 = F 2
2 ◦ F12: S

+
1 7→ S+

2 , F2(q
0
1) = q̄22 :

n̄2,12 = (w12
2 )−1δs

(1+α(µ))
12 +M1

2µ+ h.o.t.,

n̄2,32 = u12 − δ2u + b2(w
12
2 )−1δs

(1+α(µ))
12 +M3

2µ+ h.o.t.,

n̄2,42 = (w44
2 )−1s

B2(µ)/λ1(µ)
12 v01 +M4

2µ+ h.o.t..

F̄2 = F 2
2 ◦ F 1

2 : S+
2 7→ S+

2 , F̄2(q̄
0
2) = q22 :

n2,12 = −(w12
2 )−1δs

(1+α(µ))
2 +M1

2µ+ h.o.t.,

n2,32 = ū12 − δ2u − b2(w12
2 )−1δs

(1+α(µ))
2 +M3

2µ+ h.o.t.,

n2,42 = (w44
2 )−1s

B2(µ)/λ1(µ)
2 v̄02 +M4

2µ+ h.o.t..

Meanwhile, we get the successor functions as follows:
Ḡ1(s1, ū

1
1, v̄

0
1) = (Ḡ1

1, Ḡ
3
1, Ḡ

4
1) = (F̄1(q̄

0
1)− q̄01) is given by

Ḡ1
1 =δ[(w12

1 )−1s
(1+α(µ))
1 − s1] +M1

1µ+ h.o.t.,

Ḡ3
1 =ū11 − δ1u + b1(w

12
1 )−1δs

(1+α(µ))
1 − (w33

1 )−1s
B1(µ)/λ1(µ)
1 ū11 +M3

1µ+ h.o.t.,

Ḡ4
1 =− v̄01 + δ1v + w14

1 δs1 + (w44
1 )−1s

B2(µ)/λ1(µ)
1 v̄01 +M4

1µ+ h.o.t..

Ḡ2(s2, ū
1
2, v̄

0
2) = (Ḡ1

2, Ḡ
3
2, Ḡ

4
2) = (F̄2(q̄

0
2)− q̄02) is given by

Ḡ1
2 =δ[−(w12

2 )−1s
(1+α(µ))
2 + s2] +M1

2µ+ h.o.t.,

Ḡ3
2 =ū12 − δ2u − b2(w12

2 )−1δs
(1+α(µ))
2 − (w33

2 )−1s
B1(µ)/λ1(µ)
2 ū12 +M3

2µ+ h.o.t.,

Ḡ4
2 =− v̄02 + δ2v − w14

2 δs2 + (w44
2 )−1s

B2(µ)/λ1(µ)
2 v̄02 +M4

2µ+ h.o.t..

G1(s12, s21, u
1
1, u

1
2, v

0
1, v

0
2) = (G1

1, G
3
1, G

4
1) = (F1(q

0
2)− q01) is given by

G1
1 =δ[−(w12

1 )−1s
(1+α(µ))
21 + s12] +M1

1µ+ h.o.t.,

G3
1 =u11 − δ1u − b1(w12

1 )−1δs
(1+α(µ))
21 − (w33

1 )−1s
B1(µ)/λ1(µ)
12 u12 +M3

1µ+ h.o.t.,

G4
1 =− v01 + δ1v − w14

1 δs12 + (w44
1 )−1s

B2(µ)/λ1(µ)
21 v02 +M4

1µ+ h.o.t..

(3.9)

G2(s12, s2, u
1
2, ū

1
2, v

0
1, v̄

0
2) = (G1

2, G
3
2, G

4
2) = (F2(q

0
1)− q̄02) is given by

G1
2 =δ[(w12

2 )−1s
(1+α(µ))
12 + s2] +M1

2µ+ h.o.t.,

G3
2 =u12 − δ2u + b2(w

12
2 )−1δs

(1+α(µ))
12 − (w33

2 )−1s
B1(µ)/λ1(µ)
2 ū12 +M3

2µ+ h.o.t.,

G4
2 =− v̄02 + δ2v − w14

2 δs2 + (w44
2 )−1s

B2(µ)/λ1(µ)
12 v01 +M4

2µ+ h.o.t..

(3.10)
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G̃2(s21, s2, u
1
1, ū

1
2, v

0
2, v̄

0
2) = (G̃1

2, G̃
3
2, G̃

4
2) = (F̄2(q̄

0
2)− q02) is given by

G̃1
2 =δ[−(w12

2 )−1s
(1+α(µ))
2 − s21] +M1

2µ+ h.o.t.,

G̃3
2 =ū12 − δ2u − b2(w12

2 )−1δs
(1+α(µ))
2 − (w33

2 )−1s
B1(µ)/λ1(µ)
21 u11 +M3

2µ+ h.o.t.,

G̃4
2 =− v02 + δ2v + w14

2 δs21 + (w44
2 )−1s

B2(µ)/λ1(µ)
2 v̄02 +M4

2µ+ h.o.t..

(3.11)

Thus, we get the three bifurcation equations as follows:

Ḡ1(s1, ū
1
1, v̄

0
1) = (Ḡ1

1, Ḡ
3
1, Ḡ

4
1) = 0, (3.12)

Ḡ2(s2, ū
1
2, v̄

0
2) = (Ḡ1

2, Ḡ
3
2, Ḡ

4
2) = 0, (3.13)

G(s12, s21, s2, u
1
1, u

1
2, v

0
1, v

0
2, ū

1
2, v̄

0
2) = (G1, G2, G̃2) = 0. (3.14)

Obviously, for system (1.2), there is a one to one correspondence between the solutions of the bifurcation
equations satisfying sj ≥ 0, j = 1, 2, 21, 12, and the 1-homoclinic loops and 1-periodic orbits bifurcated from
Γ1, Γ2, Γ = Γ1 ∪ Γ2, respectively.

We call the 1-homoclinic loop and 1-periodic orbit bifurcated from the single homoclinic loop Γi as small
homoclic loop and small period orbit, respectively; call the 1-homoclinic loop and 1-periodic orbit bifurcated
from Γ = Γ1 ∪ Γ2 as large homoclic loop and large period orbit, respectively.

4. Bifurcations with the single twisted orbit

At first, by the analysis of the existence of solutions of the equations (3.12) and (3.13) which satisfy
sj ≥ 0, j = 1, 2, we can get the bifurcations of the single homoclinic loop Γi, i = 1, 2, for the case of
non-twisted and the case of twisted, respectively. About the details, one can see [6, 11] and their references.

Now, in this paper, we discuss the large 1-homoclinic loops and large 1-periodic orbits bifurcated by
Γ = Γ1 ∪ Γ2, that is, discuss the solutions Q(s12, s21, s2, u

1
1, u

1
2, v

0
1, v

0
2, ū

1
2, v̄

0
2) of the bifurcation equation

(3.14) which satisfy s12 ≥ 0, s21 ≥ 0, s2 ≥ 0.
By (3.9), (3.10), (3.11), for 0 ≤ s12, s21, s2, |µ| � 1, the equation (G3

1, G
4
1, G

3
2, G

4
2, G̃

3
2, G̃

4
2) = 0 has

always a unique solution u11 = u11(s21, s12, s2, µ), u12 = u12(s21, s12, s2, µ), v01 = v01(s21, s12, s2, µ), v02 =
v02(s21, s12, s2, µ), ū12 = ū12(s21, s12, s2, µ), v̄02 = v̄02(s21, s12, s2, µ). Substituting it into (G1

1, G
1
2, G̃

1
2) = 0,

we have 
δ[−(w12

1 )−1s
(1+α(µ))
21 + s12] +M1

1µ+ h.o.t. = 0,

δ[(w12
2 )−1s

(1+α(µ))
12 + s2] +M1

2µ+ h.o.t. = 0,

δ[−(w12
2 )−1s

(1+α(µ))
2 − s21] +M1

2µ+ h.o.t. = 0.

(4.1)

Thus, for system (1.2), there is a one to one correspondence between the large 1-homoclinic loops and
large 1-periodic orbits bifurcated from Γ = Γ1 ∪ Γ2 and the solutions of the bifurcation equation (4.1)
satisfying s12 ≥ 0, s12 ≥ 0, s2 ≥ 0, respectively.

4.1. α(µ) = 0

Theorem 4.1. Suppose that (H1)∼(H5) hold. If α(µ) = 0, (w12
1 )−1(w12

2 )−2 6= 1, rank{M1
1 ,M

1
2 } = 2, then,

for |µ| � 1, system (1.2) has at most one large 2-1 homoclinic loop, or one large 1-1 homoclinic loop, or
one large 2-1 double homoclinic loop, or one large 1-1 double homoclinic loop, or a large 2-1 periodic loop
in the small neighbourhood of Γ = Γ1 ∩ Γ2. Moreover, these orbits do not coexist.

Proof. In this case, (4.1) becomes
−(w12

1 )−1s21 + s12 + δ−1M1
1µ+ h.o.t. = 0,

(w12
2 )−1s12 + s2 + δ−1M1

2µ+ h.o.t. = 0,

−(w12
2 )−1s2 − s21 + δ−1M1

2µ+ h.o.t. = 0.

(4.2)
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That is  (w12
1 )−1 −1 0
0 −(w12

2 )−1 −1
1 0 (w12

2 )−1

 s21
s12
s2

 = δ−1

 M1
1µ

M1
2µ

M1
2µ

+ h.o.t..

Denote B =

 (w12
1 )−1 −1 0
0 −(w12

2 )−1 −1
1 0 (w12

2 )−1

. If ‖B‖ = 1 − (ω12
1 )−1(ω12

2 )−2 6= 0, then, (4.2) has a

unique solution 0 ≤ s12(µ), s21(µ), s2(µ)� 1 satisfying s12(0) = s21(0) = s2(0) = 0, that is, s21
s12
s2

 = δ−1B−1

 M1
1µ

M1
2µ

M1
2µ

+ h.o.t. = δ−1‖B‖−1B∗
 M1

1µ
M1

2µ
M1

2µ

+ h.o.t.

= δ−1‖B‖−1
 [

−(w12
2 )−2M1

1 +
(
(w12

2 )−1 + 1
)
M1

2

]
µ[

−M1
1 + (w12

1 )−1
(
(w12

2 )−1 + 1
)
M1

2

]
µ[

(w12
2 )−1M1

1 −
(
1 + (w12

1 w
12
2 )−1

)
M1

2

]
µ

+ h.o.t..

(4.3)

If s21 = 0, s12 > 0, s2 > 0, or s12 = 0, s21 > 0, s2 > 0, or s2 = 0, s12 > 0, s21 > 0, then, system (1.2)
has a large 2-1 homoclinic loop (Figures 2, 3, 4).

If s21 = 0, s2 = 0, s12 > 0, or s12 = 0, s2 = 0, s21 > 0, then, system (1.2) has a large 1-1 homoclinic
loop (Figures 5, 6).

If s21 = 0, s12 = 0, s2 > 0, then, system (1.2) has a large 2-1 double homoclinic loop (Figure 7).
If s12 = 0, s21 = 0, s2 = 0, then, system (1.2) has a double 1-1 homoclinic loop (Figure 8).
If s21 > 0, s12 > 0, s2 > 0, then, system (1.2) has a large 2-1 periodic loop (Figure 9).
Thus, the theorem is established.

s21 = 0,
s12 > 0, s2 > 0

Figure 2

s12 = 0,
s21 > 0, s2 > 0

Figure 3

s2 = 0,
s21 > 0, s12 > 0

Figure 4

s2 = 0, s21 = 0,
s12 > 0

Figure 5

s2 = 0, s12 = 0,
s21 > 0

Figure 6

s21 = 0, s12 = 0,
s2 > 0

Figure 7

s21 = 0, s12 = 0,
s2 = 0

Figure 8

s21 > 0, s12 > 0,
s2 > 0

Figure 9

Theorem 4.2. Suppose that (H1)∼(H5) hold. If α(µ) = 0, (w12
1 )−1(w12

2 )−2 6= 1, rank{M1
1 ,M

1
2 } = 2, then,

for |µ| � 1, there exist surfaces L0
21, L

0
12, L

0
2, L

0
21,2, L

0
12,2, L

0
21,12, L

0
21,12,2, and a region H, such that
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(1) For µ ∈ L0
21, (4.2) has a solution s21 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-1

homoclinic loop (Figure 2).

(2) For µ ∈ L0
12, (4.2) has a solution s12 = 0, s21 > 0, s2 > 0, that is, system (1.2) has a large 2-1

homoclinic loop (Figure 3).

(3) For µ ∈ L0
2, (4.2) has a solution s2 = 0, s12 > 0, s21 > 0, that is, system (1.2) has a large 2-1

homoclinic loop (Figure 4).

(4) For µ ∈ L0
21,2, (4.2) has a solution s21 = 0, s2 = 0, s12 > 0, that is, system (1.2) has a large 1-1

homoclinic loop (Figure 5).

(5) For µ ∈ L0
12,2, (4.2) has a solution s12 = 0, s2 = 0, s21 > 0, that is, system (1.2) has a large 1-1

homoclinic loop (Figure 6).

(6) For µ ∈ L0
21,12, (4.2) has a solution s21 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large 2-1

double homoclinic loop (Figure 7).

(7) For µ ∈ L0
21,12,2, (4.2) has solution s12 = 0, s21 = 0, s2 = 0, that is, system (1.2) has a double 1-1

homoclinic loop Γ0 = Γ0
1(µ) ∪ Γ0

2(µ) (Figure 8).

(8) For µ ∈ H, (4.2) has a solution s21 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-1 periodic
loop (Figure 9).

Proof. By (4.3), we get

(1). In the region R0
21 = {µ : ‖B‖−1 ·

[
−M1

1µ+ (w12
1 )−1

(
(w12

2 )−1 + 1
)
M1

2µ
]

+ h.o.t. > 0} ∩ {µ : ‖B‖−1 ·[
(w12

2 )−1M1
1µ−

(
1 + (w12

1 )−1(w12
2 )−1

)
M1

2µ
]

+ h.o.t. > 0}, there is an (l − 1)-dimensional surface

L0
21 = {µ : −(w12

2 )−2M1
1µ+

[
(w12

2 )−1 + 1
]
M1

2µ+ h.o.t. = 0},

which has normal vector −(w12
2 )−2M1

1 +
[
(w12

2 )−1 + 1
]
M1

2 at µ = 0, such that for µ ∈ L0
21, (4.2) has a

solution s21 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-1 homoclinic loop.

(2). In the region R0
12 = {µ : ‖B‖−1 ·

[
(w12

2 )−1M1
1µ−

(
1 + (w12

1 w
12
2 )−1

)
M1

2µ
]

+ h.o.t. > 0} ∩ {µ : ‖B‖−1 ·[
−(w12

2 )−2M1
1µ+

(
(w12

2 )−1 + 1
)
M1

2µ
]

+ h.o.t. > 0 }, there is a (l − 1)-dimensional surface

L0
12 = {µ : −M1

1µ+ (w12
1 )−1

[
(w12

2 )−1 + 1
]
M1

2µ+ h.o.t. = 0},

which has normal vector −M1
1 + (w12

1 )−1
[
(w12

2 )−1 + 1
]
M1

2 at µ = 0, such that for µ ∈ L0
12, (4.2) has a

solution s12 = 0, s21 > 0, s2 > 0, that is, system (1.2) has a large 2-1 homoclinic loop.

(3). In the region R0
2 = {µ : ‖B‖−1

[
−(w12

2 )−2M1
1µ+

(
(w12

2 )−1 + 1
)
M1

2µ
]
+h.o.t. > 0} ∩ {µ : ‖B‖−1

[
−M1

1µ
+ (w12

1 )−1
(
(w12

2 )−1 + 1
)
M1

2µ
]

+ h.o.t. > 0}, there is an (l − 1)-dimensional surface

L0
2 = {µ : (w12

2 )−1M1
1µ−

(
1 + (w12

1 w
12
2 )−1

)
M1

2µ+ h.o.t. = 0},

which has normal vector (w12
2 )−1M1

1 −
(
1 + (w12

1 )−1(w12
2 )−1

)
M1

2 at µ = 0, such that for µ ∈ L0
2, (4.2) has a

solution s2 = 0, s12 > 0, s21 > 0, that is, system (1.2) has a large 2-1 homoclinic loop.

(4). In the region R0
21,2 = {µ : ‖B‖−1

[
−M1

1µ+ (w12
1 )−1

(
(w12

2 )−1 + 1
)
M1

2µ
]

+h.o.t. > 0}, there is an (l−2)-
dimensional surface

L0
21,2 = L0

21 ∩ L0
2 ={µ : −(w12

2 )−2M1
1µ+

(
(w12

2 )−1 + 1
)
M1

2µ+ h.o.t. = 0}
∩ {µ : (w12

2 )−1M1
1µ−

(
1 + (w12

1 w
12
2 )−1

)
M1

2µ+ h.o.t. = 0},

which has normal plane span{−(w12
2 )−2M1

1 +
(
(w12

2 )−1 + 1
)
M1

2 , (w12
2 )−1M1

1−(1+(w12
1 w

12
2 )−1)M1

2 } at µ = 0,
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such that for µ ∈ L0
21,2, (4.2) has a solution s21 = 0, s2 = 0, s12 > 0, that is, system (1.2) has a large 1-1

homoclinic loop.

(5). In the region R0
12,2 = {µ : ‖B‖−1

[
−(w12

2 )−2M1
1µ+

(
(w12

2 )−1 + 1
)
M1

2µ
]

+h.o.t. > 0}, there is an (l− 2)-
dimensional surface

L0
12,2 = L0

12 ∩ L0
2 ={µ : −M1

1µ+ (w12
1 )−1((w12

2 )−1 + 1)M1
2µ+ h.o.t. = 0}

∩ {µ : (w12
2 )−1M1

1µ−
(
1 + (w12

1 w
12
2 )−1

)
M1

2µ+ h.o.t. = 0},

which has normal vector span{−M1
1 + (w12

1 )−1
(
(w12

2 )−1 + 1
)
M1

2 , (w12
2 )−1M1

1 − (1 + (w12
1 w

12
2 )−1)M1

2 } at
µ = 0, such that for µ ∈ L0

12,2, (4.2) has a solution s12 = 0, s2 = 0, s21 > 0, that is, system (1.2) has a large
1-1 homoclinic loop.

(6). In the region R0
21,12 = {µ : ‖B‖−1

[
(w12

2 )−1M1
1µ−

(
1 + (w12

1 w
12
2 )−1

)
M1

2µ
]

+ h.o.t. > 0}, there is an
(l − 2)-dimensional surface

L0
21,12 = L0

21 ∩ L0
12 = {µ : −(w12

2 )−2M1
1µ+

(
(w12

2 )−1 + 1
)
M1

2µ+ h.o.t. = 0}
∩ {µ : −M1

1µ+ (w12
1 )−1

(
(w12

2 )−1 + 1
)
M1

2µ+ h.o.t. = 0},

which has normal vector span{−(w12
2 )−2M1

1 + ((w12
2 )−1 + 1)M1

2 , −M1
1 + (w12

1 )−1((w12
2 )−1 + 1)M1

2 } at µ = 0,
such that for µ ∈ L0

21,12, (4.2) has a solution s21 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large 2-1
double homoclinic loop.

(7). There is a surface

L0
21,12,2 = L0

21 ∩ L0
12 ∩ L0

2 = {µ : −(w12
2 )−2M1

1µ+ ((w12
2 )−1 + 1)M1

2µ+ h.o.t. = 0}
∩
{
µ : −M1

1µ+ (w12
1 )−1

(
(w12

2 )−1 + 1
)
M1

2µ+ h.o.t. = 0
}

∩ {µ : (w12
2 )−1M1

1µ−
(
1 + (w12

1 w
12
2 )−1

)
M1

2µ+ h.o.t. = 0},

which has normal vector

M = span{−(w12
2 )−2M1

1 +
(
(w12

2 )−1 + 1
)
M1

2 , (w12
2 )−1M1

1 −
(
1 + (w12

1 )−1(w12
2 )−1

)
M1

2 ,

−M1
1 + (w12

1 )−1
(
(w12

2 )−1 + 1
)
M1

2 }

at µ = 0, such that, for µ ∈ L0
21,12,2, (4.2) has solution s12 = 0, s21 = 0, s2 = 0, that is, in the small

neighborhood of Γ, system (1.2) has a double 1-1 homoclinic loop Γ0 = Γ0
1(µ) ∪ Γ0

2(µ).
Notice that dimM=2, ‖B∗‖ 6= 0, so, indeed, the surface L0

21,12,2 is an (l − 2)-dimensional surface which

has normal plane M at µ = 0. In fact, L0
21,12,2={µ : M1

1µ+ h.o.t. = 0} ∩ {µ : M1
2µ+ h.o.t. = 0}.

(8). Denote

H =
{
µ : ‖B‖−1

[
−(w12

2 )−2M1
1µ+

(
(w12

2 )−1 + 1
)
M1

2µ
]

+ h.o.t. > 0
}

∩
{
µ : ‖B‖−1

[
−M1

1µ+ (w12
1 )−1

(
(w12

2 )−1 + 1
)
M1

2µ
]

+ h.o.t. > 0
}

∩
{
µ : ‖B‖−1

[
(w12

2 )−1M1
1µ−

(
1 + (w12

1 w
12
2 )−1

)
M1

2µ
]

+ h.o.t. > 0
}
.

For µ ∈ H, (4.2) has a solution s21 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-1 periodic loop.
About the bifurcation diagrams for the cases −1 < w12

2 < 0, 0 < w12
1 < 1 and w12

1 > 1, w12
2 > 1, see

Figures 10 and 11.
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4.2. 0 < α(µ)� 1

Theorem 4.3. Suppose that (H1)∼(H5) hold. If 0 < α(µ) � 1, rank{M1
1 ,M

1
2 } = 2, then, for |µ| � 1,

system (1.2) has at most one large 2-1 homoclinic loop, or one large 1-1 homoclinic loop, or one large 2-1
double homoclinic loop, or one large 1-1 double homoclinic loop, or a large 2-1 periodic loop in the small
neighborhood of Γ = Γ1 ∩ Γ2, and, these orbits do not coexist.

Moreover, there exist surfaces L1, L2, L1,2, L
12
21,2, L

21
12,2, L

2
21,12, L

12,2
21 , L21,2

12 , L21,12
2 , and a region R21,12,2,

such that:
For µ ∈ L1, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ1.
For µ ∈ L2, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ2.
For µ ∈ L1,2, system (1.2) has a unique double homoclinic loops in the small neighborhood of Γ = Γ1∪Γ2,

that is, double homoclinic loop is preserved (Figure 8).
For µ ∈ L12

21,2 ∪ L21
12,2, system (1.2) has a large 1-1 homoclinic loop (Figures 5 and 6).

For µ ∈ L2
21,12, system (1.2) has a large 2-1 double homoclinic loop (Figure 7).

For µ ∈ L12,2
21 ∪ L

21,2
12 ∪ L

21,12
2 , system (1.2) has a large 2-1 homoclinic loop (Figures 2, 3, and 4).

For µ ∈ R21,12,2, system (1.2) has a large 2-1 periodic loop (Figure 9).

Proof. In this case, by (4.1), we have that
∂(G1

1,G
1
2,G̃

1
2)

∂(s12,s2,s21)
|s12=s2=s21=0 = diag(1, 1,−1) is a full rank matrix, so,

according to the implicit function theorem, we have that (4.1) has a unique solution
s12 = (w12

1 )−1s
(1+α(µ))
21 − δ−1M1

1µ+ h.o.t.,

s2 = −(w12
2 )−1s

(1+α(µ))
12 − δ−1M1

2µ+ h.o.t.,

s21 = −(w12
2 )−1s

(1+α(µ))
2 + δ−1M1

2µ+ h.o.t.,

(4.4)

in the small neighborhood of s12 = s2 = s21 = 0. Thus, the uniqueness and non-coexistence are proved.

(1). If (4.4) has a solution s12 = s2 = s21 = 0, then (4.1) is turned to{
M1

1µ+ h.o.t. = 0,

M1
2µ+ h.o.t. = 0.

If M1
1 6= 0, then, there exists an (l − 1)-dimensional surface L1 = {µ : M1

1µ + h.o.t. = 0} which has
normal vector M1

1 at µ = 0, such that, for µ ∈ L1, system (1.2) has a unique small 1-homoclinic loop Γ1(µ)
in the small neighborhood of Γ1.

If M1
2 6= 0, then, there exists an (l − 1)-dimensional surface L2 = {µ : M1

2µ + h.o.t. = 0} which has
normal vector M1

2 at µ = 0, such that, for µ ∈ L2, system (1.2) has a unique small 1-homoclinic loop Γ2(µ)
in the small neighborhood of Γ2.
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Thus, if rank{M1
1 ,M

1
2 } = 2, then, there exists an (l − 2)-dimensional surface L1,2 = L1 ∩ L2 = {µ :

M1
1µ + h.o.t. = 0, M1

2µ + h.o.t. = 0} which has normal plane span{M1
1 ,M

1
2 } at µ = 0, such that, for

µ ∈ L1,2, system (1.2) has a unique double homoclinic loop Γ(µ) = Γ1(µ)∪Γ2(µ) in the small neighborhood
of Γ = Γ1 ∪ Γ2, that is, double homoclinic loop is preserved (Figure 8).

(2). If (4.4) has a solution s12 > 0, s2 = s21 = 0, then (4.1) is turned to
s12 = −δ−1M1

1µ+ h.o.t.,

s
(1+α(µ))
12 + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R12
21,2 = {µ : −δ−1M1

1µ + h.o.t. > 0, δ−1w12
2 M

1
2µ + h.o.t. < 0}, we get the equation

of bifurcation surface L12
21,2 of large 1-1 homoclinic loop as follows (Figure 5).{

(−δ−1M1
1µ+ h.o.t.)(1+α(µ)) + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(4.5)

(3). If (4.4) has a solution s21 > 0, s2 = s12 = 0, then (4.1) is turned to
− s(1+α(µ))21 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0,

s21 = δ−1M1
2µ+ h.o.t..

Thus, in the region R21
12,2 = {µ : δ−1M1

2µ+ h.o.t. > 0, δ−1w12
1 M

1
1µ+ h.o.t. > 0}, we get the equation of

bifurcation surface L21
12,2 of large 1-1 homoclinic loop as follows (Figure 6).{

(δ−1M1
2µ+ h.o.t.)(1+α(µ)) − δ−1w12

1 M
1
1µ+ h.o.t. = 0,

− δ−1M1
2µ+ h.o.t. = 0.

(4). If (4.4) has a solution s2 > 0, s21 = s12 = 0, then (4.1) is turned to
δ−1M1

1µ+ h.o.t. = 0,
s2 = −δ−1M1

2µ+ h.o.t.,

−s(1+α(µ))2 + δ−1w12
2 M

1
2µ+ h.o.t. = 0.

(4.6)

Thus, in the region R2
21,12 = {µ : −δ−1M1

2µ + h.o.t. > 0}, we get the equation of bifurcation surface

L2
21,12 of large 2-1 double homoclinic loop as follows (Figure 7).{

− (−δ−1M1
2µ+ h.o.t.)(1+α(µ)) + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0.

(4.7)

(5). If (4.4) has a solution s2 > 0, s12 > 0, s21 = 0, then (4.1) is turned to
s12 = −δ−1M1

1µ+ h.o.t.,

s2 = −(w12
2 )−1s

(1+α(µ))
12 − δ−1M1

2µ+ h.o.t.,

− s(1+α(µ))2 + δ−1w12
2 M

1
2µ+ h.o.t. = 0.

(4.8)

Thus, in the region R12,2
21 = {µ : −δ−1M1

1µ + h.o.t. > 0} ∩ {µ : δ−1w12
2 M

1
2µ + h.o.t. > 0}, we get the

equation of bifurcation surface L12,2
21 of large 2-1 homoclinic loop as follows (Figure 2).

−
[
−(w12

2 )−1(−δ−1M1
1µ)(1+α(µ)) − δ−1M1

2µ
](1+α(µ))

+ δ−1w12
2 M

1
2µ+ h.o.t. = 0. (4.9)
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(6). If (4.4) has a solution s2 > 0, s21 > 0, s12 = 0, then (4.1) is turned to
− s(1+α(µ))21 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

s2 = −δ−1M1
2µ+ h.o.t.,

s21 = −(w12
2 )−1s

(1+α(µ))
2 + δ−1M1

2µ+ h.o.t..

(4.10)

Thus, in the region R21,2
12 = {µ : −δ−1M1

2µ + h.o.t. > 0} ∩ {µ : −(w12
2 )−1(−δ−1M1

2µ + h.o.t.)(1+α(µ)) +

δ−1M1
2µ + h.o.t. > 0} ∩ {µ : δ−1w12

1 M
1
1µ + h.o.t. > 0}, we get the equation of bifurcation surface L21,2

12 of
large 2-1 homoclinic loop as follows (Figure 3).

−
[
−(w12

2 )−1(−δ−1M1
2µ)(1+α(µ)) + δ−1M1

2µ
](1+α(µ))

+ δ−1w12
1 M

1
1µ+ h.o.t. = 0.

(7). If (4.4) has a solution s21 > 0, s12 > 0, s2 = 0, then (4.1) is turned to
s12 = (w12

1 )−1s
(1+α(µ))
21 − δ−1M1

1µ+ h.o.t.,

s
(1+α(µ))
12 + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

s21 = δ−1M1
2µ+ h.o.t..

(4.11)

Thus, in the region R21,12
2 = {µ : δ−1M1

2µ + h.o.t. > 0} ∩ {µ : (w12
1 )−1(δ−1M1

2µ + h.o.t.)(1+α(µ)) −
δ−1M1

1µ + h.o.t. > 0}, we get the equation of bifurcation surface L21,12
2 of large 2-1 homoclinic loop as

follows (Figure 4).[
(w12

1 )−1(δ−1M1
2µ)(1+α(µ)) − δ−1M1

1µ
](1+α(µ))

+ δ−1w12
2 M

1
2µ+ h.o.t. = 0. (4.12)

(8). If (4.4) has a solution s21 > 0, s12 > 0, s2 > 0, then differentiating (4.4), and denoting by (si)µ the
gradient of si(µ) with respect to µ, we get

(s12)µ = (w12
1 )−1(1 + α(µ))s

α(µ)
21 (s21)µ − δ−1M1

1 + h.o.t.,

(s2)µ = −(w12
2 )−1(1 + α(µ))s

α(µ)
12 (s12)µ − δ−1M1

2 + h.o.t.,

(s21)µ = −(w12
2 )−1(1 + α(µ))s

α(µ)
2 (s2)µ + δ−1M1

2 + h.o.t..

(4.13)

(i). If µ is situated in the neighborhood of L21,12
2 , then, substituting (4.11) into (4.13), we get

(s12)µ = (w12
1 )−1(1 + α(µ))(δ−1M1

2µ+ h.o.t.)α(µ)(s21)µ − δ−1M1
1 + h.o.t.,

(s2)µ = −(w12
2 )−1(1 + α(µ))(−δ−1w12

2 M
1
2µ+ h.o.t.)

α(µ)
1+α(µ) (s12)µ − δ−1M1

2 + h.o.t.,

(s21)µ = δ−1M1
2 + h.o.t..

So, (s2)µ = −δ−1M1
2 +O

(
(−δ−1w12

2 M
1
2µ+ h.o.t.)

α(µ)
1+α(µ)

)
+ h.o.t., this means that s2 = s2(µ) increases

along the direction −M1
2 in the small neighborhood of L21,12

2 .

(ii). If µ is situated in the neighborhood of L12,2
21 , then, substituting (4.8) into (4.13), we get

(s12)µ = −δ−1M1
1 + h.o.t.,

(s2)µ = −(w12
2 )−1(1 + α(µ))(−δ−1M1

1µ+ h.o.t.)α(µ)(s12)µ − δ−1M1
2 + h.o.t.,

(s21)µ = −(w12
2 )−1(1 + α(µ))(δ−1w12

2 M
1
2µ+ h.o.t.)

α(µ)
1+α(µ) (s2)µ + δ−1M1

2 + h.o.t..

So, (s21)µ = δ−1M1
2 + O

(
(δ−1w12

2 M
1
2µ+ h.o.t.)

α(µ)
1+α(µ)

)
+ h.o.t., this means that s21 = s21(µ) increases

along the direction M1
2 in the small neighborhood of L12,2

21 .
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(iii). If µ is situated in the neighborhood of L2,21
12 , then, substituting (4.10) into (4.13), we get

(s12)µ = (w12
1 )−1(1 + α(µ))(δ−1w12

1 M
1
1µ+ h.o.t.)

α(µ)
1+α(µ) (s21)µ − δ−1M1

1 + h.o.t.,

(s2)µ = −δ−1M1
2 + h.o.t.,

(s21)µ = −(w12
2 )−1(1 + α(µ))(−δ−1M1

2µ+ h.o.t.)α(µ)(s2)µ + δ−1M1
2 + h.o.t..

So, (s12)µ = −δ−1M1
1 +O

(
(δ−1w12

1 M
1
1µ+ h.o.t.)

α(µ)
1+α(µ)

)
+h.o.t., this means that s12 = s12(µ) increases

along the direction −M1
1 in the small neighborhood of L2,21

12 .

Denote by R21,12,2 the region which is bounded by L12,2
21 , L2,21

12 , L21,12
2 , the vector M1

1 point out of it

from L2,21
12 , the vector M1

2 point out of it from L21,12
2 , and the vector M1

2 point into it from L12,2
21 . By the

discussion of above, we get (4.4) has solution s21 > 0, s12 > 0, s2 > 0 for µ ∈ R21,12,2, that is, system (1.2)
has a large 2-1 periodic loop (Figure 9).

At last, by (4.5), (4.7), (4.9), (4.12) and (H5), we get

−δ−1w12
2 M

1
2µ |L21,12

2
> −δ−1w12

2 M
1
2µ |L12

21,2
> −δ−1w12

2 M
1
2µ |L2> −δ−1w12

2 M
1
2µ |L2

21,12
> −δ−1w12

2 M
1
2µ |L12,2

21
,

δ−1w12
1 M

1
1µ |L21,2

12
> δ−1w12

1 M
1
1µ |L21

12,2
> δ−1w12

1 M
1
1µ |L1 .

Thus, we obtain the bifurcation diagram as Figure 12.

6

�
��
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M1
1 M

1
2

L21
12,2

L1

L21,12
2

L12
21,2

L2L2
21,12

L12,2
21

L1

L21,2
12

L2
21,12

L2

0

0 < α(µ)� 1

L21,12
2

Figure 12

6

��
��*

M1
1
M1

2

L̄12
21,2

L̄1

L̄21,12
2

L̄21
12,2

L̄2

L̄21,2
12

L̄1

L̄12,2
21

L̄2
21,12

L̄2

0

−1� α(µ) < 0

L̄2
21,12

L̄21,12
2

Figure 13

4.3. −1� α(µ) < 0

Theorem 4.4. Suppose that (H1)∼(H5) hold. If −1 � α(µ) < 0, rank{M1
1 ,M

1
2 } = 2, then, for |µ| � 1,

system (1.2) has at most one large 2-1 homoclinic loop, or one large 1-1 homoclinic loop, or one large 2-1
double homoclinic loop, or one large 1-1 double homoclinic loop, or a large 2-1 periodic loop in the small
neighborhood of Γ = Γ1 ∩ Γ2, and, these orbits do not coexist.

Moreover, there exist surfaces L̄1, L̄2, L̄1,2, L̄
12
21,2, L̄

21
12,2, L̄

2
21,12, L̄

12,2
21 , L̄21,2

12 , L̄21,12
2 , and a region R̄21,12,2,

such that:
For µ ∈ L̄1, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ1.
For µ ∈ L̄2, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ2.
For µ ∈ L̄1,2, system (1.2) has a unique double homoclinic loops in the small neighborhood of Γ = Γ1∪Γ2,

that is, the double homoclinic loops are preserved (Figure 8).
For µ ∈ L̄12

21,2 ∪ L̄21
12,2, system (1.2) has a large 1-1 homoclinic loop (Figures 5 and 6).

For µ ∈ L̄2
21,12, system (1.2) has a large 2-1 double homoclinic loop (Figure 7).
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For µ ∈ L̄12,2
21 ∪ L̄

21,2
12 ∪ L̄

21,12
2 , system (1.2) has a large 2-1 homoclinic loop (Figures 2, 3, and 4).

For µ ∈ R̄21,12,2, system (1.2) has a large 2-1 periodic loop (Figure 9).
The bifurcation diagram for this case (see the Figure 13).

Proof. In this case, 1 + α(µ) < 1, by times scale transformations s12 → (s12)
1

1+α(µ) , s21 → (s21)
1

1+α(µ) ,

s2 → (s2)
1

1+α(µ) , (4.1) becomes
δ[−(w12

1 )−1s21 + (s12)
1

1+α(µ) ] +M1
1µ+ h.o.t. = 0,

δ[(w12
2 )−1s12 + (s2)

1
1+α(µ) ] +M1

2µ+ h.o.t. = 0,

δ[−(w12
2 )−1s2 − (s21)

1
1+α(µ) ] +M1

2µ+ h.o.t. = 0.

(4.14)

Similar to that of Theorem 4.3, (4.14) has a unique solution
s21 = w12

1 (s12)
1

1+α(µ) + δ−1w12
1 M

1
1µ+ h.o.t.,

s12 = −w12
2 (s2)

1
1+α(µ) − δ−1w12

2 M
1
2µ+ h.o.t.,

s2 = −w12
2 (s21)

1
1+α(µ) + δ−1w12

2 M
1
2µ+ h.o.t.,

(4.15)

in the small neighborhood of s12 = s2 = s21 = 0. Thus, we get the uniqueness and non-coexistence.

(1). If (4.15) has a solution s12 = s2 = s21 = 0, then (4.14) is turned to{
M1

1µ+ h.o.t. = 0,

M1
2µ+ h.o.t. = 0.

If M1
1 6= 0, then, there exists an (l − 1)-dimensional surface L̄1 = {µ : M1

1µ + h.o.t. = 0} which has
normal vector M1

1 at µ = 0, such that, for µ ∈ L̄1, 0 < |µ| � 1, system (1.2) has a unique 1-homoclinic loop
Γ1(µ) in the small neighborhood of Γ1.

If M1
2 6= 0, then, there exists an (l − 1)-dimensional surface L̄2 = {µ : M1

2µ + h.o.t. = 0} which has
normal vector M1

2 at µ = 0, such that, for µ ∈ L̄2, 0 < |µ| � 1, system (1.2) has a unique 1-homoclinic loop
Γ2(µ) in the small neighborhood of Γ2.

So, if rank{M1
1 ,M

1
2 } = 2, then, there exists an (l − 2)-dimensional surface L̄1,2 = L̄1 ∩ L̄2 = {µ :

M1
1µ + h.o.t. = 0, M1

2µ + h.o.t. = 0} which has normal plane span{M1
1 ,M

1
2 } at µ = 0, such that, for

µ ∈ L̄1,2, 0 < |µ| � 1, system (1.2) has a unique double homoclinic loop Γ(µ) = Γ1(µ) ∪ Γ2(µ) in the small
neighborhood of Γ = Γ1 ∪ Γ2, that is, the double homoclinic loops are preserved (Figure 8).

(2). If (4.15) has a solution s12 > 0, s2 = s21 = 0, then (4.14) is turned to
(s12)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

s12 = −δ−1w12
2 M

1
2µ+ h.o.t.,

δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R̄12
21,2 = {µ : −δ−1w12

2 M
1
2µ + h.o.t. > 0, δ−1M1

1µ + h.o.t. < 0}, we get the equation

of bifurcation surface L̄12
21,2 of large 1-1 homoclinic loop as follows (Figure 5).{

(−δ−1w12
2 M

1
2µ+ h.o.t.)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(3). If (4.15) has a solution s21 > 0, s2 = s12 = 0, then (4.14) is turned to
s21 = δ−1w12

1 M
1
1µ+ h.o.t.,

δ−1M1
2µ+ h.o.t. = 0,

− (s21)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0.
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Thus, in the region R̄21
12,2 = {µ : δ−1w12

1 M
1
1µ+ h.o.t. > 0, δ−1M1

2µ+ h.o.t. > 0}, we get the equation of

bifurcation surface L̄21
12,2 of large 1-1 homoclinic loop as follows (Figure 6).{

δ−1M1
2µ+ h.o.t. = 0,

− (δ−1w12
1 M

1
1µ+ h.o.t.)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.

(4). If (4.15) has a solution s2 > 0, s21 = s12 = 0, then (4.14) is turned to
δ−1M1

1µ+ h.o.t. = 0,

(s2)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0,

s2 = δ−1w12
2 M

1
2µ+ h.o.t..

Thus, in the region R̄2
21,12 = {µ : δ−1w12

2 M
1
2µ + h.o.t. > 0}, we get the equation of bifurcation surface

L̄2
21,12 of large 2-1 double homoclinic loop as follows (Figure 7).{

δ−1M1
1µ+ h.o.t. = 0,

(δ−1w12
2 M

1
2µ+ h.o.t.)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.

(5). If (4.15) has a solution s2 > 0, s12 > 0, s21 = 0, then (4.14) is turned to
(s12)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

s12 = −w12
2 (s2)

1
1+α(µ) − δ−1w12

2 M
1
2µ+ h.o.t.,

s2 = δ−1w12
2 M

1
2µ+ h.o.t..

(4.16)

Thus, in the region R̄12,2
21 = {µ : δ−1w12

2 M
1
2µ + h.o.t. > 0} ∩ {µ : δ−1M1

1µ + h.o.t. < 0} ∩ {µ :

−w12
2 (δ−1w12

2 M
1
2µ + h.o.t.)

1
1+α(µ) − δ−1w12

2 M
1
2µ + h.o.t. > 0}, we get the equation of bifurcation surface

L̄12,2
21 of large 2-1 homoclinic loop as follows (Figure 2).[

−w12
2 (δ−1w12

2 M
1
2µ)

1
1+α(µ) − δ−1w12

2 M
1
2µ
] 1

1+α(µ)
+ δ−1M1

1µ+ h.o.t. = 0.

(6). If (4.15) has a solution s2 > 0, s21 > 0, s12 = 0, then (4.14) is turned to
s21 = δ−1w12

1 M
1
1µ+ h.o.t.,

(s2)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0,

s2 = −w12
2 (s21)

1
1+α(µ) + δ−1w12

2 M
1
2µ+ h.o.t..

(4.17)

Thus, in the region R̄21,2
12 = {µ : δ−1w12

1 M
1
1µ + h.o.t. > 0} ∩ {µ : δ−1M1

2µ + h.o.t. < 0}, we get the

equation of bifurcation surface L̄21,2
12 of large 2-1 homoclinic loop as follows (Figure 3).[

−w12
2 (δ−1w12

1 M
1
1µ)

1
1+α(µ) + δ−1w12

2 M
1
2µ
] 1

1+α(µ)
+ δ−1M1

2µ+ h.o.t. = 0.

(7). If (4.15) has a solution s21 > 0, s12 > 0, s2 = 0, then (4.14) is turned to
s21 = w12

1 (s12)
1

1+α(µ) + δ−1w12
1 M

1
1µ+ h.o.t.,

s12 = −δ−1w12
2 M

1
2µ+ h.o.t.,

− (s21)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0.

(4.18)
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Thus, in the region R̄21,12
2 = {µ : w12

1 (−δ−1w12
2 M

1
2µ + h.o.t.)

1
1+α(µ) + δ−1w12

1 M
1
1µ + h.o.t. > 0} ∩ {µ :

δ−1M1
2µ+h.o.t. > 0}, we get the equation of bifurcation surface L̄21,12

2 of large 2-1 homoclinic loop as follows
(Figure 4).

−
[
w12
1 (−δ−1w12

2 M
1
2µ)

1
1+α(µ) + δ−1w12

1 M
1
1µ
] 1

1+α(µ)
+ δ−1M1

2µ+ h.o.t. = 0.

(8). If (4.15) has a solution s21 > 0, s12 > 0, s2 > 0, then, differentiating (4.15), and denoting by (si)µ the
gradient of si(µ) with respect to µ, we get

(s21)µ = (w12
1 )

1

1 + α(µ)
(s12)

−α(µ)
1+α(µ) (s12)µ + δ−1w12

1 M
1
1 + h.o.t.,

(s12)µ = −(w12
2 )

1

1 + α(µ)
(s2)

−α(µ)
1+α(µ) (s2)µ − δ−1w12

2 M
1
2 + h.o.t.,

(s2)µ = −(w12
2 )

1

1 + α(µ)
(s21)

−α(µ)
1+α(µ) (s21)µ + δ−1w12

2 M
1
2 + h.o.t..

(4.19)

(i). If µ is situated in the neighborhood of L̄21,12
2 , then, substituting (4.18) into (4.19), we get

(s21)µ =
w12
1

1 + α(µ)
(−δ−1w12

2 M
1
2µ+ h.o.t.)

−α(µ)
1+α(µ) (s12)µ + δ−1w12

1 M
1
1 + h.o.t.,

(s12)µ = −δ−1w12
2 M

1
2 + h.o.t.,

(s2)µ =
−w12

2

1 + α(µ)
(δ−1M1

2µ+ h.o.t.)−α(µ)(s21)µ + δ−1w12
2 M

1
2 + h.o.t..

So, (s2)µ = δ−1w12
2 M

1
2 +O

(
(δ−1M1

2µ+ h.o.t.)−α(µ)
)

+h.o.t., this means that s2 = s2(µ) increases along

the direction −M1
2 in the small neighborhood of L̄21,12

2 .

(ii). If µ is situated in the neighborhood of L̄12,2
21 , then, substituting (4.16) into (4.19), we get

(s21)µ =
w12
1

1 + α(µ)
(−δ−1M1

1µ+ h.o.t.)−α(µ)(s12)µ + δ−1w12
1 M

1
1 + h.o.t.,

(s12)µ =
−w12

2

1 + α(µ)
(δ−1w12

2 M
1
2µ+ h.o.t.)

−α(µ)
1+α(µ) (s2)µ − δ−1w12

2 M
1
2 + h.o.t.,

(s2)µ = δ−1w12
2 M

1
2 + h.o.t..

So, (s21)µ = δ−1w12
1 M

1
1 + O

(
(−δ−1M1

1µ+ h.o.t.)−α(µ)
)

+ h.o.t., this means that s21 = s21(µ) increases

along the direction M1
1 in the small neighborhood of L̄12,2

21 .

(iii). If µ is situated in the neighborhood of L̄2,21
12 , then, substituting (4.17) into (4.19), we get

(s21)µ = δ−1w12
1 M

1
1 + h.o.t.,

(s12)µ =
−w12

2

1 + α(µ)
(−δ−1M1

2µ+ h.o.t.)−α(µ)(s2)µ − δ−1w12
2 M

1
2 + h.o.t.,

(s2)µ =
−w12

2

1 + α(µ)
(δ−1w12

1 M
1
1µ+ h.o.t.)

−α(µ)
1+α(µ) (s21)µ + δ−1w12

2 M
1
2 + h.o.t..

So, (s12)µ = −δ−1w12
2 M

1
2 +O

(
(−δ−1M1

2µ+ h.o.t.)−α(µ)
)

+h.o.t., this means that s12 = s12(µ) increases

along the direction M1
2 in the small neighborhood of L̄2,21

12 .

Denote by R̄21,12,2 the region which is bounded by L̄21,12
2 , L̄12,2

21 , L̄2,21
12 , the vector M1

2 point out of it from

L̄21,12
2 , the vector M1

1 point into it from L̄12,2
21 , and the vector M1

2 point into it from L̄2,21
12 . By the discussion

of above, we get (4.15) has solution s21 > 0, s12 > 0, s2 > 0 for µ ∈ R̄21,12,2, that is, system (1.2) has a large
2-1 periodic loop (Figure 9).
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5. Poincaré maps and the bifurcation equations with double twisted orbits

(H6) (Double twisted conditions) ∆1 = −1, ∆2 = −1.

In this case, in the tubular neighborhood of Γi, due to ∆1 = −1, ∆2 = −1, we have F 2
i (q2j+1

i ) = q̄2j+2
i ,

F 2
i (q̄2j+1

i ) = q2j+2
i defined by {

n̄2j+2,k
i = n2j+1,k

i +Mk
i µ+ h.o.t.,

n2j+2,k
i = n̄2j+1,k

i +Mk
i µ+ h.o.t.,

where, Mk
i =

∫ +∞
−∞ (φki (t))

∗gµ(ri(t), 0)dt, k = 1, 3, 4, i = 1, 2, j = 0, 1, 2, · · · (Figure 14).
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JĴ

@
@
@@

�
�
��

�
�
��

@
@
@@

?
6

x

y

q̄11

q̄01

q̄12

q̄02

q12
q01

q11q02

S+
1

S−1

S−2

S+
2 F 1

1
F 2
1F 1

2F 2
2

F21

F12

?
66

?

R W ss W uu

L
L
L
L
L
L
L
L

�
�
�
�
�
�
�
��
6

U
U

�

I	

F 2
1F 2

2 Γ1

Γ2

q̄21

q̄22

q21

q22

-

�O

∆1 = ∆2 = −1

Figure 14

Moreover, the Poincaré maps F1, F̄1, F2 and F̄2 have the following forms.
F1 = F 2

1 ◦ F21: S
+
2 7→ S+

1 , F1(q
0
2) = q̄21 :

n̄2,11 = n1,11 +M1
1µ+ h.o.t. = −(w12

1 )−1δs
(1+α(µ))
21 +M1

1µ+ h.o.t.,

n̄2,31 = n1,31 +M3
1µ+ h.o.t. = u11 − δ1u − b1(w12

1 )−1δs
(1+α(µ))
21 +M3

1µ+ h.o.t.,

n̄2,41 = n1,41 +M4
1µ+ h.o.t. = (w44

1 )−1s
B2(µ)/λ1(µ)
21 v02 +M4

1µ+ h.o.t..

F̄1 = F 2
1 ◦ F 1

1 : S+
1 7→ S+

1 , F̄1(q̄
0
1) = q21 :

n2,11 = n̄1,11 +M1
1µ+ h.o.t. = (w12

1 )−1δs
(1+α(µ))
1 +M1

1µ+ h.o.t.,

n2,31 = n̄1,31 +M3
1µ+ h.o.t. = ū11 − δ1u + b1(w

12
1 )−1δs

(1+α(µ))
1 +M3

1µ+ h.o.t.,

n2,41 = n̄1,41 +M4
1µ+ h.o.t. = (w44

1 )−1s
B2(µ)/λ1(µ)
1 v̄01 +M4

1µ+ h.o.t..

F2 = F 2
2 ◦ F12: S

+
1 7→ S+

2 , F2(q
0
1) = q̄22 :

n̄2,12 = n1,12 +M1
2µ+ h.o.t. = (w12

2 )−1δs
(1+α(µ))
12 +M1

2µ+ h.o.t.,

n̄2,32 = n1,32 +M3
2µ+ h.o.t. = u12 − δ2u + b2(w

12
2 )−1δs

(1+α(µ))
12 +M3

2µ+ h.o.t.,

n̄2,42 = n1,42 +M4
2µ+ h.o.t. = (w44

2 )−1s
B2(µ)/λ1(µ)
12 v01 +M4

2µ+ h.o.t..
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F̄2 = F 2
2 ◦ F 1

2 : S+
2 7→ S+

2 , F̄2(q̄
0
2) = q22 :

n2,12 = n̄1,12 +M1
2µ+ h.o.t. = −(w12

2 )−1δs
(1+α(µ))
2 +M1

2µ+ h.o.t.,

n2,32 = n̄1,32 +M3
2µ+ h.o.t. = ū12 − δ2u − b2(w12

2 )−1δs
(1+α(µ))
2 +M3

2µ+ h.o.t.,

n2,42 = n̄1,42 +M4
2µ+ h.o.t. = (w44

2 )−1s
B2(µ)/λ1(µ)
2 v̄02 +M4

2µ+ h.o.t..

Let q̄21 = q̄01, q21 = q01, q̄22 = q̄02, q22 = q02, we get the successor functions as follows.
G1(s1, s21, u

1
1, ū

1
1, v̄

0
1, v

0
2) = (G1

1, G
3
1, G

4
1) = (F1(q

0
2)− q̄01) is given by

G1
1 = δ[−(w12

1 )−1s
(1+α(µ))
21 − s1] +M1

1µ+ h.o.t.,

G3
1 = u11 − δ1u − b1(w12

1 )−1δs
(1+α(µ))
21 − (w33

1 )−1s
B1(µ)/λ1(µ)
1 ū11 +M3

1µ+ h.o.t.,

G4
1 = −v̄01 + δ1v + w14

1 δs1 + (w44
1 )−1s

B2(µ)/λ1(µ)
21 v02 +M4

1µ+ h.o.t..

(5.1)

G̃1(s1, s12, ū
1
1, u

1
2, v

0
1, v̄

0
1) = (G̃1

1, G̃
3
1, G̃

4
1) = (F̄1(q̄

0
1)− q01) is given by

G̃1
1 = δ[(w12

1 )−1s
(1+α(µ))
1 + s12] +M1

1µ+ h.o.t.,

G̃3
1 = ū11 − δ1u + b1(w

12
1 )−1δs

(1+α(µ))
1 − (w33

1 )−1s
B1(µ)/λ1(µ)
12 u12 +M3

1µ+ h.o.t.,

G̃4
1 = −v01 + δ1v − w14

1 δs12 + (w44
1 )−1s

B2(µ)/λ1(µ)
1 v̄01 +M4

1µ+ h.o.t..

(5.2)

G2(s12, s2, u
1
2, ū

1
2, v

0
1, v̄

0
2) = (G1

2, G
3
2, G

4
2) = (F2(q

0
1)− q̄02) is given by

G1
2 = δ[(w12

2 )−1s
(1+α(µ))
12 + s2] +M1

2µ+ h.o.t.,

G3
2 = u12 − δ2u + b2(w

12
2 )−1δs

(1+α(µ))
12 − (w33

2 )−1s
B1(µ)/λ1(µ)
2 ū12 +M3

2µ+ h.o.t.,

G4
2 = −v̄02 + δ2v − w14

2 δs2 + (w44
2 )−1s

B2(µ)/λ1(µ)
12 v01 +M4

2µ+ h.o.t..

(5.3)

G̃2(s21, s2, u
1
1, ū

1
2, v

0
2, v̄

0
2) = (G̃1

2, G̃
3
2, G̃

4
2) = (F̄2(q̄

0
2)− q02) is given by

G̃1
2 = δ[−(w12

2 )−1s
(1+α(µ))
2 − s21] +M1

2µ+ h.o.t.,

G̃3
2 = ū12 − δ2u − b2(w12

2 )−1δs
(1+α(µ))
2 − (w33

2 )−1s
B1(µ)/λ1(µ)
21 u11 +M3

2µ+ h.o.t.,

G̃4
2 = −v02 + δ2v + w14

2 δs21 + (w44
2 )−1s

B2(µ)/λ1(µ)
2 v̄02 +M4

2µ+ h.o.t..

(5.4)

Thus, we get the bifurcation equations as follows.

G(s21, s1, s12, s2, u
1
1, ū

1
1, u

1
2, ū

1
2, v

0
1, v̄

0
1, v

0
2, v̄

0
2) = (G1, G̃1, G2, G̃2) = 0. (5.5)

6. Bifurcations with the double twisted orbits

Now, we discuss the solutions Q(s21, s1, s12, s2, u
1
1, ū

1
1, u

1
2, ū

1
2, v

0
1, v̄

0
1, v

0
2, v̄

0
2) of the bifurcation equation

(5.5) which satisfy s12 ≥ 0, s21 ≥ 0, s2 ≥ 0, s1 ≥ 0.
By (5.1)∼(5.4), for 0 ≤ s12, s21, s2, s1, |µ| � 1, the equation (G3

1, G
4
1, G̃

3
1, G̃

4
1, G

3
2, G

4
2, G̃

3
2, G̃

4
2) = 0 has

always a unique solution u11 = u11(s21, s12, s2, s1, µ), ū11 = ū11(s21, s12, s2, s1, µ), u12 = u12(s21, s12, s2, s1, µ),
ū12 = ū12(s21, s12, s2, s1, µ), v01 = v01(s21, s12, s2, s1, µ), v̄01 = v̄01(s21, s12, s2, s1, µ), v02 = v02(s21, s12, s2, s1, µ),
v̄02 = v̄02(s21, s12, s2, s1, µ). Substituting it into (G1

1, G̃
1
1, G

1
2, G̃

1
2) = 0, we have

δ[−(w12
1 )−1s

(1+α(µ))
21 − s1] +M1

1µ+ h.o.t. = 0,

δ[(w12
1 )−1s

(1+α(µ))
1 + s12] +M1

1µ+ h.o.t. = 0,

δ[(w12
2 )−1s

(1+α(µ))
12 + s2] +M1

2µ+ h.o.t. = 0,

δ[−(w12
2 )−1s

(1+α(µ))
2 − s21] +M1

2µ+ h.o.t. = 0.

(6.1)
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Thus, for system (1.2), there is a one to one correspondence between the large homoclinic loops and large
periodic orbits bifurcated from Γ = Γ1 ∪ Γ2 and the solutions of the bifurcation equation (6.1) satisfying
s12 ≥ 0, s12 ≥ 0, s2 ≥ 0, s1 ≥ 0, respectively.

6.1. α(µ) = 0

Theorem 6.1. Suppose that (H1)∼(H4) and (H6) hold. If α(µ) = 0, (w12
1 w

12
2 )−2 6= 1, rank{M1

1 ,M
1
2 } = 2,

then, for |µ| � 1, system (1.2) has at most one large 2-2 homoclinic loop, or one large 2-1 homoclinic loop,
or one large 1-2 homoclinic loop, or one large 2-2 double homoclinic loops, or one large 1-1 homoclinic loop,
or one large 1-2 double homoclinic loops, or one large 2-1 double homoclinic loops, or a large 2-2 periodic
loop, or one large 1-1 double homoclinic loops in the small neighborhood of Γ = Γ1 ∩ Γ2. Moreover, these
orbits do not coexist.

s21 = 0, s1 > 0

s12 > 0, s2 > 0

Figure 15

s21 > 0, s1 = 0
s12 > 0, s2 > 0

Figure 16

s21 > 0, s1 > 0
s12 = 0, s2 > 0

Figure 17

s21 > 0, s1 > 0
s12 > 0, s2 = 0

Figure 18

s21 = 0, s1 = 0
s12 > 0, s2 > 0

Figure 19

s21 > 0, s1 = 0
s12 = 0, s2 > 0

Figure 20

s21 > 0, s1 > 0
s12 = 0, s2 = 0

Figure 21

s21 = 0, s1 > 0
s12 > 0, s2 = 0

Figure 22

s21 = 0, s1 > 0
s12 = 0, s2 > 0

Figure 23

s21 > 0, s1 = 0
s21 > 0, s2 = 0

Figure 24

Figure 24

s21 > 0, s1 = 0
s12 = 0, s2 = 0

Figure 25

s21 = 0, s1 = 0
s12 > 0, s2 = 0

Figure 26
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s21 = 0, s1 > 0
s12 = 0, s2 = 0

Figure 27

s21 = 0, s1 = 0
s12 = 0, s2 > 0

Figure 28

s21 = 0, s1 = 0
s12 = 0, s2 = 0

Figure 29

s21 > 0, s1 > 0
s12 > 0, s2 > 0

Figure 30

Proof. In this case, (6.1) becomes
δ[−(w12

1 )−1s21 − s1] +M1
1µ+ h.o.t. = 0,

δ[(w12
1 )−1s1 + s12] +M1

1µ+ h.o.t. = 0,

δ[(w12
2 )−1s12 + s2] +M1

2µ+ h.o.t. = 0,

δ[−(w12
2 )−1s2 − s21] +M1

2µ+ h.o.t. = 0.

(6.2)

That is 
(w12

1 )−1 1 0 0
0 −(w12

1 )−1 −1 0
0 0 −(w12

2 )−1 −1
1 0 0 (w12

2 )−1




s21
s1
s12
s2

 = δ−1


M1

1µ
M1

1µ
M1

2µ
M1

2µ

+ h.o.t..

Denote B =


(w12

1 )−1 1 0 0
0 −(w12

1 )−1 −1 0
0 0 −(w12

2 )−1 −1
1 0 0 (w12

2 )−1

, if ‖B‖ = (w12
1 w

12
2 )−2 − 1 6= 0, then, (6.2) has

a unique solution 0 ≤ s21(µ), s1(µ), s12(µ), s2(µ)� 1,
s21
s1
s12
s2

 = δ−1B−1


M1

1µ
M1

1µ
M1

2µ
M1

2µ

+ h.o.t. = δ−1‖B‖−1B∗


M1

1µ
M1

1µ
M1

2µ
M1

2µ

+ h.o.t.,

satisfying s21(0) = s1(0) = s12(0) = s2(0) = 0, where,

B∗ =


(w12

1 )−1(w12
2 )−2 (w12

2 )−2 −(w12
2 )−1 −1

−1 −(w12
1 )−1(w12

2 )−2 (w12
1 )−1(w12

2 )−1 (w12
1 )−1

(w12
1 )−1 1 −(w12

1 )−2(w12
2 )−1 −(w12

1 )−2

−(w12
1 )−1(w12

2 )−1 −(w12
2 )−1 1 (w12

1 )−2(w12
2 )−1

 .

Thus, we get the uniqueness and non-coexistence.
If s21 = 0, s1 > 0, s12 > 0, s2 > 0, or s21 > 0, s1 = 0, s12 > 0, s2 > 0, or s21 > 0, s1 > 0, s12 = 0, s2 > 0,

or s21 > 0, s1 > 0, s12 > 0, s2 = 0, then, system (1.2) has a large 2-2 homoclinic loop (Figures 15, 16, 17,
and 18).

If s21 = 0, s1 = 0, s12 > 0, s2 > 0, or s21 > 0, s1 = 0, s12 = 0, s2 > 0, then, system (1.2) has a large 2-1
homoclinic loop (Figures 19 and 20).

If s21 > 0, s1 > 0, s12 = 0, s2 = 0, or s21 = 0, s1 > 0, s12 > 0, s2 = 0, then, system (1.2) has a large 1-2
homoclinic loop (Figures 21 and 22).

If s21 = 0, s1 > 0, s12 = 0, s2 > 0, or s21 > 0, s1 = 0, s12 > 0, s2 = 0, then, system (1.2) has a large 2-2
double homoclinic loop (Figures 23 and 24).
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If s21 > 0, s1 = 0, s12 = 0, s2 = 0, or s21 = 0, s1 = 0, s12 > 0, s2 = 0, then, system (1.2) has a large 1-1
homoclinic loop (Figures 25 and 26).

If s21 = 0, s1 > 0, s12 = 0, s2 = 0, then, system (1.2) has a large 1-2 double homoclinic loop (Figure 27).
If s21 = 0, s1 = 0, s12 = 0, s2 > 0, then, system (1.2) has a large 2-1 double homoclinic loop (Figure 28).
If s21 = 0, s1 = 0, s12 = 0, s2 = 0, then, system (1.2) has a 1-1 homoclinic loop, that is, the double

homoclinic loop is preserved (Figure 29).
If s21 > 0, s1 > 0, s12 > 0, s2 > 0, then, system (1.2) has a large 2-2 periodic loop (Figure 30).
Thus, the theorem is established.

Denote 
s21 = δ−1M21µ+ h.o.t.,

s1 = δ−1M1µ+ h.o.t.,

s12 = δ−1M12µ+ h.o.t.,

s2 = δ−1M2µ+ h.o.t.,

(6.3)

where 
M21 = ‖B‖−1

[
((w12

1 )−1(w12
2 )−2 + (w12

2 )−2)M1
1 − ((w12

2 )−1 + 1)M1
2

]
,

M1 = ‖B‖−1
[(
−1− (w12

1 )−1(w12
2 )−2

)
M1

1 +
(
(w12

1 )−1(w12
2 )−1 + (w12

1 )−1
)
M1

2

]
,

M12 = ‖B‖−1
[(

(w12
1 )−1 + 1

)
M1

1 −
(
(w12

1 )−2(w12
2 )−1 + (w12

1 )−2
)
M1

2

]
,

M2 = ‖B‖−1
[(
−(w12

1 )−1(w12
2 )−1 − (w12

2 )−1
)
M1

1 +
(
1 + (w12

1 )−2(w12
2 )−1

)
M1

2

]
.

Due to ‖B∗‖ 6= 0, if rank{M1
1 ,M

1
2 } = 2, then, rank{Mi,Mj} = 2 for i 6= j, i = 21, 1, 12, 2, j =

21, 1, 12, 2. Notice that Mi ∈ span{M1
1 ,M

1
2 }, i = 21, 1, 12, 2, so, rank{M21,M1,M12,M2} = 2.

Thus, we get the following theorem.

Theorem 6.2. Suppose that (H1)∼(H4) and (H6) hold. If α(µ) = 0, (w12
1 w

12
2 )−2 6= 1, rank{M1

1 ,M
1
2 } = 2,

then , for |µ| � 1, there exist surfaces L021, L01, L012, L02, L021,1, L01,12, L012,2, L02,21, L021,12, L01,2, L01,12,2, L021,1,2,
L021,12,2, L021,1,12, L021,1,12,2, and a region H, such that:

(1) For µ ∈ L021, (6.2) has a solution s21 = 0, s1 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 15).

(2) For µ ∈ L01, (6.2) has a solution s21 > 0, s1 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-2
homoclinic loop (Figure 16).

(3) For µ ∈ L012, (6.2) has a solution s21 > 0, s1 > 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 17).

(4) For µ ∈ L02, (6.2) has a solution s21 > 0, s1 > 0, s12 > 0, s2 = 0, that is, system (1.2) has a large 2-2
homoclinic loop (Figure 18).

(5) For µ ∈ L021,1, (6.2) has a solution s21 = 0, s1 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-1 homoclinic loop (Figure 19).

(6) For µ ∈ L01,12, (6.2) has a solution s21 > 0, s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-1 homoclinic loop (Figure 20).

(7) For µ ∈ L012,2, (6.2) has a solution s21 > 0, s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure 21).

(8) For µ ∈ L02,21, (6.2) has a solution s21 = 0, s1 > 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure 22).
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(9) For µ ∈ L021,12, (6.2) has a solution s21 = 0, s1 > 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure 23).

(10) For µ ∈ L01,2, (6.2) has a solution s21 > 0, s1 = 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure 24).

(11) For µ ∈ L01,12,2, (6.2) has a solution s21 > 0, s1 = 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-1 homoclinic loop (Figure 25).

(12) For µ ∈ L021,1,2, (6.2) has a solution s21 = 0, s1 = 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
1-1 homoclinic loop (Figure 26).

(13) For µ ∈ L021,12,2, (6.2) has a solution s21 = 0, s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-2 double homoclinic loop (Figure 27).

(14) For µ ∈ L021,1,12, (6.2) has a solution s21 = 0, s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-1 double homoclinic loop (Figure 28).

(15) For µ ∈ L021,1,12,2, 0 < |µ| � 1, (6.2) has solution s21 = 0, s1 = 0, s12 = 0, s2 = 0, that is, in the small

neighborhood of Γ, system (1.2) has a 1-1 double homoclinic loop Γ0 = Γ0
1(µ) ∪ Γ0

2(µ) (Figure 29).

(16) For µ ∈ H, (6.2) has a solution s21 > 0, s1 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-2
periodic loop (Figure 30).

Proof. By (6.3), we get

(1). In the region {µ : δ−1M1µ + h.o.t. > 0} ∩ {µ : δ−1M12µ + h.o.t. > 0} ∩ {µ : δ−1M2µ + h.o.t. > 0},
there is an (l − 1)-dimensional surface

L021 = {µ : δ−1M21µ+ h.o.t. = 0},

which has normal vector M21 at µ = 0, such that for µ ∈ L021, (6.2) has a solution s21 = 0, s1 > 0, s12 > 0,
s2 > 0, that is, system (1.2) has a large 2-2 homoclinic loop.

(2). In the region {µ : δ−1M21µ + h.o.t. > 0} ∩ {µ : δ−1M12µ + h.o.t. > 0} ∩ {µ : δ−1M2µ + h.o.t. > 0},
there is an (l − 1)-dimensional surface

L01 = {µ : δ−1M1µ+ h.o.t. = 0},

which has normal vector M1 at µ = 0, such that for µ ∈ L01, (6.2) has a solution s21 > 0, s1 = 0, s12 > 0,
s2 > 0, that is, system (1.2) has a large 2-2 homoclinic loop.

(3). In the region {µ : δ−1M21µ + h.o.t. > 0} ∩ {µ : δ−1M1µ + h.o.t. > 0} ∩ {µ : δ−1M2µ + h.o.t. > 0},
there is an (l − 1)-dimensional surface

L012 = {µ : δ−1M12µ+ h.o.t. = 0},

which has normal vector M12 at µ = 0, such that for µ ∈ L012, (6.2) has a solution s21 > 0, s1 > 0, s12 = 0,
s2 > 0, that is, system (1.2) has a large 2-2 homoclinic loop.

(4). In the region {µ : δ−1M21µ + h.o.t. > 0} ∩ {µ : δ−1M1µ + h.o.t. > 0} ∩ {µ : δ−1M12µ + h.o.t. > 0},
there is an (l − 1)-dimensional surface

L02 = {µ : δ−1M2µ+ h.o.t. = 0},

which has normal vector M2 at µ = 0, such that for µ ∈ L02, (6.2) has a solution s21 > 0, s1 > 0, s12 > 0,
s2 = 0, that is, system (1.2) has a large 2-2 homoclinic loop.
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(5). In the region {µ : δ−1M12µ + h.o.t. > 0} ∩ {µ : δ−1M2µ + h.o.t. > 0}, there is an (l − 2)-dimensional
surface

L021,1 = L021 ∩ L01 = {µ : δ−1M21µ+ h.o.t. = 0} ∩ {µ : δ−1M1µ+ h.o.t. = 0},

which has normal plane span{M21,M1} at µ = 0, such that for µ ∈ L021,1, (6.2) has a solution s21 = 0,
s1 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-1 homoclinic loop.

(6). In the region {µ : δ−1M21µ + h.o.t. > 0} ∩ {µ : δ−1M2µ + h.o.t. > 0}, there is an (l − 2)-dimensional
surface

L01,12 = L01 ∩ L012 = {µ : δ−1M1µ+ h.o.t. = 0} ∩ {µ : δ−1M12µ+ h.o.t. = 0},

which has normal plane span{M1,M12} at µ = 0, such that for µ ∈ L01,12, (6.2) has a solution s21 > 0,
s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large 2-1 homoclinic loop.

(7). In the region {µ : δ−1M21µ + h.o.t. > 0} ∩ {µ : δ−1M1µ + h.o.t. > 0}, there is an (l − 2)-dimensional
surface

L012,2 = L012 ∩ L02 = {µ : δ−1M12µ+ h.o.t. = 0} ∩ {µ : δ−1M2µ+ h.o.t. = 0},

which has normal plane span{M12,M2} at µ = 0, such that for µ ∈ L012,2, (6.2) has a solution s21 > 0,
s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large 1-2 homoclinic loop.

(8). In the region {µ : δ−1M1µ + h.o.t. > 0} ∩ {µ : δ−1M12µ + h.o.t. > 0}, there is an (l − 2)-dimensional
surface

L02,21 = L02 ∩ L021 = {µ : δ−1M2µ+ h.o.t. = 0} ∩ {µ : δ−1M21µ+ h.o.t. = 0},

which has normal plane span{M2,M21} at µ = 0, such that for µ ∈ L02,21, (6.2) has a solution s21 = 0,
s1 > 0, s12 > 0, s2 = 0, that is, system (1.2) has a large 1-2 homoclinic loop.

(9). In the region {µ : δ−1M1µ + h.o.t. > 0} ∩ {µ : δ−1M2µ + h.o.t. > 0}, there is an (l − 2)-dimensional
surface

L021,12 = L021 ∩ L012 = {µ : δ−1M21µ+ h.o.t. = 0} ∩ {µ : δ−1M12µ+ h.o.t. = 0},

which has normal plane span{M21,M12} at µ = 0, such that for µ ∈ L021,12, (6.2) has a solution s21 = 0,
s1 > 0, s12 = 0, s2 > 0, that is, system (1.2) has a large 2-2 double homoclinic loop.

(10). In the region {µ : δ−1M21µ+ h.o.t. > 0} ∩ {µ : δ−1M12µ+ h.o.t. > 0}, there is an (l− 2)-dimensional
surface

L01,2 = L01 ∩ L02 = {µ : δ−1M1µ+ h.o.t. = 0} ∩ {µ : δ−1M2µ+ h.o.t. = 0},

which has normal plane span{M1,M2} at µ = 0, such that for µ ∈ L01,2, (6.2) has a solution s21 > 0, s1 = 0,
s12 > 0, s2 = 0, that is, system (1.2) has a large 2-2 double homoclinic loop.

(11). In the region {µ : δ−1M21µ+ h.o.t. > 0}, there is an (l − 2)-dimensional surface

L01,12,2 = L01 ∩ L012 ∩ L02 ={µ : δ−1M1µ+ h.o.t. = 0} ∩ {µ : δ−1M12µ+ h.o.t. = 0}
∩ {µ : δ−1M2µ+ h.o.t. = 0},

which has normal plane span{M1,M12,M2} at µ = 0, such that for µ ∈ L01,12,2, (6.2) has a solution s21 > 0,
s1 = 0, s12 = 0, s2 = 0, that is, system (1.2) has a large 1-1 homoclinic loop.

(12). In the region {µ : δ−1M12µ+ h.o.t. > 0}, there is an (l − 2)-dimensional surface

L021,1,2 = L021 ∩ L01 ∩ L02 ={µ : δ−1M21µ+ h.o.t. = 0} ∩ {µ : δ−1M1µ+ h.o.t. = 0}
∩ {µ : δ−1M2µ+ h.o.t. = 0},

which has normal plane span{M21,M1,M2} at µ = 0, such that for µ ∈ L021,1,2, (6.2) has a solution s21 = 0,
s1 = 0, s12 > 0, s2 = 0, that is, system (1.2) has a large 1-1 homoclinic loop.
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(13). In the region {µ : δ−1M1µ+ h.o.t. > 0}, there is an (l − 2)-dimensional surface

L021,12,2 = L021 ∩ L012 ∩ L02 ={µ : δ−1M21µ+ h.o.t. = 0} ∩ {µ : δ−1M12µ+ h.o.t. = 0}
∩ {µ : δ−1M2µ+ h.o.t. = 0},

which has normal plane span{M21,M12,M2} at µ = 0, such that for µ ∈ L021,12,2, (6.2) has a solution
s21 = 0, s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large 1-2 double homoclinic loop.

(14). In the region {µ : δ−1M2µ+ h.o.t. > 0}, there is an (l − 2)-dimensional surface

L021,1,12 = L021 ∩ L01 ∩ L012 ={µ : δ−1M21µ+ h.o.t. = 0} ∩ {µ : δ−1M1µ+ h.o.t. = 0}
∩ {µ : δ−1M12µ+ h.o.t. = 0},

which has normal plane span{M21,M1,M12} at µ = 0, such that for µ ∈ L021,1,12, (6.2) has a solution
s21 = 0, s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large 2-1 double homoclinic loop.

(15). There is a surface

L021,1,12,2 = L021 ∩ L01 ∩ L012 ∩ L02
= {µ : δ−1M21µ+ h.o.t. = 0} ∩ {µ : δ−1M1µ+ h.o.t. = 0}
∩ {µ : δ−1M12µ+ h.o.t. = 0} ∩ {µ : δ−1M2µ+ h.o.t. = 0},

which has normal vectorM = span{M21,M1,M12,M2} at µ = 0, such that, for µ ∈ L021,1,12,2, 0 < |µ| � 1,
(6.2) has solution s21 = 0, s1 = 0, s12 = 0, s2 = 0, that is, in the small neighborhood of Γ, system (1.2) has
a 1-1 double homoclinic loop Γ0 = Γ0

1(µ) ∪ Γ0
2(µ).

Notice that dimM=2, ‖B∗‖ 6= 0, so, indeed, the surface L021,1,12,2 is a (l − 2)-dimensional surface which

has normal plane M at µ = 0. In fact, L021,1,12,2={µ : M1
1µ+ h.o.t. = 0} ∩ {µ : M1

2µ+ h.o.t. = 0}.
(16). Denote

H = {µ : δ−1M21µ+ h.o.t. > 0} ∩ {µ : δ−1M1µ+ h.o.t. > 0}
∩ {µ : δ−1M12µ+ h.o.t. > 0} ∩ {µ : δ−1M2µ+ h.o.t. > 0}.

For µ ∈ H, (6.2) has a solution s21 > 0, s1 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-2 periodic
loop.

About the bifurcation diagrams for the cases −1 < w12
2 < 0, 0 < w12

1 < 1 and w12
1 > 1, w12

2 > 1, see
Figures 31 and 32.
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6.2. 0 < α(µ)� 1

Theorem 6.3. Suppose that (H1)∼(H4) and (H6) hold. If 0 < α(µ)� 1, rank{M1
1 , M

1
2 } = 2, then, for

|µ| � 1, system (1.2) has at most one large 2-2 homoclinic loop, or one large 2-1 homoclinic loop, or one
large 1-2 homoclinic loop, or one large 2-2 double homoclinic loops, or one large 1-1 homoclinic loop, or one
large 1-2 double homoclinic loops, or one large 2-1 double homoclinic loops, or a large 2-2 periodic loop, or
one large 1-1 double homoclinic loops in the small neighborhood of Γ = Γ1 ∩ Γ2, and, these orbits do not
coexist.

Moreover, there exist surfaces L1, L2, L21,1,12,2, L211,12,2, L1221,1,2, L121,12,2, L221,1,12, L
12,2
21,1, L

21,2
1,12, L

21,1
12,2,

L1,122,21, L
1,2
21,12, L

21,12
1,2 , L1,12,221 , L21,12,21 , L21,1,212 , L21,1,122 , and a region R, such that

(1) For µ ∈ L1, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ1.

For µ ∈ L2, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ2.

For µ ∈ L21,1,12,2, (6.1) has solution s21 = 0, s1 = 0, s12 = 0, s2 = 0, that is, in the small neighborhood

of Γ = Γ1 ∪ Γ2, system (1.2) has a unique 1-1 double homoclinic loops Γ0 = Γ0
1(µ) ∪ Γ0

2(µ), that is,
double homoclinic loops are preserved (Figure 29).

(2) For µ ∈ L211,12,2, (6.1) has a solution s21 > 0, s1 = 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-1 homoclinic loop (Figure 25).

(3) For µ ∈ L1221,1,2, (6.1) has a solution s21 = 0, s1 = 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
1-1 homoclinic loop (Figure 26).

(4) For µ ∈ L121,12,2, (6.1) has a solution s21 = 0, s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-2 double homoclinic loop (Figure 27).

(5) For µ ∈ L221,1,12, (6.1) has a solution s21 = 0, s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-1 double homoclinic loop (Figure 28).

(6) For µ ∈ L12,221,1, (6.1) has a solution s21 = 0, s1 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-1 homoclinic loop (Figure 19).

(7) For µ ∈ L21,21,12, (6.1) has a solution s21 > 0, s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-1 homoclinic loop (Figure 20).

(8) For µ ∈ L21,112,2, (6.1) has a solution s21 > 0, s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure 21).

(9) For µ ∈ L1,122,21, (6.1) has a solution s21 = 0, s1 > 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure 22).

(10) For µ ∈ L1,221,12, (6.1) has a solution s21 = 0, s1 > 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure 23).

(11) For µ ∈ L21,121,2 , (6.1) has a solution s21 > 0, s1 = 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure 24).

(12) For µ ∈ L1,12,221 , (6.1) has a solution s21 = 0, s1 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 15).

(13) For µ ∈ L21,12,21 , (6.1) has a solution s21 > 0, s1 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 16).

(14) For µ ∈ L21,1,212 , (6.1) has a solution s21 > 0, s1 > 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 17).
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(15) For µ ∈ L21,1,122 , (6.1) has a solution s21 > 0, s1 > 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 18).

(16) For µ ∈ R, (6.1) has a solution s21 > 0, s1 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-2
periodic loop (Figure 30).

Proof. In this case, by (6.1), we have that
∂(G1

1,G̃
1
1,G

1
2,G̃

1
2)

∂(s1,s12,s2,s21)
|s1=s12=s2=s21=0 = diag(−1, 1, 1,−1) is a full rank

matrix, so, according to the implicit function theorem, we have that (6.1) has a unique solution

s1 = −(w12
1 )−1s

(1+α(µ))
21 + δ−1M1

1µ+ h.o.t.,

s12 = −(w12
1 )−1s

(1+α(µ))
1 − δ−1M1

1µ+ h.o.t.,

s2 = −(w12
2 )−1s

(1+α(µ))
12 − δ−1M1

2µ+ h.o.t.,

s21 = −(w12
2 )−1s

(1+α(µ))
2 + δ−1M1

2µ+ h.o.t.,

(6.4)

in the small neighborhood of s1 = s12 = s2 = s21 = 0. Thus, the uniqueness and non-coexistence are proved.

(1). If (6.4) has a solution s21 = s1 = s12 = s2 = 0, then (6.1) is turned to{
M1

1µ+ h.o.t. = 0,
M1

2µ+ h.o.t. = 0.
(6.5)

Thus, if rank{M1
1 ,M

1
2 } = 2, then, there exists an (l − 2)-dimensional surface L21,1,12,2 defined by (6.5)

which has normal plane span{M1
1 ,M

1
2 } at µ = 0, such that, for µ ∈ L21,1,12,2, system (1.2) has a unique

double homoclinic loop Γ(µ) = Γ1(µ) ∪ Γ2(µ) in the small neighborhood of Γ = Γ1 ∪ Γ2, that is, the double
homoclinic loops are preserved.

Furthermore, if M1
1 6= 0, then, there exists an (l − 1)-dimensional surface L1 = {µ : M1

1µ+ h.o.t. = 0}
which has normal vector M1

1 at µ = 0, such that, for µ ∈ L1, system (1.2) has a unique small 1-homoclinic
loop Γ1(µ) in the small neighborhood of Γ1.

Similarly, if M1
2 6= 0, then, there exists an (l − 1)-dimensional surface L2 = {µ : M1

2µ + h.o.t. = 0}
which has normal vector M1

2 at µ = 0, such that, for µ ∈ L2, system (1.2) has a unique small 1-homoclinic
loop Γ2(µ) in the small neighborhood of Γ2.

(2). If (6.4) has a solution s21 > 0, s1 = s12 = s2 = 0, then (6.1) is turned to
− s(1+α(µ))21 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0,

s21 = δ−1M1
2µ+ h.o.t..

Thus, in the region R21
1,12,2 = {µ : δ−1w12

1 M
1
1µ+ h.o.t. > 0, δ−1M1

2µ+ h.o.t. > 0}, we get the equation of

bifurcation surface L211,12,2 of large 1-1 homoclinic loop as follows.
− (δ−1M1

2µ+ h.o.t.)(1+α(µ)) + δ−1w12
1 M

1
1µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(3). If (6.4) has a solution s12 > 0, s21 = s1 = s2 = 0, then (6.1) is turned to
δ−1M1

1µ+ h.o.t. = 0,

s12 = −δ−1M1
1µ+ h.o.t.,

s
(1+α(µ))
12 + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.
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Thus, in the region R12
21,1,2 = {µ : −δ−1M1

1µ+ h.o.t. > 0, δ−1w12
2 M

1
2µ+ h.o.t. < 0}, we get the equation

of bifurcation surface L1221,1,2 of large 1-1 homoclinic loop as follows.
(−δ−1M1

1µ+ h.o.t.)(1+α(µ)) + δ−1w12
2 M

1
2µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(4). If (6.4) has a solution s1 > 0, s21 = s12 = s2 = 0, then (6.1) is turned to
s1 = δ−1M1

1µ+ h.o.t. = 0,

s
(1+α(µ))
1 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R1
21,12,2 = {µ : δ−1M1

1µ+ h.o.t. > 0, δ−1w12
1 M

1
1µ+ h.o.t. < 0}, we get the equation

of bifurcation surface L121,12,2 of large 1-2 double homoclinic loop as follows.{
(δ−1M1

1µ+ h.o.t.)(1+α(µ)) + δ−1w12
1 M

1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(5). If (6.4) has a solution s2 > 0, s21 = s1 = s12 = 0, then (6.1) is turned to
δ−1M1

1µ+ h.o.t. = 0,

s2 = −δ−1M1
2µ+ h.o.t.,

− s(1+α(µ))2 + δ−1w12
2 M

1
2µ+ h.o.t. = 0.

Thus, in the region R2
21,1,12 = {µ : −δ−1M1

2µ+h.o.t. > 0, δ−1w12
2 M

1
2µ+h.o.t. > 0}, we get the equation

of bifurcation surface L221,1,12 of large 2-1 double homoclinic loop as follows.{
δ−1M1

1µ+ h.o.t. = 0,

− (−δ−1M1
2µ+ h.o.t.)(1+α(µ)) + δ−1w12

2 M
1
2µ+ h.o.t. = 0.

(6). If (6.4) has a solution s12 > 0, s2 > 0, s21 = s1 = 0, then (6.1) is turned to

δ−1M1
1µ+ h.o.t. = 0,

s12 = −δ−1M1
1µ+ h.o.t.,

s2 = −(w12
2 )−1s

(1+α(µ))
12 − δ−1M1

2µ+ h.o.t.,

− s(1+α(µ))2 + δ−1w12
2 M

1
2µ+ h.o.t. = 0.

Thus, in the region R12,2
21,1 = {µ : −δ−1M1

1µ + h.o.t. > 0} ∩ {µ : δ−1w12
2 M

1
2µ + h.o.t. > 0}, we get the

equation of bifurcation surface L12,221,1 of large 2-1 homoclinic loop as follows. δ−1M1
1µ+ h.o.t. = 0,

−
(
−(w12

2 )−1
(
−δ−1M1

1µ
)(1+α(µ)) − δ−1M1

2µ
)(1+α(µ))

+ δ−1w12
2 M

1
2µ+ h.o.t. = 0.

(7). If (6.4) has a solution s21 > 0, s1 = 0, s12 = 0, s2 > 0, then (6.1) is turned to
− s(1+α(µ))21 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0,

s2 = −δ−1M1
2µ+ h.o.t.,

s21 = −(w12
2 )−1s

(1+α(µ))
2 + δ−1M1

2µ+ h.o.t. = 0.
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Thus, in the region R21,2
1,12 = {µ : −δ−1M1

2µ + h.o.t. > 0} ∩ {µ : −(w12
2 )−1(−δ−1M1

2µ + h.o.t.)(1+α(µ)) +

δ−1M1
2µ + h.o.t. > 0} ∩ {µ : δ−1w12

1 M
1
1µ + h.o.t. > 0}, we get the equation of bifurcation surface L21,21,12 of

large 2-1 homoclinic loop as follows. −
(
−(w12

2 )−1(−δ−1M1
2µ)(1+α(µ)) + δ−1M1

2µ
)(1+α(µ))

+ δ−1w12
1 M

1
1µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0.

(8). If (6.4) has a solution s21 > 0, s1 > 0, s12 = 0, s2 = 0, then (6.1) is turned to
s1 = −(w12

1 )−1s
(1+α(µ))
21 + δ−1M1

1µ+ h.o.t.,

s
(1+α(µ))
1 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0,

s21 = δ−1M1
2µ+ h.o.t..

Thus, in the region R21,1
12,2 = {µ : δ−1M1

2µ + h.o.t. > 0} ∩ {µ : δ−1w12
1 M

1
1µ + h.o.t. < 0}, we get the

equation of bifurcation surface L21,112,2 of large 1-2 homoclinic loop as follows.
(
−(w12

1 )−1(δ−1M1
2µ)(1+α(µ)) + δ−1M1

1µ
)(1+α(µ))

+ δ−1w12
1 M

1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(9). If (6.4) has a solution s21 = 0, s1 > 0, s12 > 0, s2 = 0, then (6.1) is turned to

s1 = δ−1M1
1µ+ h.o.t.,

s12 = −(w12
1 )−1s

(1+α(µ))
1 − δ−1M1

1µ+ h.o.t.,

s
(1+α(µ))
12 + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R1,12
21,2 = {µ : δ−1M1

1µ + h.o.t. > 0} ∩ {µ : δ−1w12
2 M

1
2µ + h.o.t. < 0} ∩ {µ :

−(w12
1 )−1(δ−1M1

1µ + h.o.t.)(1+α(µ)) − δ−1M1
1µ + h.o.t. > 0}, we get the equation of bifurcation surface

L1,1221,2 of large 1-2 homoclinic loop as follows.
(
−(w12

1 )−1(δ−1M1
1µ)(1+α(µ)) − δ−1M1

1µ
)(1+α(µ))

+ δ−1w12
2 M

1
2µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(10). If (6.4) has a solution s21 = 0, s1 > 0, s12 = 0, s2 > 0, then (6.1) is turned to

s1 = δ−1M1
1µ+ h.o.t.,

s
(1+α(µ))
1 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

s2 = −δ−1M1
2µ+ h.o.t.,

− s(1+α(µ))2 + δ−1w12
2 M

1
2µ+ h.o.t. = 0.

Thus, in the region R1,2
21,12 = {µ : δ−1M1

1µ + h.o.t. > 0} ∩ {µ : −δ−1M1
2µ + h.o.t. > 0}, we get the

equation of bifurcation surface L1,221,12 of large 2-2 double homoclinic loop as follows.{
(δ−1M1

1µ+ h.o.t.)(1+α(µ)) + δ−1w12
1 M

1
1µ+ h.o.t. = 0,

− (−δ−1M1
2µ+ h.o.t.)(1+α(µ)) + δ−1w12

2 M
1
2µ+ h.o.t. = 0.
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(11). If (6.4) has a solution s21 > 0, s1 = 0, s12 > 0, s2 = 0, then (6.1) is turned to
− s(1+α(µ))21 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

s12 = −δ−1M1
1µ+ h.o.t.,

s
(1+α(µ))
12 + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

s21 = δ−1M1
2µ+ h.o.t..

Thus, in the region R21,12
1,2 = {µ : −δ−1M1

1µ + h.o.t. > 0} ∩ {µ : δ−1M1
2µ + h.o.t. > 0}, we get the

equation of bifurcation surface L21,121,2 of large 2-2 double homoclinic loop as follows.{
− (δ−1M1

2µ+ h.o.t.)(1+α(µ)) + δ−1w12
1 M

1
1µ+ h.o.t. = 0,

(−δ−1M1
1µ+ h.o.t.)(1+α(µ)) + δ−1w12

2 M
1
2µ+ h.o.t. = 0.

(12). If (6.4) has a solution s21 = 0, s1 > 0, s12 > 0, s2 > 0, then (6.1) is turned to

s1 = δ−1M1
1µ+ h.o.t.,

s12 = −(w12
1 )−1s

(1+α(µ))
1 − δ−1M1

1µ+ h.o.t.,

s2 = −(w12
2 )−1s

(1+α(µ))
12 − δ−1M1

2µ+ h.o.t.,

− s(1+α(µ))2 + δ−1w12
2 M

1
2µ+ h.o.t. = 0.

(6.6)

Thus, in the region R1,12,2
21 = {µ : δ−1M1

1µ + h.o.t. > 0} ∩ {µ : δ−1w12
2 M

1
2µ + h.o.t. > 0} ∩ {µ :

−(w12
1 )−1(δ−1M1

1µ+h.o.t.)(1+α(µ))−δ−1M1
1µ+h.o.t. > 0}, we get the equation of bifurcation surface L1,12,221

of large 2-2 homoclinic loop as follows.

−
(
−(w12

2 )−1
(
−(w12

1 )−1(δ−1M1
1µ)(1+α(µ)) − δ−1M1

1µ
)(1+α(µ))

− δ−1M1
2µ

)(1+α(µ))

+ δ−1w12
2 M

1
2µ+ h.o.t. = 0.

(13). If (6.4) has a solution s21 > 0, s1 = 0, s12 > 0, s2 > 0, then (6.1) is turned to

− s(1+α(µ))21 + δ−1w12
1 M

1
1µ+ h.o.t. = 0,

s12 = −δ−1M1
1µ+ h.o.t.,

s2 = −(w12
2 )−1s

(1+α(µ))
12 − δ−1M1

2µ+ h.o.t.,

s21 = −(w12
2 )−1s

(1+α(µ))
2 + δ−1M1

2µ+ h.o.t..

(6.7)

Thus, in the region R21,12,2
1 = {µ : −δ−1M1

1µ+ h.o.t. > 0} ∩ {µ : −(w12
2 )−1(−δ−1M1

1µ+ h.o.t.)(1+α(µ))−
δ−1M1

2µ + h.o.t. > 0} ∩ {µ : −(w12
2 )−1[−(w12

2 )−1(−δ−1M1
1µ + h.o.t.)(1+α(µ)) − δ−1M1

2µ + h.o.t.](1+α(µ)) +
δ−1M1

2µ + h.o.t. > 0}, we get the equation of bifurcation surface L21,12,21 of large 2-2 homoclinic loop as
follows.

−
(
−(w12

2 )−1
(
−(w12

2 )−1(−δ−1M1
1µ)(1+α(µ)) − δ−1M1

2µ
)(1+α(µ))

+ δ−1M1
2µ

)(1+α(µ))

+ δ−1w12
1 M

1
1µ+ h.o.t. = 0.

(14). If (6.4) has a solution s21 > 0, s1 > 0, s12 = 0, s2 > 0, then (6.1) is turned to

s1 = −(w12
1 )−1s

(1+α(µ))
21 + δ−1M1

1µ+ h.o.t.,

s
(1+α(µ))
1 + δ−1w12

1 M
1
1µ+ h.o.t. = 0,

s2 = −δ−1M1
2µ+ h.o.t.,

s21 = −(w12
2 )−1s

(1+α(µ))
2 + δ−1M1

2µ+ h.o.t..

(6.8)
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Thus, in the region R21,1,2
12 = {µ : −δ−1M1

2µ + h.o.t. > 0} ∩ {µ : δ−1w12
1 M

1
1µ + h.o.t. < 0} ∩ {µ :

−(w12
2 )−1(−δ−1M1

2µ + h.o.t.)(1+α(µ)) + δ−1M1
2µ + h.o.t. > 0}, we get the equation of bifurcation surface

L21,1,212 of large 2-2 homoclinic loop as follows.(
−(w12

1 )−1
(
−(w12

2 )−1(−δ−1M1
2µ)(1+α(µ)) + δ−1M1

2µ
)(1+α(µ))

+ δ−1M1
1µ

)(1+α(µ))

+ δ−1w12
1 M

1
1µ+ h.o.t. = 0.

(15). If (6.4) has a solution s21 > 0, s1 > 0, s12 > 0, s2 = 0, then (6.1) is turned to



s1 = −(w12
1 )−1s

(1+α(µ))
21 + δ−1M1

1µ+ h.o.t.,

s12 = −(w12
1 )−1s

(1+α(µ))
1 − δ−1M1

1µ+ h.o.t.,

s
(1+α(µ))
12 + δ−1w12

2 M
1
2µ+ h.o.t. = 0,

s21 = δ−1M1
2µ+ h.o.t..

(6.9)

Thus, in the region R21,1,12
2 = {µ : δ−1M1

2µ+ h.o.t. > 0} ∩ {µ : −(w12
1 )−1(δ−1M1

2µ)(1+α(µ)) + δ−1M1
1µ+

h.o.t. > 0} ∩ {µ : −(w12
1 )−1[−(w12

1 )−1(δ−1M1
2µ)(1+α(µ)) + δ−1M1

1µ](1+α(µ)) − δ−1M1
1µ + h.o.t. > 0}, we get

the equation of bifurcation surface L21,12,21 of large 2-2 homoclinic loop as follows.

(
−(w12

1 )−1
(
−(w12

1 )−1(δ−1M1
2µ)(1+α(µ)) + δ−1M1

1µ
)(1+α(µ))

− δ−1M1
1µ

)(1+α(µ))

+ δ−1w12
2 M

1
2µ+ h.o.t. = 0.

(16). If (6.4) has a solution s21 > 0, s1 > 0, s12 > 0, s2 > 0, then, differentiating (6.4), and denoting by (si)µ
as the gradient of si(µ) with respect to µ, we get

(s1)µ = −(w12
1 )−1(1 + α(µ))s

α(µ)
21 (s21)µ + δ−1M1

1 + h.o.t.,

(s12)µ = −(w12
1 )−1(1 + α(µ))s

α(µ)
1 (s1)µ − δ−1M1

1 + h.o.t.,

(s2)µ = −(w12
2 )−1(1 + α(µ))s

α(µ)
12 (s12)µ − δ−1M1

2 + h.o.t.,

(s21)µ = −(w12
2 )−1(1 + α(µ))s

α(µ)
2 (s2)µ + δ−1M1

2 + h.o.t..

(6.10)

(i). If µ is situated in the neighborhood of L1,21,1221 , then, substituting (6.6) into (6.10), we get

(s1)µ = δ−1M1
1 + h.o.t.,

(s12)µ = −(w12
1 )−1(1 + α(µ))(δ−1M1

1µ+ h.o.t.)α(µ)(s1)µ − δ−1M1
1 + h.o.t.,

(s2)µ = −(w12
2 )−1(1 + α(µ))

(
−(w12

1 )−1(δ−1M1
1µ)(1+α(µ)) − δ−1M1

1µ+ h.o.t.
)α(µ)

(s12)µ

− δ−1M1
2 + h.o.t.,

(s21)µ = −(w12
2 )−1(1 + α(µ))

(
δ−1w12

2 M
1
2µ+ h.o.t.

) α(µ)
1+α(µ) (s2)µ + δ−1M1

2 + h.o.t..

So, (s21)µ = δ−1M1
2 + O(

(
δ−1w12

2 M
1
2µ+ h.o.t.

) α(µ)
1+α(µ) ) + h.o.t., this means that s21 = s21(µ) increases

along the direction M1
2 in the small neighborhood of L1,21,1221 .
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(ii). If µ is situated in the neighborhood of L21,12,21 , then, substituting (6.7) into (6.10), we get



(s1)µ = −(w12
1 )−1(1 + α(µ))

(
δ−1w12

1 M
1
1µ+ h.o.t.

) α(µ)
1+α(µ) (s21)µ + δ−1M1

1 + h.o.t.,

(s12)µ = −δ−1M1
1 + h.o.t.,

(s2)µ = −(w12
2 )−1(1 + α(µ))(−δ−1M1

1µ+ h.o.t.)α(µ)(s12)µ − δ−1M1
2 + h.o.t.,

(s21)µ = −(w12
2 )−1(1 + α(µ))

(
−(w12

2 )−1(−δ−1M1
1µ)(1+α(µ)) − δ−1M1

2µ+ h.o.t.
)α(µ)

(s2)µ

+ δ−1M1
2 + h.o.t..

So, (s1)µ = δ−1M1
1 +O(

(
δ−1w12

1 M
1
1µ+ h.o.t.

) α(µ)
1+α(µ) ) +h.o.t., this means that s1 = s1(µ) increases along

the direction M1
1 in the small neighborhood of L21,12,21 .

(iii). If µ is situated in the neighborhood of L21,1,212 , then, substituting (6.8) into (6.10), we get

(s1)µ = −(w12
1 )−1(1 + α(µ))

(
−(w12

2 )−1(−δ−1M1
2µ)(1+α(µ)) + δ−1M1

2µ+ h.o.t.
)α(µ)

(s21)µ

+ δ−1M1
1 + h.o.t.,

(s12)µ = −(w12
1 )−1(1 + α(µ))

(
−δ−1w12

1 M
1
1µ+ h.o.t.

) α(µ)
1+α(µ) (s1)µ − δ−1M1

1 + h.o.t.,

(s2)µ = −δ−1M1
2 + h.o.t.,

(s21)µ = −(w12
2 )−1(1 + α(µ))(−δ−1M1

2µ+ h.o.t.)α(µ)(s2)µ + δ−1M1
2 + h.o.t..

So, (s12)µ = −δ−1M1
1 +O

((
−δ−1w12

1 M
1
1µ+ h.o.t.

) α(µ)
1+α(µ)

)
+ h.o.t., this means that s12 = s12(µ) increases

along the direction −M1
1 in the small neighborhood of L21,1,212 .

(iv). If µ is situated in the neighborhood of L21,1,122 , then, substituting (6.9) into (6.10), we get

(s1)µ = −(w12
1 )−1(1 + α(µ))(δ−1M1

2µ+ h.o.t.)α(µ)(s21)µ + δ−1M1
1 + h.o.t.,

(s12)µ = −(w12
1 )−1(1 + α(µ))

(
−(w12

1 )−1(δ−1M1
2µ)(1+α(µ)) + δ−1M1

1µ+ h.o.t.
)α(µ)

(s1)µ

− δ−1M1
1 + h.o.t.,

(s2)µ = −(w12
2 )−1(1 + α(µ))

(
−δ−1w12

2 M
1
2µ+ h.o.t.

) α(µ)
1+α(µ) (s12)µ − δ−1M1

2 + h.o.t.,

(s21)µ = δ−1M1
2 + h.o.t..

So, (s2)µ = −δ−1M1
2 + O

((
−δ−1w12

2 M
1
2µ+ h.o.t.

) α(µ)
1+α(µ)

)
, this means that s2 = s2(µ) increases along

the direction −M1
2 in the small neighborhood of L21,1,22 .

Denote by R the region which is bounded by L1,12,221 , L21,12,21 , L21,1,212 , L21,1,22 , the vector M1
2 point into

it from L1,12,221 , the vector M1
1 point into it from L21,12,21 , the vector M1

1 point out of it from L21,1,212 , and the

vector M1
2 point out of it from L21,1,22 .

By the discussion of above, we get (6.4) has solution s21 > 0, s1 > 0, s12 > 0, s2 > 0 for µ ∈ R, that is,
system (1.2) has a large 2-2 periodic loop.

About the bifurcation diagram, see Figure 33, where L1,221,12 = L221,1,12 ∩ L121,12,2, L
21,12
1,2 = L211,12,2 ∩

L1221,1,2.
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6.3. −1� α(µ) < 0

Theorem 6.4. Suppose that (H1)∼(H4) and (H6) hold. If −1 � α(µ) < 0, rank{M1
1 ,M

1
2 } = 2, then,

for |µ| � 1, system (1.2) has at most one large 2-2 homoclinic loop, or one large 2-1 homoclinic loop, or
one large 1-2 homoclinic loop, or one large 2-2 double homoclinic loops, or one large 1-1 homoclinic loop,
or one large 1-2 double homoclinic loops, or one large 2-1 double homoclinic loops, or a large 2-2 periodic
loop, or one large 1-1 double homoclinic loops in the small neighborhood of Γ = Γ1 ∩ Γ2, and, these orbits
do not coexist.

Moreover, there exist surfaces L̄1, L̄2, L̄21,1,12,2, L̄211,12,2, L̄1221,1,2, L̄121,12,2, L̄221,1,12, L̄
12,2
21,1, L̄

21,2
1,12, L̄

21,1
12,2,

L̄1,122,21, L̄
1,2
21,12, L̄

21,12
1,2 , L̄1,12,221 , L̄21,12,21 , L̄21,1,212 , L̄21,1,122 , and a region R̄, such that:

(1). For µ ∈ L̄1, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ1.

For µ ∈ L̄2, system (1.2) has a unique small 1-homoclinic loop in the small neighborhood of Γ2.

For µ ∈ L̄21,1,12,2, (6.1) has solution s21 = 0, s1 = 0, s12 = 0, s2 = 0, that is, in the small neighborhood

of Γ = Γ1 ∪ Γ2, system (1.2) has a unique 1-1 double homoclinic loop Γ0 = Γ0
1(µ) ∪ Γ0

2(µ), that is, the
double homoclinic loops are preserved (Figure 29).

(2). For µ ∈ L̄211,12,2, (6.1) has a solution s21 > 0, s1 = 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-1 homoclinic loop (Figure 25).

(3). For µ ∈ L̄1221,1,2, (6.1) has a solution s21 = 0, s1 = 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
1-1 homoclinic loop (Figure 26).

(4). For µ ∈ L̄121,12,2, (6.1) has a solution s21 = 0, s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-2 double homoclinic loop (Figure 27).

(5). For µ ∈ L̄221,1,12, (6.1) has a solution s21 = 0, s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-1 double homoclinic loop (Figure 28).

(6). For µ ∈ L̄12,221,1, (6.1) has a solution s21 = 0, s1 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-1 homoclinic loop (Figure 19).

(7). For µ ∈ L̄21,21,12, (6.1) has a solution s21 > 0, s1 = 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-1 homoclinic loop (Figure 20).
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(8). For µ ∈ L̄21,112,2, (6.1) has a solution s21 > 0, s1 > 0, s12 = 0, s2 = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure 21).

(9). For µ ∈ L̄1,122,21, (6.1) has a solution s21 = 0, s1 > 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
1-2 homoclinic loop (Figure 22).

(10). For µ ∈ L̄1,221,12, (6.1) has a solution s21 = 0, s1 > 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure 23).

(11). For µ ∈ L̄21,121,2 , (6.1) has a solution s21 > 0, s1 = 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
2-2 double homoclinic loop (Figure 24).

(12). For µ ∈ L̄1,12,221 , (6.1) has a solution s21 = 0, s1 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 15).

(13). For µ ∈ L̄21,12,21 , (6.1) has a solution s21 > 0, s1 = 0, s12 > 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 16).

(14). For µ ∈ L̄21,1,212 , (6.1) has a solution s21 > 0, s1 > 0, s12 = 0, s2 > 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 17).

(15). For µ ∈ L̄21,1,122 , (6.1) has a solution s21 > 0, s1 > 0, s12 > 0, s2 = 0, that is, system (1.2) has a large
2-2 homoclinic loop (Figure 18).

(16). For µ ∈ R̄, (6.1) has a solution s21 > 0, s1 > 0, s12 > 0, s2 > 0, that is, system (1.2) has a large 2-2
periodic loop (Figure 30).

Proof. In this case, 1 + α(µ) < 1, by times scale transformations s21 → (s21)
1

1+α(µ) , s1 → (s1)
1

1+α(µ) ,

s12 → (s12)
1

1+α(µ) , s2 → (s2)
1

1+α(µ) , (6.1) becomes

δ
(
−(w12

1 )−1s21 − (s1)
1

1+α(µ)

)
+M1

1µ+ h.o.t. = 0,

δ
(

(w12
1 )−1s1 + (s12)

1
1+α(µ)

)
+M1

1µ+ h.o.t. = 0,

δ
(

(w12
2 )−1s12 + (s2)

1
1+α(µ)

)
+M1

2µ+ h.o.t. = 0,

δ
(
−(w12

2 )−1s2 − (s21)
1

1+α(µ)

)
+M1

2µ+ h.o.t. = 0.

(6.11)

Similar to that of Theorem 6.3, (6.11) has a unique solution

s21 = −w12
1 (s1)

1
1+α(µ) + δ−1w12

1 M
1
1µ+ h.o.t.,

s1 = −w12
1 (s12)

1
1+α(µ) − δ−1w12

1 M
1
1µ+ h.o.t.,

s12 = −w12
2 (s2)

1
1+α(µ) − δ−1w12

2 M
1
2µ+ h.o.t.,

s2 = −w12
2 (s21)

1
1+α(µ) + δ−1w12

2 M
1
2µ+ h.o.t.,

(6.12)

in the small neighborhood of s21 = s1 = s12 = s2 = 0. Thus, we get the uniqueness and non-coexistence.

(1). If (6.12) has a solution s21 = s1 = s12 = s2 = 0, then (6.11) is turned to{
M1

1µ+ h.o.t. = 0,

M1
2µ+ h.o.t. = 0.

(6.13)

Thus, if rank{M1
1 ,M

1
2 } = 2, then, there exists an (l− 2)-dimensional surface L̄21,1,12,2 defined by (6.13)

which has normal plane span{M1
1 ,M

1
2 } at µ = 0, such that, for µ ∈ L̄21,1,12,2, system (1.2) has a unique
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double homoclinic loop Γ(µ) = Γ1(µ) ∪ Γ2(µ) in the small neighborhood of Γ = Γ1 ∪ Γ2, that is, the double
homoclinic loops are preserved.

Furthermore, if M1
1 6= 0, then, there exists an (l − 1)-dimensional surface L̄1 = {µ : M1

1µ+ h.o.t. = 0}
which has normal vector M1

1 at µ = 0, such that, for µ ∈ L̄1, system (1.2) has a unique small 1-homoclinic
loop Γ1(µ) in the small neighborhood of Γ1.

Similarly, if M1
2 6= 0, then, there exists an (l − 1)-dimensional surface L̄2 = {µ : M1

2µ + h.o.t. = 0}
which has normal vector M1

2 at µ = 0, such that, for µ ∈ L̄2, system (1.2) has a unique small 1-homoclinic
loop Γ2(µ) in the small neighborhood of Γ2.

(2). If (6.12) has a solution s21 > 0, s1 = s12 = s2 = 0, then (6.11) is turned to
s21 = δ−1w12

1 M
1
1µ+ h.o.t.,

δ−1M1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0,

− (s21)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R̄21
1,12,2 = {µ : δ−1w12

1 M
1
1µ+ h.o.t. > 0, δ−1M1

2µ+ h.o.t. > 0}, we get the equation of

bifurcation surface L̄211,12,2 of large 1-1 homoclinic loop as follows.
δ−1M1

1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0,

− (δ−1w12
1 M

1
1µ+ h.o.t.)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.

(3). If (6.12) has a solution s12 > 0, s21 = s1 = s2 = 0, then (6.11) is turned to
δ−1M1

1µ+ h.o.t. = 0,

(s12)
1

1+α(µ) + δ−1M1
1µ+ h.o.t. = 0,

s12 = −δ−1w12
2 M

1
2µ+ h.o.t.,

δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R̄12
21,1,2 = {µ : δ−1M1

1µ+ h.o.t. < 0, δ−1w12
2 M

1
2µ+ h.o.t. < 0}, we get the equation of

bifurcation surface L̄1221,1,2 of large 1-1 homoclinic loop as follows.
(−δ−1w12

2 M
1
2µ+ h.o.t.)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

δ−1M1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(4). If (6.12) has a solution s1 > 0, s21 = s12 = s2 = 0, then (6.11) is turned to
− (s1)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

s1 = −δ−1w12
1 M

1
1µ+ h.o.t.,

δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R̄1
21,12,2 = {µ : δ−1M1

1µ + h.o.t. > 0}, we get the equation of bifurcation surface

L̄121,12,2 of large 1-2 double homoclinic loop as follows.{
− (−δ−1w12

1 M
1
1µ+ h.o.t.)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.
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(5). If (6.12) has a solution s2 > 0, s21 = s1 = s12 = 0, then (6.11) is turned to
δ−1M1

1µ+ h.o.t. = 0,

(s2)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0,

s2 = δ−1w12
2 M

1
2µ+ h.o.t..

Thus, in the region R̄2
21,1,12 = {µ : δ−1M1

2µ + h.o.t. < 0}, we get the equation of bifurcation surface

L̄221,1,12 of large 2-1 double homoclinic loop as follows.{
δ−1M1

1µ+ h.o.t. = 0,

(δ−1w12
2 M

1
2µ+ h.o.t.)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.

(6). If (6.12) has a solution s12 > 0, s2 > 0, s21 = s1 = 0, then (6.11) is turned to

δ−1M1
1µ+ h.o.t. = 0,

(s12)
1

1+α(µ) + δ−1M1
1µ+ h.o.t. = 0,

s12 = −w12
2 (s2)

1
1+α(µ) − δ−1w12

2 M
1
2µ+ h.o.t.,

s2 = δ−1w12
2 M

1
2µ+ h.o.t..

Thus, in the region R̄12,2
21,1 = {µ : δ−1M1

1µ + h.o.t. < 0} ∩ {µ : −w12
2 (δ−1w12

2 M
1
2µ + h.o.t.)

1
1+α(µ) −

δ−1w12
2 M

1
2µ + h.o.t. > 0} ∩ {µ : δ−1w12

2 M
1
2µ + h.o.t. > 0}, we get the equation of bifurcation surface L̄12,221,1

of large 2-1 homoclinic loop as follows.
δ−1M1

1µ+ h.o.t. = 0,(
−w12

2 (δ−1w12
2 M

1
2µ)

1
1+α(µ) − δ−1w12

2 M
1
2µ
) 1

1+α(µ)
+ δ−1M1

1µ+ h.o.t. = 0.

(7). If (6.12) has a solution s21 > 0, s1 = 0, s12 = 0, s2 > 0, then (6.11) is turned to

s21 = δ−1w12
1 M

1
1µ+ h.o.t.,

δ−1M1
1µ+ h.o.t. = 0,

(s2)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0,

s2 = −w12
2 (s21)

1
1+α(µ) + δ−1w12

2 M
1
2µ+ h.o.t..

Thus, in the region R̄21,2
1,12 = {µ : δ−1M1

2µ + h.o.t. < 0} ∩ {µ : δ−1w12
1 M

1
1µ + h.o.t. > 0}, we get the

equation of bifurcation surface L̄21,21,12 of large 2-1 homoclinic loop as follows.
δ−1M1

1µ+ h.o.t. = 0,(
−w12

2 (δ−1w12
1 M

1
1µ)

1
1+α(µ) + δ−1w12

2 M
1
2µ
) 1

1+α(µ)
+ δ−1M1

2µ+ h.o.t. = 0.

(8). If (6.12) has a solution s21 > 0, s1 > 0, s12 = 0, s2 = 0, then (6.11) is turned to
s21 = −w12

1 (s1)
1

1+α(µ) + δ−1w12
1 M

1
1µ+ h.o.t.,

s1 = −δ−1w12
1 M

1
1µ+ h.o.t.,

δ−1M1
2µ+ h.o.t. = 0,

− (s21)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0.
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Thus, in the region R̄21,1
12,2 = {µ : δ−1M1

2µ + h.o.t. > 0} ∩ {µ : −w12
1 (−δ−1w12

1 M
1
1µ + h.o.t.)

1
1+α(µ) +

δ−1w12
1 M

1
1µ+ h.o.t. > 0} ∩ {µ : −δ−1w12

1 M
1
1µ+ h.o.t. > 0}, we get the equation of bifurcation surface L̄21,112,2

of large 1-2 homoclinic loop as follows.
δ−1M1

2µ+ h.o.t. = 0,(
−w12

1 (−δ−1w12
1 M

1
1µ)

1
1+α(µ) + δ−1w12

1 M
1
1µ
) 1

1+α(µ) − δ−1M1
2µ+ h.o.t. = 0.

(9). If (6.12) has a solution s21 = 0, s1 > 0, s12 > 0, s2 = 0, then (6.11) is turned to
− (s1)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

s1 = −w12
1 (s12)

1
1+α(µ) − δ−1w12

1 M
1
1µ+ h.o.t.,

s12 = −δ−1w12
2 M

1
2µ+ h.o.t.,

δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R̄1,12
21,2 = {µ : δ−1M1

1µ + h.o.t. > 0} ∩ {µ : −δ−1w12
2 M

1
2µ + h.o.t. > 0}, we get the

equation of bifurcation surface L̄1,1221,2 of large 1-2 homoclinic loop as follows.
(
−w12

1 (−δ−1w12
2 M

1
2µ)

1
1+α(µ) − δ−1w12

1 M
1
1µ
) 1

1+α(µ) − δ−1M1
1µ+ h.o.t. = 0,

δ−1M1
2µ+ h.o.t. = 0.

(10). If (6.12) has a solution s21 = 0, s1 > 0, s12 = 0, s2 > 0, then (6.11) is turned to
− (s1)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

s1 = −δ−1w12
1 M

1
1µ+ h.o.t.,

(s2)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0,

s2 = δ−1w12
2 M

1
2µ+ h.o.t..

Thus, in the region R̄1,2
21,12 = {µ : δ−1M1

1µ+h.o.t. > 0}∩ {µ : δ−1M1
2µ+h.o.t. < 0}, we get the equation

of bifurcation surface L̄1,221,12 of large 2-2 double homoclinic loop as follows. − (−δ−1w12
1 M

1
1µ+ h.o.t.)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

(δ−1w12
2 M

1
2µ+ h.o.t.)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.

(11). If (6.12) has a solution s21 > 0, s1 = 0, s12 > 0, s2 = 0, then (6.11) is turned to

s21 = δ−1w12
1 M

1
1µ+ h.o.t.,

(s12)
1

1+α(µ) + δ−1M1
1µ+ h.o.t. = 0,

s12 = −δ−1w12
2 M

1
2µ+ h.o.t.,

− (s21)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0.

Thus, in the region R̄21,12
1,2 = {µ : δ−1M1

1µ+h.o.t. < 0}∩ {µ : δ−1M1
2µ+h.o.t. > 0}, we get the equation

of bifurcation surface L̄21,121,2 of large 2-2 double homoclinic loop as follows. (−δ−1w12
2 M

1
2µ+ h.o.t.)

1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,

− (δ−1w12
1 M

1
1µ+ h.o.t.)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.
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(12). If (6.12) has a solution s21 = 0, s1 > 0, s12 > 0, s2 > 0, then (6.11) is turned to

− (s1)
1

1+α(µ) + δ−1M1
1µ+ h.o.t. = 0,

s1 = −w12
1 (s12)

1
1+α(µ) − δ−1w12

1 M
1
1µ+ h.o.t.,

s12 = −w12
2 (s2)

1
1+α(µ) − δ−1w12

2 M
1
2µ+ h.o.t.,

s2 = δ−1w12
2 M

1
2µ+ h.o.t..

(6.14)

Thus, in the region R̄1,12,2
21 = {µ : δ−1M1

1µ + h.o.t. > 0} ∩ {µ : δ−1w12
2 M

1
2µ + h.o.t. > 0} ∩ {µ :

−w12
2 (δ−1w12

2 M
1
2µ + h.o.t.)

1
1+α(µ) − δ−1w12

2 M
1
2µ + h.o.t. > 0}, we get the equation of bifurcation surface

L̄1,12,221 of large 2-2 homoclinic loop as follows.

−
(
−w12

1

(
−w12

2 (δ−1w12
2 M

1
2µ)

1
1+α(µ) − δ−1w12

2 M
1
2µ
) 1

1+α(µ) − δ−1w12
1 M

1
1µ

) 1
1+α(µ)

+ δ−1M1
1µ+ h.o.t. = 0.

(13). If (6.12) has a solution s21 > 0, s1 = 0, s12 > 0, s2 > 0, then (6.11) is turned to

s21 = δ−1w12
1 M

1
1µ+ h.o.t.,

(s12)
1

1+α(µ) + δ−1M1
1µ+ h.o.t. = 0,

s12 = −w12
2 (s2)

1
1+α(µ) − δ−1w12

2 M
1
2µ+ h.o.t.,

s2 = −w12
2 (s21)

1
1+α(µ) + δ−1w12

2 M
1
2µ+ h.o.t..

(6.15)

Thus, in the region R̄21,12,2
1 = {µ : δ−1M1

1µ + h.o.t. < 0} ∩ {µ : −w12
2 (δ−1w12

1 M
1
1µ + h.o.t.)

1
1+α(µ) +

δ−1w12
2 M

1
2µ + h.o.t. > 0} ∩ {µ : −w12

2 [(−w12
2 (δ−1w12

1 M
1
1µ + h.o.t.)

1
1+α(µ) + δ−1w12

2 M
1
2µ + h.o.t.]

1
1+α(µ) −

δ−1w12
2 M

1
2µ+ h.o.t. > 0}, we get the equation of bifurcation surface L̄21,12,21 of large 2-2 homoclinic loop as

follows. (
−w12

2

(
−w12

2 (δ−1w12
1 M

1
1µ)

1
1+α(µ) + δ−1w12

2 M
1
2µ
) 1

1+α(µ) − δ−1w12
2 M

1
2µ

) 1
1+α(µ)

+ δ−1M1
1µ+ h.o.t. = 0.

(14). If (6.12) has a solution s21 > 0, s1 > 0, s12 = 0, s2 > 0, then (6.11) is turned to

s21 = −w12
1 (s1)

1
1+α(µ) + δ−1w12

1 M
1
1µ+ h.o.t.,

s1 = −δ−1w12
1 M

1
1µ+ h.o.t.,

(s2)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0,

s2 = −w12
2 (s21)

1
1+α(µ) + δ−1w12

2 M
1
2µ+ h.o.t..

(6.16)

Thus, in the region R̄21,1,2
12 = {µ : δ−1M1

2µ + h.o.t. < 0} ∩ {µ : −δ−1w12
1 M

1
1µ + h.o.t. > 0} ∩ {µ :

−w12
1 (−δ−1w12

1 M
1
1µ + h.o.t.)

1
1+α(µ) + δ−1w12

1 M
1
1µ + h.o.t. > 0}, we get the equation of bifurcation surface

L̄21,12,21 of large 2-2 homoclinic loop as follows.

(
−w12

2

(
−w12

1 (−δ−1w12
1 M

1
1µ)

1
1+α(µ) + δ−1w12

1 M
1
1µ
) 1

1+α(µ)
+ δ−1w12

2 M
1
2µ

) 1
1+α(µ)

+ δ−1M1
2µ+ h.o.t. = 0.
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(15). If (6.12) has a solution s21 > 0, s1 > 0, s12 > 0, s2 = 0, then (6.11) is turned to



s21 = −w12
1 (s1)

1
1+α(µ) + δ−1w12

1 M
1
1µ+ h.o.t.,

s1 = −w12
1 (s12)

1
1+α(µ) − δ−1w12

1 M
1
1µ+ h.o.t.,

s12 = −δ−1w12
2 M

1
2µ+ h.o.t.,

− (s21)
1

1+α(µ) + δ−1M1
2µ+ h.o.t. = 0.

(6.17)

Thus, in the region R̄21,1,12
2 = {µ : δ−1M1

2µ + h.o.t. > 0} ∩ {µ : −w12
1 (−δ−1w12

2 M
1
2µ + h.o.t.)

1
1+α(µ) −

δ−1w12
1 M

1
1µ + h.o.t. > 0} ∩ {µ : −w12

1 [−w12
1 (−δ−1w12

2 M
1
2µ + h.o.t.)

1
1+α(µ) − δ−1w12

1 M
1
1µ + h.o.t.]

1
1+α(µ) +

δ−1w12
1 M

1
1µ+ h.o.t. > 0}, we get the equation of bifurcation surface L̄21,12,21 of large 2-2 homoclinic loop as

follows.

−
(
−w12

1

(
−w12

1 (−δ−1w12
2 M

1
2µ)

1
1+α(µ) − δ−1w12

1 M
1
1µ
) 1

1+α(µ)
+ δ−1w12

1 M
1
1µ

) 1
1+α(µ)

+ δ−1M1
2µ+ h.o.t. = 0.

(16). If (6.12) has a solution s21 > 0, s1 > 0, s12 > 0, s2 > 0, then, differentiating (6.12), and denoting by
(si)µ as the gradient of si(µ) with respect to µ, we get



(s21)µ = −(w12
1 )

1

1 + α(µ)
(s1)

−α(µ)
1+α(µ) (s1)µ + δ−1w12

1 M
1
1 + h.o.t.,

(s1)µ = −(w12
1 )

1

1 + α(µ)
(s12)

−α(µ)
1+α(µ) (s12)µ − δ−1w12

1 M
1
1 + h.o.t.,

(s12)µ = −(w12
2 )

1

1 + α(µ)
(s2)

−α(µ)
1+α(µ) (s2)µ − δ−1w12

2 M
1
2 + h.o.t.,

(s2)µ = −(w12
2 )

1

1 + α(µ)
(s21)

−α(µ)
1+α(µ) (s21)µ + δ−1w12

2 M
1
2 + h.o.t..

(6.18)

(i). If µ is situated in the neighborhood of L̄1,21,1221 , then, substituting (6.14) into (6.18), we get



(s21)µ = −(w12
1 )

1

1 + α(µ)
(δ−1M1

1µ+ h.o.t.)−α(µ)(s1)µ + δ−1w12
1 M

1
1 + h.o.t.,

(s1)µ = −(w12
1 )

1

1 + α(µ)

(
−w12

2 (δ−1w12
2 M

1
2 )

1
1+α(µ) − δ−1w12

2 M
1
2µ+ h.o.t.

) −α(µ)
1+α(µ)

(s12)µ

− δ−1w12
1 M

1
1 + h.o.t.,

(s12)µ = −(w12
2 )

1

1 + α(µ)
(δ−1w12

2 M
1
2µ+ h.o.t.)

−α(µ)
1+α(µ) (s2)µ − δ−1w12

2 M
1
2 + h.o.t.,

(s2)µ = δ−1w12
2 M

1
2 + h.o.t..

So, (s21)µ = δ−1w12
1 M

1
1 + O((δ−1M1

1µ + h.o.t.)−α(µ)) + h.o.t., this means that s21 = s21(µ) increases

along the direction w12
1 M

1
1 in the small neighborhood of L̄1,21,1221 .
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(ii). If µ is situated in the neighborhood of L̄21,12,21 , then, substituting (6.15) into (6.18), we get

(s21)µ = δ−1w12
1 M

1
1 + h.o.t.,

(s1)µ = −(w12
1 )

1

1 + α(µ)
(−δ−1M1

1µ+ h.o.t.)−α(µ)(s12)µ − δ−1w12
1 M

1
1 + h.o.t.,

(s12)µ = −(w12
2 )

1

1 + α(µ)

(
−w12

2 (δ−1w12
1 M

1
1µ)

1
1+α(µ) + δ−1w12

2 M
1
2µ+ h.o.t.

) −α(µ)
1+α(µ)

(s2)µ

− δ−1w12
2 M

1
2 + h.o.t.,

(s2)µ = −(w12
2 )

1

1 + α(µ)
(δ−1w12

1 M
1
1µ+ h.o.t.)

−α(µ)
1+α(µ) (s21)µ + δ−1w12

2 M
1
2 + h.o.t..

So, (s1)µ = −δ−1w12
1 M

1
1 + O((−δ−1M1

1µ + h.o.t.)−α(µ)) + h.o.t., this means that s1 = s1(µ) increases

along the direction −w12
1 M

1
1 in the small neighborhood of L̄21,12,21 .

(iii). If µ is situated in the neighborhood of L̄21,1,212 , then, substituting (6.16) into (6.18), we get

(s21)µ = −(w12
1 )

1

1 + α(µ)
(−δ−1w12

1 M
1
1µ+ h.o.t.)

−α(µ)
1+α(µ) (s1)µ + δ−1w12

1 M
1
1 + h.o.t.,

(s1)µ = −δ−1w12
1 M

1
1 + h.o.t.,

(s12)µ = −(w12
2 )

1

1 + α(µ)
(−δ−1M1

2µ+ h.o.t.)−α(µ)(s2)µ − δ−1w12
2 M

1
2 + h.o.t.,

(s2)µ = −(w12
2 )

1

1 + α(µ)

(
−w12

1 (−δ−1w12
1 M

1
1µ)

1
1+α(µ) + δ−1w12

1 M
1
1µ+ h.o.t.

) −α(µ)
1+α(µ)

(s21)µ

+ δ−1w12
2 M

1
2 + h.o.t..

So, (s12)µ = −δ−1w12
2 M

1
2 + O((−δ−1M1

2µ + h.o.t.)−α(µ)) + h.o.t., this means that s12 = s12(µ) increases

along the direction −w12
2 M

1
2 in the small neighborhood of L̄21,1,212 .

(iv). If µ is situated in the neighborhood of L̄21,1,122 , then, substituting (6.17) into (6.18), we get

(s21)µ = −(w12
1 )

1

1 + α(µ)

(
−w12

1 (−δ−1w12
2 M

1
2µ)

1
1+α(µ) − δ−1w12

1 M
1
1µ+ h.o.t.

) −α(µ)
1+α(µ)

(s1)µ

+ δ−1w12
1 M

1
1 + h.o.t.,

(s1)µ = −(w12
1 )

1

1 + α(µ)
(−δ−1w12

2 M
1
2µ+ h.o.t.)

−α(µ)
1+α(µ) (s12)µ − δ−1w12

1 M
1
1 + h.o.t.,

(s12)µ = −δ−1w12
2 M

1
2 + h.o.t.,

(s2)µ = −(w12
2 )

1

1 + α(µ)
(δ−1M1

2µ+ h.o.t.)−α(µ)(s21)µ + δ−1w12
2 M

1
2 + h.o.t..

So, (s2)µ = δ−1w12
2 M

1
2 +O((δ−1M1

2µ+ h.o.t.)−α(µ)) + h.o.t., this means that s2 = s2(µ) increases along

the direction w12
2 M

1
2 in the small neighborhood of L̄21,1,22 .

Denote by R̄, the region which is bounded by L̄1,12,221 , L̄21,12,21 , L̄21,1,212 , L̄21,1,22 , and, the vectors w12
1 M

1
1 ,

−w12
1 M

1
1 , −w12

2 M
1
2 , and w12

2 M
1
2 point into it from L̄1,12,221 , L̄21,12,21 , L̄21,1,212 , and L̄21,1,22 , respectively.

By the discussion of above, we get (6.12) has solution s21 > 0, s1 > 0, s12 > 0, s2 > 0 for µ ∈ R̄, that
is, system (1.2) has a large 2-2 periodic loop.

About the bifurcation diagram, see Figure 34, where L̄1,221,12 = L̄121,12,2 ∩ L̄221,1,12, L̄
21,12
1,2 = L̄211,12,2 ∩

L̄1221,1,2.
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Figure 34
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