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Abstract

The purpose of this paper is by using the shrinking projection method to study the split equality fixed
point problem for a class of quasi-pseudo-contractive mappings in the setting of Hilbert spaces. Under
suitable conditions, some strong convergence theorems are obtained. As applications, we utilize the results
presented in the paper to study the existence problem of solutions to the split equality variational inequality
problem and the split equality convex minimization problem. The results presented in our paper extend
and improve some recent results. c©2016 all rights reserved.
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1. Introduction

Let C and Q be nonempty closed and convex subsets of real Hilbert spaces H1 and H2, respectively, and
A : H1 → H2 be a bounded linear operator. Recall that the split feasibility problem (SFP) is formulated as
to find a point q ∈ H1 such that:

q ∈ C and Aq ∈ Q. (1.1)
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It is easy to see that q ∈ C solves equation (1.1) if and only if it solves the following fixed point equation

q = PC(I − γA∗(I − PQ)A)q, x ∈ C,

where PC (resp. PQ) is the (orthogonal) projection from H1 (resp. H2) onto C (resp. Q), γ > 0, and A∗ is
the adjoint of A.

In 1994, Censor and Elfving [4] first introduced the (SFP) in finite-dimensional Hilbert spaces for mod-
eling inverse problems which arise from phase retrievals and in medical image reconstruction [2]. It has been
found that the (SFP) can also be used in various disciplines such as image restoration, computer tomograph,
and radiation therapy treatment planning [3, 5, 6]. The (SFP) in an infinite dimensional real Hilbert space
can be found in [7, 9, 15, 16, 18].

Recently, Moudafi and Al-Shemas [12–14] introduced the following split equality feasibility problem
(SEFP):

to find x ∈ C, y ∈ Q such that Ax = By, (1.2)

where A : H1 → H3 and B : H2 → H3 are two bounded linear operators. Obviously, if B = I (identity
mapping on H2) and H3 = H2, then (1.2) reduces to (1.1).

In order to solve split equality feasibility problem (1.2), Moudafi [13] proposed the following simultaneous
iterative algorithm: {

xk+1 = PC(xk − γA∗(Axk −Byk)),
yk+1 = PQ(yk + βB∗(Axk+1 −Byk)),

and under suitable conditions he proved the weak convergence of the sequence {(xn, yn)} to a solution of
(1.2) in Hilbert spaces.

In order to avoid using the projection, recently, Moudafi [14] introduced and studied the following
problem: let T : H1 → H1 and S : H2 → H2 be nonlinear operators such that F (T ) 6= ∅ and F (S) 6= ∅. If
C = F (T ) and Q = F (S), then the split feasibility problem (1.1) reduces to:

find q ∈ F (T ) such that Aq ∈ F (S), (1.3)

which is called split common fixed point problem (in short, (SCFPP)). If C = F (T ) and Q = F (S), then
the split equality feasibility problem (1.2) reduces

to find x ∈ F (T ) and y ∈ F (S) such that Ax = By, (1.4)

which is called split equality fixed point problem (in short, (SEFPP)).
Recently Moudafi [12] proposed the following iterative algorithm for finding a solution of (SEFPP) (1.4):{

xn+1 = T (xn − γnA∗(Axn −Byn)),

yn+1 = S(yn + βnB
∗(Axn+1 −Byn)).

(1.5)

He studied the weak convergence of the sequences generated by scheme (1.5) under the condition that T
and S are firmly quasi-nonexpansive mappings.

In 2015, Che and Li [10] proposed the following iterative algorithm for finding a solution of (SEFPP)
(1.4): 

un = xn − γnA∗(Axn −Byn),

xn+1 = αnxn + (1− αn)Tun,

vn = yn + γnB
∗(Axn −Byn),

yn+1 = αnyn + (1− αn)Svn,

(1.6)

and proved the weak convergence of the scheme (1.6) under the condition that the operators T and S are
quasi-nonexpansive mappings.
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Very recently, Chang et al. [8] proposed the following iterative algorithm for finding a solution of
(SEFPP) (1.4): 

un = xn − γnA∗(Axn −Byn),

xn+1 = αnxn + (1− αn)((1− ξn)I + ξnT ((1− ηn)I + ηnT ))un,

vn = yn + γnB
∗(Axn −Byn),

yn+1 = αnyn + (1− αn)((1− ξn)I + ξnS((1− ηn)I + ηnS))vn.

(1.7)

They established the weak convergence of the scheme (1.7) under the condition that the operators T and
S are quasi-pseudo-contractive mappings which is more general than the classes of quasi-nonexpansive
mappings, directed mappings, and demi-contractive mappings.

In 2014, He and Du [11] proposed the following iterative algorithm by shrinking projection method for
finding a solution of (SCFPP) (1.3):

yn = (1− α)xn + αTxn,

zn = βxn + (1− β)Tyn,

wn = PC(zn + ξA∗(S − I)Azn),

Cn+1 = {v ∈ Cn : ||wn − v|| ≤ ||zn − v|| ≤ ||xn − v||},
xn+1 = PCn+1x1, ∀n ∈ N.

(1.8)

They established the strong convergence of the scheme (1.8) under the condition that the operator T is a
Lipschitzian pseudocontractive mapping and S is demi-contractive mapping.

Motived by above results, the purpose of this paper is by using the shrinking projection method to study
the split equality fixed point problem for a class of quasi-pseudo-contractive mappings in the setting of
Hilbert spaces. Under suitable conditions, some strong convergence theorems are obtained. As applications,
we utilize the results presented in the paper to study the existence problem of solutions to the split equality
variational inequality problem and the split equality convex minimization problem. The results presented
in our paper extend and improve some recent results.

2. Preliminaries

In this section, we collect some definitions, notations and conclusions, which will be needed in proving
our main results.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm || · ||. Let C be a nonempty closed
convex subset of H and T : C → C be a nonlinear mapping. As well-known, the following inequalities hold.

(i) ||x+ y||2 ≤ ||y||2 + 2〈x, x+ y〉 for all x, y ∈ H;

(ii) ||x− y||2 = ||x||2 + ||y||2 − 2〈x, y〉 for all x, y ∈ H;

(iii) ||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2 for all x, y ∈ H and α ∈ [0, 1].

For each point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

||x− PCx|| ≤ ||x− y||, ∀y ∈ C.

The mapping PC is called the metric projection from H onto C. It is well-known that PC has the
following properties:

(i) 〈x− y, PCx− PCy〉 ≥ ||PCx− PCy||2 for every x, y ∈ H.

(ii) For x ∈ H and z ∈ C, z = PCx if and only if 〈x− z, z − y〉 ≥ 0 for all y ∈ C.

(iii) For x ∈ H and y ∈ C,
||y − PCx||2 + ||x− PCx||2 ≤ ||x− y||2. (2.1)

Definition 2.1. An operator T : C → C is said to be
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(i) Nonexpansive if ||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ C.

(ii) Lipschitzian if there exists L > 0 such that

||Tx− Ty|| ≤ L||x− y||, ∀x, y ∈ H.

(iii) Quasi-nonexpansive if F (T ) 6= ∅ and

||Tx− x∗|| ≤ ||x− x∗||, ∀x ∈ C and x∗ ∈ F (T ).

(iv) Firmly nonexpansive if

||Tx− Ty||2 ≤ ||x− y||2 − ||(I − T )x− (I − T )y||2, ∀x, y ∈ C.

(v) Firmly quasi-nonexpansive if F (T ) 6= ∅ and

||Tx− x∗||2 ≤ ||x− x∗||2 − ||(I − T )x||2, ∀x ∈ C and x∗ ∈ F (T ).

(vi) Demi-contractive if F (T ) 6= ∅ and there exists k ∈ [0, 1) such that

||Tx− x∗||2 ≤ ||x− x∗||2 + k||Tx− x||2, ∀x ∈ C and x∗ ∈ F (T ).

Definition 2.2. An operator T : C → C is said to be

(1) Pseudo-contractive if
〈Tx− Ty, x− y〉 ≤ ||x− y||2, ∀x, y ∈ C.

It is well-known that T is pseudo-contractive if and only if

||Tx− Ty||2 ≤ ||x− y||2 + ||(I − T )x− (I − T )y||2, ∀x, y ∈ C.

(2) Quasi-pseudo-contractive if F (T ) 6= ∅ and

||Tx− x∗||2 ≤ ||x− x∗||2 + ||Tx− x||2, ∀x ∈ C and x∗ ∈ F (T ).

It is obvious that the class of quasi-pseudo-contractive mappings includes the class of demi-contractive
mappings as its special case.

(3) Demiclosed at 0 if for any sequence {xn} ⊂ C which converges weakly to x and ||xn − T (xn)|| → 0,
then T (x) = x.

Lemma 2.3 ([17]). Let H be a real Hilbert space and T : H → H be a L-Lipschitzian mapping with L ≥ 1.
Denote by

K := (1− ξ)I + ξT ((1− η)I + ηT ).

If 0 < ξ < η < 1
1+
√
1+L2

, then the following conclusions hold.

(1) F (T ) = Fix(T ((1− η)I + ηT )) = F (K);

(2) if T is demiclosed at 0, then K is also demiclosed at 0;

(3) in addition, if T : H → H is quasi-pseudo-contractive, then the mapping K is quasi-nonexpansive,
that is,

||Kx− u∗|| ≤ ||x− u∗||, ∀x ∈ H and u∗ ∈ F (T ) = F (K).

3. Main results

Throughout this section, we assume that

(1) H1, H2, and H3 are three real Hilbert spaces and C, Q are bounded, closed and convex subsets of
H1, H2, respectively. A : H1 → H3 and B : H2 → H3 are two bounded linear operators with adjoints
A∗ and B∗, respectively.

(2) T : C → C and S : Q→ Q are two L-Lipschitzian and quasi-pseudo-contractive mappings with L ≥ 1.



J.-F. Tang, S.-S. Chang, C-.F. Wen, J. Dong, J. Nonlinear Sci. Appl. 9 (2016), 5683–5694 5687

Our object is to solve the following split equality fixed point problem:

to find x∗ ∈ F (T ), y∗ ∈ F (S) such that Ax∗ = By∗. (3.1)

In the sequel we use Γ to denote the set of solutions of (3.1), that is,

Γ = {(x∗, y∗) ∈ F (T )× F (S) such that Ax∗ = By∗},

and assume that Γ 6= ∅.
Now, we present our algorithm for finding (x∗, y∗) ∈ Γ.

Algorithm 3.1 (Initialization). Choose {αn} ⊂ (0, 1). Take arbitrary x1 ∈ C = C1, y1 ∈ Q = Q1.
Iterative steps:

(a) un = xn − γnA∗(Axn −Byn),

(b) wn = αnxn + (1− αn)((1− ξ)I + ξT ((1− η)I + ηT ))un,

(c) vn = yn + γnB
∗(Axn −Byn),

(d) zn = αnyn + (1− αn)((1− ξ)I + ξS((1− η)I + ηS))vn,

(e) Cn+1 ×Qn+1 = {(p, q) ∈ Cn ×Qn : ||wn − p||2 + ||zn − q||2 ≤ ||xn − p||2 + ||yn − q||2},
(f) xn+1 = PCn+1x1,

(g) yn+1 = PQn+1y1.

(3.2)

Theorem 3.2. Let H1, H2, H3, C, Q, A, B, S, T, Γ, {xn}, {αn}, and {yn} be the same as above. If T
and S are demiclosed at 0 and the following conditions are satisfied:

(i) γn ∈ (0, min( 1
||A||2 ,

1
||B||2 )), ∀n ≥ 1;

(ii) 0 < ξ < η < 1
1+
√
1+L2

, ∀n ≥ 1;

(iii) lim supn→∞ αn(1− αn) > 0.

Then there exists (x∗, y∗) ∈ Γ such that the sequence {(xn, yn)} generated by (3.2) converges strongly to
(x∗, y∗).

Proof. From the constructions of Cn × Qn, we know that Cn and Qn are closed and convex for all n ≥ 1.
Now we split the proof into four steps.

Step 1. We prove that Γ ⊂ Cn ×Qn for all n ≥ 1.
In fact, it is obvious that Γ ⊂ C1 × Q1. Suppose that Γ ⊂ Cn × Qn for some n ≥ 1, we prove that

Γ ⊂ Cn+1 ×Qn+1.
For any given (p, q) ∈ Γ ⊂ Cn ×Qn, then p ∈ F (T ), q ∈ F (S) and Ap = Bq. From equation (3.2) (a),

we have
||un − p||2 =||xn − γnA∗(Axn −Byn)− p||2

=||xn − p||2 + γ2n||A∗(Axn −Byn)||2 − 2γn〈xn − p, A∗(Axn −Byn)〉
≤||xn − p||2 + γ2n||A||2||Axn −Byn||2 − 2γn〈Axn −Ap, Axn −Byn〉.

(3.3)

Similarly, from (3.2) (c), we have

||vn − q||2 ≤ ||yn − q||2 + γ2n||B||2||Axn −Byn||2 + 2γn〈Byn −Bq, Axn −Byn〉. (3.4)

Put
K : = (1− ξ)I + ξT ((1− η)I + ηT ),

G : = (1− ξ)I + ξS((1− η)I + ηS).

By the assumptions of Theorem 3.2, condition (ii), and Lemma 2.3, we know that the mappings K and G
have the following properties:
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(1) both K and G are quasi-nonexpansive;

(2) F (K) = F (T ) and F (G) = F (S);

(3) K and G demiclosed at 0.

Hence from (3.2) (b) we have that

||wn − p||2 = ||αnxn + (1− αn)((1− ξ)I + ξT ((1− η)I + ηT ))un − p)||2

= ||αn(xn − p) + (1− αn)(Kun − p)||2

= αn||xn − p||2 + (1− αn)||Kun − p||2 − αn(1− αn)||Kun − xn||2

≤ αn||xn − p||2 + (1− αn)||un − p||2 − αn(1− αn)||Kun − xn||2.

(3.5)

Similarly, from (3.2) (c) we have

||zn − q||2 ≤ αn||yn − q||2 + (1− αn)||vn − q||2 − αn(1− αn)||Gvn − yn||2. (3.6)

Adding up (3.5) and (3.6) and by virtue of (3.3) and (3.4), we have that

||wn − p||2 + ||zn − q||2

≤ αn||xn − p||2 + αn||yn − q||2 + (1− αn)||un − p||2 + (1− αn)||vn − q||2

− αn(1− αn)||Kun − xn||2 − αn(1− αn)||Gvn − yn||2

≤ αn||xn − p||2 + αn||yn − q||2

+ (1− αn){||xn − p||2 + γ2n||A||2||Axn −Byn||2 − 2γn〈Axn −Ap, Axn −Byn〉}
+ (1− αn){||yn − p||2 + γ2n||B||2||Axn −Byn||2 + 2γn〈Byn −Bq, Axn −Byn〉}
− αn(1− αn)||Kun − xn||2 − αn(1− αn)||Gvn − yn||2

= ||xn − p||2 + ||yn − q||2 + γ2n(1− αn){||A||2 + ||B||2}||Axn −Byn||2

− (1− αn)2γn{〈Axn −Ap, Axn −Byn〉 − 〈Byn −Bq, Axn −Byn〉}
− αn(1− αn){||Kun − xn||2 + ||Gvn − yn||2}

= ||xn − p||2 + ||yn − q||2 + γ2n(1− αn){||A||2 + ||B||2}||Axn −Byn||2

− (1− αn)2γn||Axn −Byn||2 − αn(1− αn){||Kun − xn||2 + ||Gvn − yn||2}
= ||xn − p||2 + ||yn − q||2 − (1− αn)γn(2− γn(||A||2 + ||B||2))||Axn −Byn||2

− αn(1− αn){||Kun − xn||2 + ||Gvn − yn||2}.

(3.7)

Since γn ∈ (0,min( 1
||A||2 ,

1
||B||2 )), γn||A||2 < 1, and γn||B||2 < 1, we have

0 < γn(||A||2 + ||B||2) < 2.

This implies that γn(2− γn(||A||2 + ||B||2)) > 0. Therefore, (3.7) can be written as

||wn − p||2 + ||zn − q||2 ≤||xn − p||2 + ||yn − q||2

− (1− αn)γn(2− γn(||A||2 + ||B||2))||Axn −Byn||2

− αn(1− αn){||Kun − xn||2 + ||Gvn − yn||2}
≤||xn − p||2 + ||yn − q||2.

(3.8)

This implies that (p, q) ∈ Cn+1 ×Qn+1. Thus we have Γ ⊂ Cn ×Qn for all n ∈ N.
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Step 2. Next we prove that {xn} and {yn} both are Cauchy sequences in C and Q, respectively, and
(xn, yn)→ (x∗, y∗) as n→∞ for some (x∗, y∗) ∈ C ×Q.

In fact, since Γ ⊂ Cn ×Qn, from (3.2) (f), (g) we have

||xn+1 − x1|| ≤ ||p− x1||, ||yn+1 − y1|| ≤ ||q − y1|| for all (p, q) ∈ Γ (3.9)

and
||xn − x1|| ≤ ||xn+1 − x1||, ||yn − y1|| ≤ ||yn+1 − y1|| for all n ∈ N. (3.10)

It follows from (3.9) and (3.10) that {xn}, {yn} both are bounded and {||xn − x1||}, {||yn − y1||} are nonde-
creasing in [0,∞). Therefore the limits

lim
n→∞

||xn − x1|| and lim
n→∞

||yn − y1||

exist. For any m,n ∈ N with m > n, it follows from

xm = PCmx1 ∈ Cn, ym = PQmy1 ∈ Qn,

and (2.1) that

||xm − xn||2 + ||x1 − xn||2 = ||xm − PCnx1||2 + ||x1 − PCnx1||2 ≤ ||xm − x1||2

and
||ym − yn||2 + ||y1 − yn||2 = ||ym − PQny1||2 + ||y1 − PQny1||2 ≤ ||ym − y1||2.

These imply that
lim

m,n→∞
||xn − xm|| = 0, lim

m,n→∞
||yn − ym|| = 0.

These show that {xn} and {yn} are Cauchy sequences in C and Q, respectively. By the completeness of C
and Q, there exist x∗ ∈ C and y∗ ∈ Q such that

xn → x∗ and yn → y∗ as n→∞. (3.11)

Step 3. Now we prove that
lim
n→∞

||Kun − un|| = lim
n→∞

||Gvn − vn|| = 0.

In fact, it follows from (3.2) that

xn+1 = PCn+1x1 ∈ Cn+1 ⊂ Cn and yn+1 = PQn+1y1 ∈ Qn+1 ⊂ Qn, ∀n ≥ 1.

Therefore by virtue of (3.2) (e) for any n ∈ N, we have

||wn − xn+1||2 + ||zn − yn+1||2 ≤ ||xn − xn+1||2 + ||yn − yn+1||2.

This together with (3.11) shows that

||wn − xn||2 + ||zn − yn||2 ≤(||wn − xn+1||+ ||xn+1 − xn||)2 + (||zn − yn+1||+ ||yn+1 − yn||)2

=||wn − xn+1||2 + ||zn − yn+1||2 + ||xn+1 − xn||2 + ||yn+1 − yn||2

+ 2||wn − xn+1|| · ||xn+1 − xn||+ 2||zn − yn+1|| · ||yn+1 − yn||
≤2||xn+1 − xn||2 + 2||yn+1 − yn||2 + 2||wn − xn+1|| · ||xn+1 − xn||

+ 2||zn − yn+1|| · ||yn+1 − yn|| → 0 (as n→∞).

Therefore we have
lim
n→∞

||wn − xn|| = 0, lim
n→∞

||zn − yn|| = 0. (3.12)
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On the other hand, from (3.8) we obtain

(1− αn)γn(2− γn(||A||2 + ||B||2))||Axn −Byn||2

+ αn(1− αn){||Kun − xn||2 + ||Gvn − yn||2}
≤ ||xn − p||2 − ||wn − p||2 + ||yn − q||2 − ||zn − q||2

= (||xn − p||+ ||wn − p||) · (||xn − p|| − ||wn − p||)
+ (||yn − q||+ ||zn − q||) · (||yn − q|| − ||zn − q||)
≤ (||xn − p||+ ||wn − p||) · ||xn − wn||+ (||yn − q||+ ||zn − q||) · ||yn − zn||.

(3.13)

Letting n→∞ and taking the limit in (3.13), from (3.12) we get

||Axn −Byn|| → 0; ||Kun − xn|| → 0; ||Gvn − yn|| → 0. (3.14)

It follows from (3.14) and (3.2) that

lim
n→∞

||un − xn|| → 0 and lim
n→∞

||vn − yn|| → 0. (3.15)

This together with (3.14) shows that{
||Kun − un|| ≤ ||Kun − xn||+ ||xn − un|| → 0;

||Gvn − vn|| ≤ ||Gvn − yn||+ ||yn − vn|| → 0.
(3.16)

Step 4. We prove that (x∗, y∗) ∈ Γ.
In fact, it follows from (3.11) and (3.15) that

un → x∗ and vn → y∗. (3.17)

By (3.16), (3.17), and the demiclosed property of K and G, we have Kx∗ = x∗ and Gy∗ = y∗. These imply
that x∗ ∈ F (T ) and y∗ ∈ F (S).

Finally, we prove that Ax∗ = By∗. In fact, since Axn −Byn → Ax∗ −By∗, by (3.14), we have

||Ax∗ −By∗|| = lim
n→∞

||Axn −Byn|| = 0.

Thus Ax∗ = By∗. This completes the proof of Theorem 3.2.

4. Applications

4.1. Application to the split equality variational inequality problem

Throughout this section, we assume that H1, H2, and H3 are three real Hilbert spaces. C and Q both
are nonempty and closed convex subsets of H1 and H2, respectively and assume that A : H1 → H3 and
B : H2 → H3 are two bounded linear operator and A∗ and B∗ are the adjoints of A and B, respectively.

Let M : C → H1 be a mapping. The variational inequality problem for mapping M is to find a point
x∗ ∈ C such that

〈Mx∗, z − x∗〉 ≥ 0, ∀z ∈ C. (4.1)

We will denote the solution set of (4.1) by V I(M,C).
A mapping M : C → H1 is said to be α-inverse-strongly monotone if there exists a constant α > 0 such

that
〈Mx−My, x− y〉 ≥ α||Mx−My||2, ∀x, y ∈ C.

It is easy to see that if M is α-inverse-strongly monotone, then M is 1
α -Lipschitzian.
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Setting h(x, y) = 〈Mx, y − x〉 : C × C → R, it is easy to show that h is an equilibrium function, i.e., it
satisfies the following conditions (A1)-(A4):

(A1) h(x, x) = 0 for all x ∈ C;

(A2) h is monotone, i.e., h(x, y) + h(y, x) ≤ 0 for all x, y ∈ C;

(A3) lim supt↓0 h(tz + (1− t)x, y) ≤ h(x, y) for all x, y, z ∈ C;

(A4) for each x ∈ C, y 7→ h(x, y) is convex and lower semi-continuous.

For given λ > 0 and x ∈ H, the resolvent of the equilibrium function h is the operator Rλ,h : H → C defined
by

Rλ,h(x) := {z ∈ C : h(z, y) +
1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Proposition 4.1 ([1]). The resolvent operator Rλ,h of the equilibrium function h has the following properties:

(1) Rλ,h is single-valued;

(2) F (Rλ,h) = V I(M,C), where V I(M,C) is the solution set of variational inequality (4.1) which is a
nonempty closed and convex subset of C;

(3) Rλ,h is a firmly nonexpansive mapping. Therefore Rλ,h is demi-closed at 0.

Let T : C → H1 and S : Q → H2 be two α-inverse-strongly monotone mappings. The “so-called” split
equality variational inequality problem with respect to T and S is to find x∗ ∈ C and y∗ ∈ Q such that

(a) 〈Tx∗, u− x∗〉 ≥ 0, ∀u ∈ C,
(b) 〈Sy∗, v − y∗〉 ≥ 0, ∀v ∈ Q,
(c) Ax∗ = By∗.

(4.2)

In the sequel we use Θ to denote the solution set of split equality variational inequality problem (4.2), i.e.,

Θ = {(x∗, y∗) ∈ V I(T,C)× V I(S,Q) : Ax∗ = By∗},

where V I(T,C) (resp. V I(S,Q)) is the solution set of variational inequality (4.2) (a) (resp. (4.2) (b)).
Denote by f(x, y) = 〈Tx, y − x〉 : C ×C → R and g(u, v) = 〈Su, v − u〉 : Q×Q→ R. For given λ > 0,

x ∈ H1 and u ∈ H2, let Rλ,f (x) and Rλ,g(u) be the resolvent operator of the equilibrium function f and g,
respectively which are defined by

Rλ,f (x) := {z ∈ C : f(z, y) +
1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

and

Rλ,g(u) := {z ∈ Q : g(z, v) +
1

λ
〈v − z, z − u〉 ≥ 0, ∀v ∈ Q}.

It follows from Proposition 4.1 that

F (Rλ,f ) = V I(T,C) 6= ∅; F (Rλ,g) = V I(S,Q) 6= ∅,

and so Rλ,f and Rλ,g both are quasi-pseudocontractive and 1-Lipschitzian. Therefore the split equality
variational inequality problem with respect to T and S (4.2) is equivalent to the following split equality
fixed point problem:

to find x∗ ∈ F (Rλ,f ), y∗ ∈ F (Rλ,g) such that Ax∗ = By∗.

Since Rλ,f and Rλ,g are firmly nonexpansive with F (Rλ,f ) 6= ∅ and F (Rλ,g) 6= ∅, the following theorem
can be obtained from Theorem 3.2 immediately.
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Theorem 4.2. Let H1, H2, H3, C, Q, A, B, T, S, Rλ,f , Rλ,g, Θ be the same as above and assume that
Θ 6= ∅. For given x1 ∈ C = C1, y1 ∈ Q = Q1, let {(xn, yn)} be the sequence generated by

un = xn − γnA∗(Axn −Byn),

wn = Rλ,f (un),

vn = yn + γnB
∗(Axn −Byn),

zn = Rλ,g(vn),

Cn+1 ×Qn+1 = {(p, q) ∈ Cn ×Qn : ||wn − p||2 + ||zn − q||2 ≤ ||xn − p||2 + ||yn − q||2},
xn+1 = PCn+1x1,

yn+1 = PQn+1y1.

(4.3)

If γn ∈ (0, min( 1
||A||2 ,

1
||B||2 )) for all n ≥ 1, then the sequence {(xn, yn)} generated by (4.3) converges

strongly to a solution of split equality variational inequality problem (4.2).

4.2. Application to the split equality convex minimization problem

Let C be a nonempty closed convex subset of H1 and Q be a nonempty closed convex subset of H2. Let
φ : C → R and ψ : Q→ R be two proper and convex and lower semi-continuous functions and A : H1 → H3

and B : H2 → H3 be two bounded linear operator with its adjoint A∗ and B∗, respectively.
The “so-called” split equality convex minimization problem for φ and ψ is to find x∗ ∈ C, y∗ ∈ Q such

that
φ(x∗) = min

x∈C
φ(x), ψ(y∗) = min

x∈Q
ψ(y), and Ax∗ = By∗. (4.4)

In the sequel, we denote by Ω the solution set of the split equality convex minimization problem (4.4), i.e.,

Ω = {(x∗, y∗) ∈ C ×Q : φ(x∗) = min
x∈C

φ(x), ψ(y∗) = min
x∈Q

ψ(y), and Ax∗ = By∗}.

Let j(x, y) := φ(y)− ψ(x) : C × C → R and k(u, v) := φ(v)− ψ(u) : Q×Q→ R. It is easy to know that j
and k both are equilibrium functions satisfying the conditions (A1)-(A4).

For given λ > 0, x ∈ H1 and u ∈ H2, we define the resolvent operators of j and k as follows:

Rλ,j(x) := {z ∈ C : j(z, y) +
1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

and

Rλ,k(u) := {z ∈ Q : k(z, v) +
1

λ
〈v − z, z − u〉 ≥ 0, ∀v ∈ Q}.

By the same argument as given in Subsection 4.1, we know that

F (Rλ,j) = {x∗ ∈ C : φ(x∗) = min
x∈C

φ(x)}, F (Rλ,k) = {y∗ ∈ Q : ψ(y∗) = min
x∈Q

ψ(y)}.

Therefore the split equality convex minimization problem for φ and ψ is equivalent to the following split
equality fixed point problem:

to find x∗ ∈ F (Rλ,j), y∗ ∈ F (Rλ,k) such that Ax∗ = By∗.

Since Rλ,j and Rλ,k both are firmly nonexpansive with F (Rλ,f ) 6= ∅ and F (Rλ,g) 6= ∅, the following
theorem can be obtained from Theorem 3.2 immediately.
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Theorem 4.3. Let H1, H2, H3, C, Q, A, B, φ, ψ, Rλ,j , Rλ,k, Ω be the same as above and assume that
Ω 6= ∅. For given x1 ∈ C = C1, y1 ∈ Q = Q1, let {(xn, yn)} be the sequence generated by

un = xn − γnA∗(Axn −Byn),

wn = Rλ,j(un),

vn = yn + γnB
∗(Axn −Byn),

zn = Rλ,k(vn),

Cn+1 ×Qn+1 = {(p, q) ∈ Cn ×Qn : ||wn − p||2 + ||zn − q||2 ≤ ||xn − p||2 + ||yn − q||2},
xn+1 = PCn+1x1,

yn+1 = PQn+1y1.

(4.5)

If γn ∈ (0, min( 1
||A||2 ,

1
||B||2 )) for all n ≥ 1, then the sequence {(xn, yn)} generated by (4.5) converges

strongly to a solution of split equality convex minimization problem problem (4.4).
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