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Abstract

The present paper is concerned with the new concept of relaxed α-β-η-monotonicity and relaxed α-β-
η-pseudomonotonicity in Banach space which is applied to prove the existence of solutions of generalized
equilibrium problem and classic equilibrium problem. In this regard, we use the well-known KKM-theory
to obtain solutions of mentioned problems. c©2016 All rights reserved.
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1. Introduction

This work focuses on the existence of solutions of generalized equilibrium problems with the new concept
of relaxed α-β-η-monotonicity. The most important application of generalized equilibrium problems is in
economics [1, 3], variational inequalities [5], optimization, fixed point theory [6] and so on. Over the last
few years, the concept of generalized equilibrium problems has been studied by various authors and has
developed rapidly (see [2, 13, 14, 17, 18]). Onjai-uea and his colleagues in [15] presented a relaxed hybrid

∗Corresponding author
Email addresses: farajzadehali@gmail.com (A. Farajzadeh), Somyotp@nu.ac.th (S. Plubtieng),

h.mathematical@gmail.com (A. Hosseinpour)

Received 2016-05-13



A. Farajzadeh, S. Plubtieng, A. Hosseinpour, J. Nonlinear Sci. Appl. 9 (2016), 5712–5719 5713

steepest method to find a common element for the set of fixed points of a nonexpansive mapping, the set
of solutions of a variational inequality for an inverse-strongly monotone mapping and the set of solutions of
generalized mixed equilibrium problems in Hilbert spaces. In 2013, Mahato and Nahak published a paper
in which they obtained the existence results for mixed equilibrium problems in a reflexive Banach space
[12]. Ding and his colleagues considered a collectively fixed point theorem and an equilibrium existence
theorem for generalized games in product locally G-convex uniform spaces [8]. However, in recent years, the
iterative algorithms of solutions for generalized equilibrium problems have been studied by several authors.
For instance, a new class of generalized mixed implicit equilibrium-like problems has been introduced by
Ding [7]. He used the auxiliary principle technique to obtain the solution of the mentioned problem. Zang
and Deng in [19] studied the multi-valued general mixed implicit equilibrium-like problems and presented a
new predictor corrector iterative algorithm by using the auxiliary principle technique. They also proved the
convergence of the suggested algorithm in weaker conditions. One can refer to [4, 9, 11] for more details.

2. Preliminaries

This work has been done in real Banach space X. In this work, K is considered as a nonempty convex
subset of real Banach space X. In our study, we deal with the following generalized equilibrium problem:

Find x ∈ K such that
f(x, y) + ϕ(x, y)− ϕ(x, x) ≥ 0, ∀y ∈ K, (2.1)

where f : K ×K −→ R is an equilibrium function, that is, f(x, x) = 0, for all x ∈ K, and ϕ : K ×K −→ R
is a real valued function.

If ϕ ≡ 0, problem (2.1) reduces to the following equilibrium problem of finding x ∈ K such that

f(x, y) ≥ 0, ∀y ∈ K. (2.2)

Now, we present some fundamental definitions which will be used in the rest of this paper.

Definition 2.1. A function f : K −→ R is said to be hemicontinuous at y ∈ K, if and only if
limt→0+ f(tx+ (1− t)y) = f(y), for each x ∈ K.

Note that every continuous function is hemicontinuous, but the converse is not necessarily true. Have a
look at the following example.

Example 2.2. The function f : R×R −→ R defined by

f(x, y) =

{
x2y

x4+y2
(x, y) 6= (0, 0),

0 (x, y) = (0, 0),

is hemicontinuous on R×R, but not continuous at (0, 0).

Definition 2.3. Let X be a Banach space. A single-valued mapping f : X −→ R is called

1. weakly upper semicontinuous (u.s.c.) at x0 ∈ X, if

f(x0) ≥ lim sup
n

f(xn)

for any sequence {xn} of X which converges to x0 weakly;

2. weakly lower semicontinuous (l.s.c.) at x0 ∈ X, if

f(x0) ≤ lim inf
n

f(xn)

for any sequence {xn} of X which converges to x0 weakly.
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Definition 2.4. A multi-valued mapping f : K −→ 2X is called a KKM-mapping, if for any {y1, . . . , yn} ⊂
K, co{y1, . . . , yn} ⊂

⋃n
i=1 f(yi), where 2X denotes the family of all nonempty subsets of X and co denotes

the convex hull.

Example 2.5. Let K = [0, 1] and X = R. In this case, the following mapping is a KKM-mapping.

f : [0, 1] −→ 2R

f(x) 7−→ [0, x].

Lemma 2.6 ([10]). Let K be a nonempty subset of a topological vector space X and let f : K −→ 2X be a
KKM-mapping. If f(y) is closed in X, for all y ∈ K and compact for at least one y ∈ K, then⋂

y∈K
f(y) 6= ∅.

In the following, let us introduce a new definition of relaxed α-β-η-monotone which is significant in our
research.

Definition 2.7. The mapping f : K ×K −→ R is called relaxed α-β-η-monotone, if there exist mappings
η : K ×K −→ X, α : X −→ R and β : K ×K −→ R such that

f(x, y) + f(y, x) ≤ α(η(x, y)) + β(x, y), ∀x, y ∈ K,

and

lim inf
t→0+

[
α(η(x, y))

t
+
β(x, ty + (1− t)x)

t

]
≤ 0.

Remark that, if α = 0 and β = 0, then the definition reduces to the definition of monotonicity of f .
Hence, Definition 2.7 is an extension of monotonicity.

Example 2.8. Let α(x) = −1, β = 0 and η be an arbitrary function, hence

lim inf
t→0+

[
α(η(x, y))

t
+
β(x, ty + (1− t)x)

t

]
= −∞ ≤ 0.

If we choose f(x, y) = −2, in this case f is α-β-η-monotone with respect to Definition 2.7, but f is not
α-β-monotone with respect to Definition 6 in [16].

3. Existence results for α-β-η-monotone mappings

We start this section with the following theorem which is an existence result of solution of problem (2.1).

Theorem 3.1. Let f : K ×K −→ R be relaxed α-β-η-monotone, hemicontinuous in the first argument and
convex in the second argument with f(x, x) = 0, for all x ∈ K. Let ϕ : K×K −→ R be convex in the second
argument. Then, the solution set of generalized equilibrium problem (2.1) is equal to the solution set of the
following problem:

Find x ∈ K such that

f(y, x) + ϕ(x, x)− ϕ(x, y) ≤ α(η(x, y)) + β(x, y), ∀y ∈ K. (3.1)

Proof. Let problem (2.1) have a solution, then

∃ x ∈ K such that f(x, y) + ϕ(x, y)− ϕ(x, x) ≥ 0, ∀y ∈ K.

It follows from the α-β-η-monotonicity of f that

f(x, y) + f(y, x) ≤ α(η(x, y)) + β(x, y), ∀y ∈ K. (3.2)
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According to problem (2.1) and equation (3.2), we get

f(y, x) + ϕ(x, x)− ϕ(x, y) ≤ α(η(x, y)) + β(x, y)− [f(x, y) + ϕ(x, y)− ϕ(x, x)]

≤ α(η(x, y)) + β(x, y), ∀y ∈ K.

So, x ∈ K is a solution of problem (3.1). Conversely, let x ∈ K be a solution of problem (3.1). Therefore,

f(y, x) + ϕ(x, x)− ϕ(x, y) ≤ α(η(x, y)) + β(x, y), ∀y ∈ K. (3.3)

Let y ∈ K and t be an arbitrary element of [0, 1]. Obviously, xt = ty + (1− t)x ∈ K. Hence, from (3.3),
we obtain

f(xt, x) + ϕ(x, x)− ϕ(x, xt) ≤ α(η(x, xt)) + β(x, xt), ∀t ∈ (0, 1]. (3.4)

Since f is convex in the second variable, we get

0 = f(xt, xt) ≤ tf(xt, y) + (1− t)f(xt, x), (3.5)

and from the convexity ϕ in the second argument, we also have

ϕ(x, xt) ≤ tϕ(x, y) + (1− t)ϕ(x, x). (3.6)

It follows from (3.4)-(3.6) that

t[f(xt, x)− f(xt, y) + ϕ(x, x)− ϕ(x, y)] ≤ f(xt, x) + ϕ(x, x)− ϕ(x, xt)

≤ α(η(x, xt)) + β(x, xt),

which implies that

f(xt, x)− f(xt, y) + ϕ(x, x)− ϕ(x, y) ≤ α(η(x, xt))

t
+
β(x, xt)

t
.

According to hemicontinuity of f in the first argument and the definition of relaxed α-β-η-monotone of
f , by taking t→ 0+, we have

f(x, x)− f(x, y) + ϕ(x, x)− ϕ(x, y) ≤ 0, ∀y ∈ K,

and so, note f(x, x) = 0,

f(x, y) + ϕ(x, y)− ϕ(x, x) ≥ 0, ∀y ∈ K.

Hence, x ∈ K is a solution of problem (2.1) which completes the proof.

In what follows, we demonstrate that problem (2.1) admits a solution. This topic stated in the next
theorem is the most important issue in our work.

Theorem 3.2. Let K be a nonempty bounded closed convex subset of a real reflexive Banach space X. Let
f : K ×K −→ R be relaxed α-β-η-monotone, hemicontinuous in the first argument, convex in the second
argument with f(x, x) = 0, ϕ : K ×K −→ R be convex in the second variable, α : K −→ R be weakly upper
semi-continuous and β : K × K −→ R be weakly upper semi-continuous in the second argument. Then,
problem (2.1) admits a solution.

Proof. Let F : K −→ 2X be a multi-valued mapping defined by

F (y) = {x ∈ K | f(x, y) + ϕ(x, y)− ϕ(x, x) ≥ 0}.

Obviously, x ∈ K is a solution of equation (2.1), if and only if x ∈
⋂

y∈K F (y). We are going to show
that

⋂
y∈K F (y) 6= ∅. We claim that F is a KKM-mapping. Suppose to the contrary that F is not a KKM-
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mapping. So there exists a finite subset {x1, . . . , xn} of K such that co{x1, . . . , xn} 6⊆
⋃n

i=1 F (xi). Therefore,
there exists x0 ∈ co{x1, . . . , xn} where for all i ∈ {1, . . . , n}, x0 6∈ F (xi). Hence, for i = 1, 2, . . . , n, we have

f(x0, xi) + ϕ(x0, xi)− ϕ(x0, x0) < 0. (3.7)

Thus, there exist λi ≥ 0 (i = 1, 2, . . . , n) with Σn
i=1λi = 1 such that x0 =

∑n
i=1 λixi. By multiplying

both sides of relation (3.7) by λi and adding them, we obtain

n∑
i=1

λi[f(x0, xi) + ϕ(x0, xi)− ϕ(x0, x0)] < 0.

This and our assumptions on f and ϕ lead us to the contradiction 0 < 0. Hence, the multi-valued
mapping F is a KKM mapping.

We define the multi-valued mapping G : K −→ 2X by

G(y) = {x ∈ K : f(y, x) + ϕ(x, x)− ϕ(x, y) ≤ α(η(x, y)) + β(x, y)}.

It is clear that F (y) is a subset of G(y), for all y ∈ K. Because, let y be an arbitrary element of K and
x ∈ F (y), then

f(x, y) + ϕ(x, y)− ϕ(x, x) ≥ 0.

The relaxed α-β-η-monotoneicity of f implies that

f(y, x) + ϕ(x, x)− ϕ(x, y) ≤ α(η(x, y)) + β(x, y)− [f(x, y) + ϕ(x, y)− ϕ(x, x)]

≤ α(η(x, y)) + β(x, y),

and so x ∈ G(y). Then, F (y) ⊂ G(y). Since F is a KKM-mapping and F (y) ⊂ G(y), then G is a KKM-
mapping. According to the conditions on the mappings, it is easy to verify that G(y) is weakly closed,
for all y ∈ K. Since K is a bounded, closed and convex subset of the reflexive Banach space X, then
it is weakly compact and consequently G(y) is weakly compact in K, for all y ∈ K. Consequently, it
follows from Lemma 2.6 that

⋂
y∈K G(y) 6= ∅, and from Theorem 3.1 that

⋂
y∈K F (y) =

⋂
y∈kG(y). Thus,⋂

y∈K F (y) 6= ∅. Hence, there exists x ∈ K such that

f(x, y) + ϕ(x, y)− ϕ(x, x) ≥ 0, ∀y ∈ K.

So, the solution set of problem (2.1) is nonempty. This completes the proof.

Example 3.3. Let K = [0, 1], α(x) = −x, β(x, y) = 0 and η(x, y) = (x + y)(x − y)2. If we choose
f(x, y) = x(y2 − x2) and ϕ(x, y) = x2 + y2, then all assumptions of Theorem 3.2 hold. Therefore, problem
(2.1) is solvable. It is easy to see that x = 0 is the only solution of problem (2.1).

4. Existence results for α-β-η-pseudomonotone mappings

In this section, we introduce the concept of relaxed α − β − η−pseudomonotonicity and discuss the
existence solution of equilibrium problems (2.1) and (2.2) using this concept.

Definition 4.1. A mapping f : K × K −→ R is called relaxed α-β-η-pseudomonotone, if there exist
functions η : K ×K −→ X, α : X −→ R and β : K ×K −→ R such that for any x, y ∈ K, we have

f(x, y) ≥ 0⇒ f(y, x) ≤ α(η(y, x)) + β(y, x),

where

lim inf
t→0+

[
α(η(x, y))

t
+
β(x, ty + (1− t)x)

t

]
≤ 0.
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If we take α = β = 0, then the definition of relaxed α-β-η-pseudomonotonicity collapses to the usual
definition of pseudomonotonicity. Moreover, note that each relaxed α-β-η-monotone mapping is relaxed
α-β-η-pseudomonotone mapping. The following example shows that the inverse is not always true.

Example 4.2. Consider X = R, K = [0, 1] and f(x, y) = x − y. We choose α(x) = −x, β(x, y) = 0 and
η(x, y) = |x − y|. If f(x, y) ≥ 0, then x − y ≥ 0. Hence, f(y, x) = y − x ≤ −|x − y| = α(η(y, x)) + β(y, x)
and

lim inf
t→0+

[
α(η(x, y))

t
+
β(x, ty + (1− t)x)

t

]
= −∞ ≤ 0.

Therefore, f is relaxed α-β-η-pseudomonotone. Whereas, f is not relaxed α-β-η-monotone.

Theorem 4.3. Let f : K × K −→ R be generalized relaxed α-β-η-pseudomonotone, hemicontinuous in
the first argument and convex in the second argument with f(x, x) = 0, for all x ∈ K. Then, generalized
equilibrium problem (2.2) is equivalent to the following problem:

Find x ∈ K such that

f(y, x) ≤ α(η(y, x)) + β(y, x), ∀y ∈ K. (4.1)

Proof. Let x ∈ K be a solution of problem (2.2), that is

f(x, y) ≥ 0, ∀y ∈ K.

So, by the relaxed α-β-η-pseudomonotonicity of f , we get

f(y, x) ≤ α(η(y, x)) + β(y, x), ∀y ∈ K.

Hence, x ∈ K is a solution of problem defined by (4.1).
Conversely, assume that x ∈ K is a solution of (4.1). Then, for any y ∈ K, let xt = ty + (1 − t)x,

t ∈ (0, 1]. Obviously, xt ∈ K, and it follows that

f(xt, x) ≤ α(η(xt, x)) + β(xt, x). (4.2)

Since f is convex in the second argument, we obtain

0 = f(xt, xt) ≤ tf(xt, y) + (1− t)f(xt, x). (4.3)

Equations (4.2) and (4.3) imply that

f(xt, x)− f(xt, y) ≤ α(η(xt, x))

t
+
β(xt, x)

t
, ∀y ∈ K.

Hemicontinuity of f in the first argument and the definition of relaxed α-β-η-monotone of f , by taking
t→ 0+ imply that

f(x, y) ≥ 0, ∀y ∈ K.

Hence, x ∈ K is a solution of problem (2.2), and it completes the proof.

Theorem 4.4. Let K be a nonempty bounded closed convex subset of a real reflexive Banach space X.
Let f : K × K −→ R be relaxed α-β-η-pseudomonotone, hemicontinuous in the first argument, convex
in the second argument with f(x, x) = 0. Moreover, α : K −→ R is weakly upper semicontinuous and
β : K × K −→ R is weakly upper semicontinuous in the second argument. Then, problem (2.2) admits a
solution.



A. Farajzadeh, S. Plubtieng, A. Hosseinpour, J. Nonlinear Sci. Appl. 9 (2016), 5712–5719 5718

Proof. Let F : K −→ 2X be defined by

F (y) = {x ∈ K | f(x, y) ≥ 0}.

It is clear that x ∈ K is a solution of problem (2.2), if and only if x ∈
⋂

y∈K F (y). Hence, we prove that⋂
y∈K F (y) 6= ∅.

It is easy to see that F is a KKM-mapping. Because, otherwise, there exists a finite subset {x1, . . . , xn}
of K such that co{x1, . . . , xn} 6⊆

⋃n
i=1 F (xi). This means that there exists x0 ∈ co{x1, . . . , xn} such that

f(x0, xi) < 0, for i = 1, . . . , n. Thus, there exist λi ≥ 0 (i = 1, 2, . . . , n) with Σn
i=1λi = 1 such that

x0 =
∑n

i=1 λixi. Hence,

n∑
i=1

λif(x0, xi) < 0.

According to the convexity of f in the second variable, we reach the contradiction 0 < 0. Hence, F is a
KKM-mapping.

Define the set-valued mapping G : K −→ 2X by

G(y) = {x ∈ K | f(y, x) ≤ α(η(y, x)) + β(y, x)}.

The relaxed α-β-η-pseudomonotonicity of f implies that F (y) ⊆ G(y), for all y ∈ K. Hence, G is also a
KKM-mapping.

By the hypothesis on the mappings, the values of the multi-valued mapping G are weakly closed and
since K is a closed bounded subset of the reflexive Banach space X, then G(y) is weakly compact, for all
y ∈ K. Hence, the multi-valued mapping G satisfies all assumptions of Lemma 2.6 and then

⋂
G(y) is

nonempty and hence by Theorem 4.3,
⋂
F (y) is nonempty. Consequently, there exists x ∈ K such that

f(x, y) ≥ 0, for all y ∈ K which completes the proof.

Example 4.5. Let K = [0, 32 ], α(x) = −x, β = 0 and η(x, y) = |x−y|. If we choose f(x, y) = (x−y) cos(y),
then all assumptions of Theorem 4.4 hold. Therefore, problem (2.2) admits a solution. It is easy to see that
x = 3

2 is a solution of this problem.

5. Conclusion

To sum up, we have introduced a new concept of relaxed α-β-η-monotonicity and have applied the
well-known KKM-theory to obtain some existence results for solutions of generalized equilibrium problems.
Moreover, we have proven the existence of solutions of equilibrium problems by using the new concept of
relaxed α-β-η-pseudomonotonicity and KKM-theory.
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