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Abstract

A combined method is developed for solving saltwater intrusion problem. A splitting positive definite
mixed element method is used to solve the parabolic-type water head equation and a characteristic finite
element method is used to solve the convection-diffusion type concentration equation. The convergence of
this method is considered and the optimal L?-norm error estimate is also derived. (©2016 All rights reserved.
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1. Introduction

In recent years, saltwater intrusion has occurred in many countries and regions all over the world,
and caused great damages to industrial and agricultural productions, it is urgent to be tackled. With the
increasing interest, there are more and more literatures on the problem in past decades, see [2] [3],[7, 9] [15], [19].
Yuan et al. have done a lot of work on numerical methods for this problem including characteristic finite
difference methods [28], characteristic finite element methods [12} 24], upwind fractional-step finite difference
methods [23], 25, 27, 29], and alternating-direction methods [26], 30].

However, solving the water head equation with the standard finite element method or finite difference
method cannot directly obtain the approximate flux which appears in the concentration equation. The way
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to obtain the flux through differentiating the water head function will cause an extra error and reduce the
accuracy. To obtain more accurate approximation of the flux function, Lian and Rui gave a mixed finite
element method combined with a discontinuous Galerkin procedure in [IT]. But the technique of the classical
mixed finite element method leads to some saddle point problem whose numerical solutions have been quite
difficult because of losing positive definite properties. In [13], 14} 21l B1H34], Yang et al. proposed a class
of splitting positive definite mixed finite element methods, in which the mixed system is symmetric positive
definite and the flux equation is separated from the original equation.

Moreover, the concentration equation is parabolic and normally convection-dominated. The standard
Galerkin methods applied to the convection-dominated problems do not work well, and produce excessive
numerical diffusion or nonphysical oscillation. A variety of numerical techniques have been introduced
to obtain better approximations, such as higher-order Godunov scheme [4], streamline diffusion method
[10], least-squares mixed finite element method [20], and the Eulerian-Lagrangian localized adjoint method
(ELLAM) [5, 16-18]. Godunov schemes require that a CFL time-step constraint be imposed. Streamline
diffusion method and least-squares mixed finite element method reduce the amount of diffusion but add
a user-defined amount biased in the direction of the streamline. ELLAM conserves mass locally but it is
difficult to evaluate the resulting integrals. The characteristic finite element methods [22, 35 B36], have much
smaller numerical diffusion, nonphysical oscillations and time-truncation than those of standard methods,
and can be used with a larger time step.

In this paper, a combined numerical method is constructed for solving saltwater intrusion problem: A
splitting positive definite mixed finite element method is used to solve the water head equation of parabolic
type and a characteristic finite element method is used to solve the concentration equation of convection-
diffusion type. The application of the splitting positive definite mixed finite element method results in a
symmetric positive definite coefficient matrix of the mixed element system and separating the flux equation
from the water head equation so that one can obtain an approximate solution of the flux function fast and
independently by using various effective algorithms. Meantime, the characteristic finite element method
does well in handling convection-dominated diffusion problem. The convergence of this combined method
is analyzed and an optimal L?-norm error estimate under the classical mixed finite element spaces is also
derived.

In order to illustrate our method, the following mathematical model of saltwater intrusion problem is
considered: a coupled system composed of the water head equation and the concentration (of Cl™) equation

0 ~ 0
(@) 5.5 =V (R(VH —noes)) = —on + g
(b) <Z>[;)g§+U-Vc—V-(¢DVc) = (¢—¢)q, (1.1)

reN0<t<T,
with the initial-boundary conditions:
u-v=0, DVc-v=0, on S,
H(x,0) = H(z), c(z,0)=c(z), z€Q,

where € is a convex bounded domain in R? with the boundary 99, S is the specific retention, H = £ — z
is water head function, p stands for pressure, py represents the density of reference water (fresh water),
g is gravitational acceleration, z is the height of water containing layer; p is the density dependent only
on the concentration of salt ¢, Hugakorn’s linearization p = po(1 + é) is adopted, ¢, is the concentration

PO % = Pk i is the
P0 p

(1.2)

corresponding to the maximum density, and ¢ is the density difference ratio ¢ =
viscosity of the fluid,

K1 0 0
K= 0 kg O
0 0 k3

is the permeability; n = é is the density coupling coefficient; e3 = (0,0,1)7; ¢ is the porosity; and ¢ is the
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source or sink term; ¢ stands for the concentration of Cl—, ¢ is the salt concentration near the source well,

Dy D12 Dis
D= | Do Dy Dy
D31 D3y Dss
is the diffusion matrix, u = —p%m(VH — nces) is Darcy velocity; and v is the unit vector outer normal to

o09.

2. Formulation of the method

Throughout this paper, usual definitions, notations, and norms of Sobolev spaces as in [I] are used. Let
(-, -) be the inner product in L?(£2). Introduce the spaces H(div;Q) = {v € [L2(Q)]?; V-v € L?(Q)}, V =
{ve H(div;Q); v-v=0 on dQ} and W = L?(Q).

2.1. The splitting mized variational formulation for water head and flux
The water head equation is a parabolic type equation, and we deal it with a splitting positive definite
mixed finite element method. Define the flux o as follows:

2
o =—k(VH —nce3) = I\
POk

So we have u = a(c)o, a(c) = po”’ A mixed weak form of the system (1.1)) (a) is given by:

OH 0
(a) (Gy-w)+(BY-o.w) = (Big.w) - <B¢na—j,w>, VweW, 2.1)
(b) (alc)o,v)— (H,V-v)=—(nces,v), Yve,
where a(c) = 1/k, B=1/S, and 8 = p(c)/po.
From (2.1)) (b) we derive
0 OH Oc
(Date)o) V)~ (27 v) = ~(n ey, v) (22
Taking w = V - v in (2.1) (a) and substituting it into (2.2), we get the mixed system
0 0 dc
(a) (a(OA(C)O’),V)—f—(BVO',VV):(BBQ,VV)—(B¢n5§,VV) (n8t837 )7 Vv ey, (2 3)
(b) (%}:,w):(B[ﬂq—v-a],w)—(B¢ng§,w), Yw e W.

From the system ([2.3) we know that the flux equation is separated from the water head equation and then
the water head function H, if required, can be obtained from ({2.3) (b) straightly.

2.2. The characteristic weak variational formulation for the concentration
Define the differentiation along the characteristic curves of the transport 3 at +u-V by
¢ 0

0
zp(x,c,u)a—T B§+ -V,

where ¥ (x, c,u) \/ @2 /5%(c) + |ul?. Note that the characteristic direction 7 depends on z, the concentra-
tion ¢ and Darcy velocity u, which vary in space and time. It follows easily that the concentration equation
can be rewritten in the equivalent form

1/)276_ —V - (¢DVe) = (¢ — c)q.

And then, a variational form can be obtained as follows:
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Oc

a,z) + (¢DVe,Vz) = ((6 - ¢)q,2), Yz HY(Q).

(¥

2.3. The combined approximation procedure

In this section, we will present a characteristic splitting mixed finite element (CSMFE) method for
solving saltwater intrusion problem.

Define a uniform time partition: 0 =: tg < t1 < -+ < t, = nAt < --- < ty_1 < ty := T, with
At =:t, —t,_1. The characteristic derivative is approximated by

w%‘ N Q[)(‘,E,Cn—l’un—l)(cn7571—1) B ¢ c—gn—1
or 't V(e —5)2 4 (At)? gt At
where n—1pon—1 n—1
En—l — C(i’n_l), = — u 5 At, ﬁn_l — p(C )

¢ Po

Let T, , Ty, and Ty, be triple families of quasi-regular finite element partitions of the domain {2 which
may be the same one or not, such that the elements in the partitions have the diameters bounded by h,,
hy, and he, respectively. Let Vj, € V, W, € W, and M;, C H'(Q) be finite element spaces defined on
the partitions Tp,, Th,, and Tp,, respectively. Combined the method of characteristics with the splitting
positive definite mixed element procedure, a new numerical method can be established:

CSMFE Algorithm: Give an initial approximation (02,7—[2, 0'2) € My x Wy, x Vy, such that

(a) (C%,Zh) = (CO,Zh), v zp € th
(b) (H?wwh) = (Houwh)v v Wh € Whv

() (ald)on,vn) = —(VH) —ncheo, v), Y vy € V.

Forn=1,2,...,N, seek (¢}, o8, H}) € My, x Vi, x Wy, such that

n ~n—1
C;, —C
(a) ( f_l hTth,zh) + (¢DV R, Vzp) = (@ — g™ 21), Yz € My,
h
n n n—1 n—1
a\Cy )O;, — alC o
() (BT EIAT (59 oV
n_n CZ — CZ_l c;ll — 62_1
= (Bﬁhq 7V',Uh)_(ngnTtvv'vh)_(nTtei’nvh)’ VVh GVha
Hp —HP! ar— et
(C) (hAith?wh) = (B[ﬁl?qn - V : U}?]?wh) - (B¢nhTth7wh)7 th S Wh7

h
whnere un—lﬁn—l ( .
~n—1 nfl(An—l) /:L:n—l —r— h h At 6;} _ P Ch,
) )

o Po

~—

3. Preliminaries and some lemmas

In this and the following sections, K and ¢ indicate a generic constant and a small positive constant
independent of mesh parameters h,, hg, h. and time increment At, which may be different at their oc-
currences. We assume that finite element spaces Vj,, W), and M}, have the inverse property (see [6]) and
approximate properties that there exist some integers r, 1, k > 0 and [ > 0, such that, for 1 < ¢ < oo,

inf v = Vil < Kb vllwriia, Vv € H(div;Q) nWHH9(Q),
VhEVh
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inf ||V - (v —va)llpe < Kihp |V - viwra, Vve H(div;Q)nWnHha(Q),

VLEV)

inf ||lw— wp| e < K]_hll_}_le||Wl+l,q, Yw e LQ(Q) N Wlﬂ’q(Q),
wp EWY,

where 11 = r in cases of BDDM, BDM, and BDFM elements, or r1 = r + 1 in cases of RT and Nedelec
elements.

It is well-known that, in any one of the classical mixed finite element spaces, there exists an operator
I1;, from V onto V, see [6], such that, for any 1 < ¢ < +o0,

(a) (V- (v—Ipv),V-vy) =0, Vv,eEW,
(b) v —=TI,v|[Le < KRS [ V]wr1a,
() IV-(v—Tx v)llza < KRG ||V - v|wria.

And we introduce a standard elliptic projection operator P}, from H'(Q) onto My, such that, for all z;, € Mj,
and c € H',
(¢DV (c = Pre), zn) + A(c — Pre, 2) =0, (3.1)

where )\ is a positive constant such that the bilinear form on the left-hand side of (3.1)) is coercive in H?.
The following optimal error bounds were given in [6]:

(2) e = Pucllz + hel| V(e = Pe)ll s < KREH ] gr
(b) [V Pyl < K(c) < +o0,

d(c — Pye dc
© 12Ty < R e+ 10 )

Meanwhile, we also introduce the L? projection operator @, from L?(2) onto W, such that
(7‘[ — QrH, wh) =0, VYw, €W,
It is well-known that the a priori error estimate
I+1 I+1
- = Hit+1l,
HH QhHHLz < KhH HHH 1, YweHT(Q)

holds.
Next, we will give two lemmas which are important to prove our theoretical result in the following
section.

Lemma 3.1 ([21]). Assume that the finite element space Vy, is any one of the classical mixed finite element
spaces defined in [6]. The super-approzimation, which for any function,

(V- (v —=1I,v),V - vy)
_3
< Kho ||V - v 2 min([|o]| g1 [|V - (v = TIpv)|[ oo, min( ||l ho 2 )|V - (v — TR V) || 12)

holds, for each function o € WH®, v €V and vj, € V.

Lemma 3.2 ([8]). Let f € L*(Q) and f = f(z — g(z)AAt), where g = (g1, 92, 93). Assume that g; and gg;
are bounded fori,5 =1,2,3. Then, )
If = fllg— < Kl fllz2At.

For convenience of analysis, we usually give the following hypotheses
0<pe<0<o*, 0<D,<DZD*, 0<8,<8<85%,
O<ax<a<a’y 0<B,<B<P", 0<ax<a< a¥,

da(c) 0p6(c) da(c) 92a(c)
’80 1 e +‘8c o

(3.2)

< K*.
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We also assume the regularities of the solution of ([1.1))-(1.2)) as follows:

ce L®(HYnL2(wl), gteL%HkH)meuﬁﬂ
2
gﬁeL%ﬁ) H e L®°(H™Y) N H2(L?), (3.3)
2
oc L®(H T NnWl), %‘Z € L*(H™™) N L°(L™), (?9; € L*(L?),

where L°(H**1) denotes L>(0,T; H*1(2)): L* is subject to time variable and H**! is subject to space
variable, and the definitions of the other spaces are similar.

4. Convergence analysis and error estimate
For CSMFE Algorithm, we have the following main result:

Theorem 4 1 Assume that the hypotheses (3.2 . hold and the solution of system (1.1] . has the reqular
properties | . If the mesh parameters h., hy, and At satisfy the relations

3 3
At =o(hé) =o(hd), (4.1)
then there hold the priori error estimates
(a) max le" = |z +max 0" — 0”2 < K {WE B 4 R 4 At
(b)  max[H" — ARl < K {BEF 4 4 B R At

Set & = ¢} — P, () = " = Py, & = o — o', (= o —1lo", £ = HE — QpH", and
Cfr = H" — QrH". We have to estimate bounds of &, &, and £y, which satisfy the error residual equations:

¢ é-n é-nl

(5t BRI ,zn) + (@DVEL, V) + (¢"EL, zn)
h
¢ Oc .1 n ¢ -t P(B = B) e
“Gma Y T g A M g (4.2)
¢ £ nt o (-
+( ,2n) + ( c S ,Z)
g1 At h gl At h

+ (0" —u} ) - Ve z) = A zn) + (@' zn), Y € My,

a(cpér — aley e

( " s Vi) + (BV - &0,V - vy)

o N\ o1 n—1\ n—1 o n __ ..n—1
= (2 (afe)) - NI AT DT ) s B - ) v )

o n__ .n—1 n\, n __ n—1\ n—1
F (- EE ey vy (Al G e
N <[Oé(0”) —a(ey)lo” — [Z(tcn_l) —a(g e ! i) (4.3)
+ (BV - C(?,V‘Vh) (Bq" (B, — B8"), V'Vh)

At A Vv

+(n & Atc eth) (5C Atc e37Vh)7 Vv, € Vp,
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and
(w wr) =(Ba™ (B — 3™ BV -
S ) =(Bg (B~ 6")wn) — (BY - (o — 0”) wy)
de v — Tl (- ¢t
+(B¢U(§—T)7wh)+(B¢UT V- vy) (4.4)
n n—1
*(B@?g Ai s wp),  Ywy € Wh.

Lemma 4.2. Assume that 3, 3, a, a’, ¢, and ¢’ are bounded and set J, = [tn—1,t,], then there exists an
estimate

¢ fc C n n
(5h Ay 2h) T (@DVE V) +(¢"EC, 2n)
< K{Hfglﬂiz FIETH 2 + I T2 + 1672 + 16172 (4.5)
0?c oc ou
+ llznllZ2 + At“ﬁ”%ﬁ(]ﬂ;[ﬂ(&))) + At”a”%qﬁ;p(g)) + AthH%?(J";LQ)} +0|Vzn| 72
Proof. Set
¢ Oc ¢ -t
T;
1= (ﬁn Lot +u, Bh At ,2h),
T, — (‘f’(ﬁh—jf)@ ),
Bnﬁn ot’
¢ & ot ¢ G =G
Ts = ( vzn)y  Ta=( ,Zh),
B At 1 At

Ts = ((u" —wy™) - Ve, z), o= —AC ) + (¢"¢ 2n).
To handle T3, we require an induction hypothesis. Assume that
573
hQ

1
1 o
™ e < Kho® 22| (4.6)

Then we have

Oc ¢ -t 9
< — - -
T _K{II T Al 1° + [l2nll72
(e B Ay [0 G
<K —d7|°dx + ||z,
{ A BZ 1At 5 )| PO == | [EAFE
(z,tn) 2
< il ag il Hoo// o Pdrdr+ o)
(l‘tn 1
tn
<K At// 5 |dtd:n+||zhHL2

<K {At||w||§2(w(m) s}

where we have used the fact that 3, ¢ are bounded.
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For T, we have
_ _ dc
RS {uf? 241G + At S 2 iz + thuiz} .

To estimate the term T3, we first show that the g(z) = u '87"'/¢ and 9g(x)/0z;, (j = 1,2,3) are
bounded.

By the induction hypothesis (4.6, we can easily show the boundedness of g(z). For dg(x)/0x;, we know
that

dg(x) :(;2 {un1¢ﬁ(c8,2;1)acg—l N 8uZ_1 1yt a¢}

(956]' (9$j a.l‘j J

L {uzl P L N L L P P R 1) }
10} dc

8.7Uj (9.%']' j

LB | dalg! oy

_ n 1
st de oc  ox; B
do) D¢
n—1 _ n 1on—1
+a(ch) o, ) B ]}

By inverse inequality and the induction hypothesis (4.6)), we know that

=

At
oy “Hiwree At = || uzilel,oogthlHO' 1|]LooAt<K[ ] =o(1).

a(cpt) hz

Make another induction hypothesis

=

n—1 -3 h02
ez < Khe* | 55| (4.7)

Hence we can obtain

=

At
e e At < Kh e po N < K [ ] =o(1),
h2

where we have used the condition (|4.1)).
Under the induction hypotheses (4.6) and (4.7)), using the fact that 8, 95/d¢, a(c), da(c)/de, ¢, and
0¢/0x; are bounded, we have by Lemma that

<Z5 f &
At

T3] < H =1 llznll e < KNEETZ2 + 6llznl

Using the similar technique, we can get

¢ Cnfl _ 7n—1
gt At

Tal < | -2 lznll e < KNG 2 + dllanli7

For T5 and Ty, we have

IZ5] <[((0" = a1 - Ve zp) + (0" = up ™) - Ve )|
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SIS Ve ()~ ate ) Ve )

n—1

+[(aley e Ve z)| + (aleg T Ve z))

SK{II&Z”H%Q e 72 + & I + Ice Iz

Ju
Flanl + 215 o |

and
Ts| < K {IIC2172 + llznll72} -

Substituting these estimates into (4.2)), we get the inequality (4.5). This ends the proof of Lemma

4.2 O
To complete the proof of convergence theorem, we make another induction hypothesis as follows:
3 3
2 2
e 8+ 16212 = o (max(n 1) ). (1.8

Lemma 4.3. Under the conditions of Lemma[L.2], the priori estimate

n n—1
€72 + D IVELT At < K {Z 0172 + (1€ 172] At + R+ 4+ nar+2 + (At)Q} (4.9)

=1 =0
holds for 0 <n < N.
Proof. Taking z, = £ in (4.5)), and noting that

¢ gc >__ 1 ¢ n o ¢ny o ¢ n—1 ¢n—1
(5 S ey L [<ﬁh N = )]
—L ¢ n ¢eny _ ¢ n—1 ¢n—1
_2At [(ﬁzl gc ’ gc) ( 272 C »5Se )]
1 9( fTLL_l — 2_2) n—1 ¢n—1
ot < o e

1 ¢ n en ¢) n—1 ¢n—1
Zﬂ [(ﬁ21§C’§C)_( 272 c 5¢c )]

1 o( 271_ 272) n—1 ¢n—1
gplppr 0t e

oAt
1
[( O ngmy (L9 ent en)

?

we can get

+ (@DVEL VE) + ("6, 60)

24t | gt "
< K{Hﬁ?llia ez + Hé?‘l|!%2 2 + e 2.
(4.10)
PG+ 15+ ) S adr a2
e llz2 L2 572 1L2(m;12) g 112 (I L2(9))

+ At\|8tHL2Wz>} +aIVEIE..

where we have used the induction hypothesis (4.8). Multiplying (4.10) by At and summing over n, for
sufficiently small § and At, we get the estimate (4.9). O]
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Lemma 4.4. Assume that o, o/, and o” are bounded, then the priori estimate
o) =~ aleple” ~ fae' ) —al Do
At ’
n)2 n—1)2 n—2)2 n—1y2 (4.11)
< K€ + 1607 T2 + 107217 + 1165 172
HEF 272 + IvallZe + h252 + B2 4 (A1)} 46|V - vall7a
holds for any vy, € V.
Proof. Note that
tn
o =" — / 8—Udt,
., Ot
1
alc") —a(cv ) = / (4 s = TH)ds(c — T,
0
1
() — a(e) = / (A 4 s(cf — I Y))ds(eh — )
So we have
1
(™) = a(c )] = [a(cf) — aley™)] = /0 o (G s(e — ) ds(nf — i)
! rr n—1 n n—1 d n n—1
- 0 « (Ch + S(Ch - ch )) 3(§c - gc )
1 t
n 8
et st - g eas [ S
0 tn—1 t
1 t
n9
- [et+ste g hiatas [ S
0 tn—1
Utilizing this equation, we can easily get
([a(C") —a(ep)o” = [ !) —alg Do ! i)
At b h
_ ([Oé(cn) —a(g) = (a(e™) —a(g ™))" i)
At ’
. oty 1 [t 0o
+ ([a(c 1) _ a(ch 1)]E /tn1 a(:lt,Vh)
1 . 1 Cn _ Cn—l
= (/ o (4 s(cp — ™ ))dsanﬁjvh)
0
1 n _ ¢en—1
- (/0 o/ (7t + s(cft — cz_l))dsanigc Aic V1) (4.12)
1 n t
n—1 n n—1 n,; 0 " Oc
— ds— —dt
w et - @ [ e
1 n t
n—1 n n—1 "n, 0 e
- - dasZ [ La
(f tet st - o [ St
1 [t Jo
n— n—1
o) —alG Dy [ Gt

:F1+F2—|-F3+F4—|-F5.
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Using Lemma we can derive that
Fy+ Fy+ Fy+ Fs <K{I€2 172 + €07 172 + €071 + 1657117
&2 52 + IvallZe + h22 + W2+ (A} + 6]V - vl

For F5 we have

¢ &
(i
1
S Rl [ st - s v )
h

<K{NER 32 + 1€ 52 + 1E2 22 + Ivall3e + R2FT2 4+ B2 4 (A2} + 6|V - v 22,

1
Fy = A; 7/0 o/ (™t + (e — ) dsa™ v B ¢)

where Ry is a weighted L?-projection operator from L?(£2) onto My, such that

¢
52’1

Substituting (4.13]) and ( into ( , we get the estimate

Lemma 4.5. Under the conditions of Lemmas and -4, we have the following estimate
g - ot g™
At ’
< K{IEN7e + €72 + 162017 + 157172 + 165721172 + [1valZe
+hy TP R R (A 4 6|V - v [7e

( (z— Rp2),2n) =0, Y z€L*Q), z, € My,

—f‘(BV'fg,V'Vh)

Proof. 1t is easily seen that

de v — vl dc " —cv1
T)’V Vi) + (Tl(a - T)e?),vh)

804()

(B¢77(

(4.13)

(4.14)

(4.15)

< K{At[HTHLQ Jnr2) T ||8t2 ||L2(Jn L?) [+ [[vall72} + 8V - vall7a,

(Bg"(B = B"),V - vi) < K{I€ 72 + 10211723 + 61V - vall7»,
and

Cn_ n—1

(Bon =S 0w + 0 e v < (il 12 4 89 v

At

As noted above, we know that

1
oY) =a(c) - / (7 + s(ef — ) ds(ef — i)

1 1
—a(e}) - /0 (N s(h — ) ds(Er — ) + /0 (4 s — ) ds(Ch

! tn 9e
—/ /(1 4 s(ch — 1))ds/ 9¢ .
; .o

n—1

C

n—l)
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So we have
n\, n n—1\, n—1 1 n—1
(R =G ) (oSS )+ ([ e st - s ETE )

n—1

1 n_
_ (/ o/ (7t + s(eft — cZﬁl))dsC;l_licc ~ <— . vp)
0 t

b n_ n—1 no1 L [T 0c
+ ( ; o (ep "+ s(cy —cp))ds¢ AL 5 —dt,vp)

tn—1

1
< Bj Rl [ e st — s v o)

¢
{7H J||L2 Jn;L2) + ||Cn 1HL2 =+ ||Vh”L2}
<Kl 72 + 1657 M T2 + IvallZe + 222 4+ h2ET2 4 (A} + 6V - v |72
By Lemma 3.1 and the inverse property of the finite element space Vj, we have the estimate

(BY -3,V - vi) < Kho[V - Iz |V - vl 2 < K2 4 6]V - v [7..

Using the similar technique as in (4.14]), we can get the following inequality

& - g - g
(Bt Vv 4+ | (05—, Vi)

< KL T2 + 1€ M T + IvallZe + ho 42 4+ 22 4+ (842} + 6]V - v 7.
Substituting these estimates into , we can complete the proof of Lemma O
Lemma 4.6. Under the conditions of Lemma [L.5], we have the estimate
n
15172 + At D11V - €17
= (4.16)
< K{At D (165 T2 + €l Ze + ll€E IT2] + R 2 4+ B2 4 g2 4 (At)?

Proof. Take vy, = £l in (4.15]), and note that

aleMEr — a(c~hHen-1
(s =l D8 e > o [(a(ees ) — ol 7] + g (a(eh) — alef~es )

At
1
= (e en — (ol e &)
1 n _ ¢n—1
5] @ s - s
1 n—
s st - e s )
1, 0 o O g n
+2At(/0 Oé(Ch 1+S<ch_ch 1))d3/tn_1 gjdtggaga)'

Under the induction hypotheses (4.8), using the similar technique as in (4.14) and Lemma we get
1 _ _ _
o L€ €0) — (el g 7] + (BY €,V &)

< K{IE2 + 162072 + 1627 5 + 16272052 + 168 32 + 1652113
+IVallZe + A2 4 B2 4 R2ME2 4 (A2} 46|V - v

(4.17)
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Multiplying (4.17) by 2At and summing it over n, for sufficiently small §, we get the estimate (4.16). [
Now, we can complete the proof of Theorem
Proof. Under the induction hypothesis (4.6)), (4.7), and (4.8)), using Lemmas and we can get

€M7 + €015 + At >[IV - €117 + [VEL]
=1

n—1
< re{ar Sl e o).
i=0
Using the discrete Gronwall’s inequality, we have
n . .
max €517, + max €717, + At D [V & lI72 + [ VE7:]
i=1 (4.18)
<K {h§r+2 4R g 2k (At)Q} ‘

It is clear that the optimal error estimate (4.18)) is derived under the induction hypotheses (4.6)), ,
and (4.8). Now we have to check it. When n = 0, for integers r, kK > 0 we have

lupll e = lla(ch)opllze < K {IMho|[z + [I€7] L~ }

3
_3 _1 | p2
< K { iMoo + 1o I | < a0 2]
1
3712
_3 —1 I h¢
[l < B (ISl + 120} < K {IPlom + Il | < 00|35

_3 _3 oL _1
1€ + €] < K {hc €0 + hﬁ”ﬁ?”m} <K {hc N }

For sufficiently small h, and he, the induction hypotheses (4.6), ([£.7), and (4.8) are true at n = 0. By
(4.18), for n < N, we know that

_3
Jupllzee = lla(ch)onllre < K{[Hhe™|[Le + (€5} < K {IIHhU"HLw +ho? Hf?Hm}

1
2

3
_3 _1 | h2
=k {”Hw"uw + ho 2 (5T + BT RETL N)} < Khe | 22|
_3
lepllzee < K {||Pac"|lLee + [[€0 ]I} < K {HPhCnHLOO + he 2 H£?||L2}
3 1
_3 _1 | nk ?
=H {”Phcn”“" +he ? (hgt + g R M} < Khe* ||

and
ma €7 = + mae €5 2 < K (BG4 T 4 At

Under the condition (4.1)), we know that the induction hypotheses (4.6)), , and (4.8 hold.
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Finally, we consider the boundedness of {y. Taking wy, = £} in (4.4)) and using the estimate (4.18), we
can easily get
max €57, < K{RZE2 + hH2 4+ hg + bt + (A1)* )

This ends the proof of Theorem O
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