
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 5995–6003

Research Article

3-variable Jensen ρ-functional inequalities and
equations

Gang Lua, Qi Liua, Yuanfeng Jinb,∗, Jun Xiea

aDepartment of Mathematics, School of Science, Shenyang University of Technology, Shenyang 110870, P. R. China.
bDepartment of Mathematics, Yanbian University, Yanji 133001, P. R. China.

Communicated by R. Saadati

Abstract

In this paper, we introduce and investigate Jensen ρ-functional inequalities associated with the following
Jensen functional equations

f(x+ y + z) + f(x+ y − z)− 2f(x)− 2f(y) = 0,

f(x+ y + z)− f(x− y − z)− 2f(y)− 2f(z) = 0.

We prove the Hyers-Ulam-Rassias stability of the Jensen ρ-functional inequalities in complex Banach spaces
and prove the Hyers-Ulam-Rassias stability of the Jensen ρ-functional equations associated with the ρ-
functional inequalities in complex Banach spaces. c©2016 All rights reserved.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [28] concerning the
stability of group homomorphisms. The functional equation

f(x+ y) = f(x) + f(y),

is called the Cauchy equation. In particular, every solution of the Cauchy equation is called to be an
additive mapping. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ theorem was generalized by Aoki [1] for additive mappings and by Rassias [25] for linear
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mappings by considering an unbounded Cauchy difference. The paper of Rassias [25] has provided a lot of
influence in the development of what we call generalized Hyers-Ulam stability of functional equations. A
generalization of the Rassias theorem was obtained by Găvruta [10] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach. The stability problems for several
functional equations or inequalities have been extensively investigated by a number of authors and there are
many interesting results concerning this problem (see [2–9, 12–16, 18–27, 29]).

In [17], Park et al. investigated the following inequalities

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥2f

(
x+ y + z

2

)∥∥∥∥ ,
‖f(x) + f(y) + f(z)‖ ≤ ‖f(x+ y + z)‖,

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x+ y

2
+ z

)∥∥∥∥ ,
in Banach spaces. Recently, Cho et al. [5] investigated the following functional inequality

‖f(x) + f(y) + f(z) ≤
∥∥∥∥Kf (x+ y + z

K

)∥∥∥∥ , (0 < |K| < |3|),

in non-Archimedean Banach spaces.
The function equations

f(x+ y + z) + f(x+ y − z)− 2f(x) = 0, (1.1)

f(x+ y + z)− f(x− y − z)− 2f(y)− 2f(z) = 0, (1.2)

is called 3-variable Jensen. In this paper, we investigate the 3-variable Jensen functional equations and
prove the Hyers-Ulam-Rassias stability of the functional inequalities in complex Banach spaces.

Throughout this paper, assume that X is a complex normed vector space with norm ‖ · ‖ and that
(Y, ‖ · ‖) is a complex Banach space.

2. Hyers-Ulam-Rassias stability of (1.1)

In this section, we prove that the Hyers-Ulam-Rassias stability of the 3-variable functional inequality

‖f(x+ y + z) + f(x+ y − z)− 2f(x)− 2f(y)‖ ≤ ‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖
+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖ ,

(2.1)

in the complex Banach space, where ρ1 and ρ2 are the fixed complex numbers with ‖ρ1‖ < 1
2 , ‖ρ2‖ < 1

2 .

Lemma 2.1. Let f : X → Y be a mapping. If it satisfies (2.1) for all x, y, z ∈ X, then f is additive.

Proof. By letting x = y = z = 0 in (2.1) for all x, y, z ∈ X, we get

‖2f(0)‖ ≤ ‖2ρ1f(0)‖,

thus f(0) = 0.
By letting x = y = 0 in (2.1), we get

‖f(z) + f(−z)‖ ≤ ‖ρ2(f(−z) + f(z))‖,

and so f(−x) = −f(x) for all x ∈ X.
Let z = 0 in (2.1), so we have

‖2f(x+ y)− 2f(x)− 2f(y)‖ ≤ ‖ρ1(f(x+ y)− f(x)− f(y))‖
+ ‖ρ2(f(x+ y)− f(x)− f(y))‖

= (|ρ1|+ |ρ2|)‖f(x+ y)− f(x)− f(y)‖,

and so f(x+ y) = f(x) + f(y) for all x, y ∈ X. Hence f : X → Y is additive.
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Corollary 2.2. Let f : X → Y be a mapping satisfying

‖f(x+ y + z) + f(x+ y − z)− 2f(x)− 2f(y)‖ = ‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖
+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖

for all x, y, z ∈ X. Then F : X → Y is additive.

We prove the Hyers-Ulam-Rassias stability of the additive functional inequality (2.1) in complex Banach
spaces.

Theorem 2.3. Let f : X → Y be a mapping. If there is a function ϕ : X3 → [0,∞) with ϕ(0, 0, 0) = 0
such that

‖f(x+ y + z) + f(x+ y − z)− 2f(x)− 2f(y)‖ ≤ ‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖ (2.2)

+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖+ ϕ(x, y, z),

and

ϕ̃(x, y, z) :=
∞∑
j=0

1

2j
ϕ
(
2jx, 2jy, 2jz

)
<∞

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ϕ̃(x, x, 0) (2.3)

for all x ∈ X.

Proof. By letting x = y = z = 0 in (2.2), we get

‖2f(0)‖ ≤ ‖2ρ1f(0)‖,

so f(0) = 0. Let y = x and z = 0 in (2.2), so we get

‖2f(2x)− 4f(x)‖ ≤ |ρ1|‖f(2x)− 2f(x)‖+ |ρ2|‖f(2x)− 2f(x)‖+ ϕ(x, x, 0)

for all x ∈ X. Thus ∥∥∥∥f(x)− f(2x)

2

∥∥∥∥ ≤ 1

2− |ρ1| − |ρ2|
1

2
ϕ (x, x, 0)

≤ ϕ (x, x, 0)

for all x ∈ X.
Hence one may have the following formula for positive integers m, l with m > l,∥∥∥∥ 1

(2)l
f
(

(2)lx
)
− 1

(2)m
f ((2)mx)

∥∥∥∥ ≤ m−1∑
i=l

1

2i
ϕ
(
2ix, 2ix, 0

)
(2.4)

for all x ∈ X.
It follows from (2.4) that the sequence

{
f(2kx)

2k

}
is a Cauchy sequence for all x ∈ X. Since Y is a Banach

space, the sequence
{
f(2kx)

2k

}
converges. So one may define the mapping A : X → Y by

A(x) := lim
k→∞

{
f(2kx)

2k

}
, ∀x ∈ X.

By taking m = 0 and letting l→∞ in (2.4), we get (2.3).
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It follows from (2.2) that

‖A(x+ y + z) +A(x+ y − z)− 2A(x)− 2A(y)‖

= lim
n→∞

2n
∥∥∥∥f (x+ y + z

2n

)
+ f

(
x+ y − z

2n

)
− 2f

( x
2n

)
− 2f

( y
2n

)∥∥∥∥
≤ lim

n→∞
2n
∥∥∥∥ρ1(f (x+ y + z

2n

)
− f

( x
2n

)
− f

( y
2n

)
− f

( z
2n

))∥∥∥∥
+ lim
n→∞

2n
∥∥∥∥ρ2(f (x+ y − z

2n

)
− f

( x
2n

)
− f

( y
2n

)
+ f

( z
2n

))∥∥∥∥
+ lim
n→∞

2nϕ
( x

2n
,
y

2n
,
z

2n

)
= ‖ρ1(A(x+ y + z)−A(x)−A(y)−A(z))‖

+ ‖ρ2(A(x+ y − z)−A(x)−A(y) +A(z))‖

for all x, y, z ∈ X. One can see that A satisfies the inequality (2.1) and so it is additive by Lemma 2.1.
Now, we show the uniqueness of A. Let T : X → Y be another additive mapping satisfying (2.2). Then

one has

‖A(x)− T (x)‖ =

∥∥∥∥ 1

2k
A
(

2kx
)
− 1

2k
T
(

2kx
)∥∥∥∥

≤ 1

2k

(∥∥∥A(2kx
)
− f

(
2kx
)∥∥∥

+
∥∥∥T (2kx

)
− f

(
2kx
)∥∥∥)

≤ 2
1

2k
ϕ̃(2kx, 2kx, 0),

which tends to zero as k →∞ for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X.

Corollary 2.4. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y ba a mapping such that

‖f(x+ y + z) + f(x+ y − z)− 2f(x)− 2f(y)‖
≤ ‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖

+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2− 2r
‖x‖r

for all x ∈ X.

Theorem 2.5. Let f : X → Y be a mapping with f(0) = 0. If there is a function ϕ : X3 → [0,∞) satisfying
(2.2) such that

ϕ̃(x, y, z) :=

∞∑
j=1

2jϕ
( x

2j
,
y

2j
,
z

2j

)
<∞

for all x, y, z ∈ X, then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ϕ̃
(x

2
,
x

2
, 0
)

for all x ∈ X.
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Proof. The proof is similar to Theorem 2.3, we can get∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ ϕ(x
2
,
y

2
, 0
)

for all x ∈ X.
Next, we can prove that the sequence {2nf

(
x
2n

)
} is a Cauchy sequence for all x ∈ X, and define a

mapping A : X → Y by

A(x) := lim
n→∞

2nf
( x

2n

)
for all x ∈ X that is similar to the corresponding part of the proof of Theorem 2.3.

Corollary 2.6. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y ba a mapping such that

‖f(x+ y + z) + f(x+ y − z)− 2f(x)− 2f(y)‖ ≤ ‖ρ1(f(x+ y + z)− f(x)− f(y)− f(z))‖
+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖
+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 21+rθ

2r − 1
‖x‖r

for all x ∈ X.

3. Hyers-Ulam-Rassias stability of (1.2)

In this section, we prove that the Hyers-Ulam-Rassias stability of the 3-variable functional inequality

‖f(x+ y + z)− f(x− y − z)− 2f(y)− 2f(z)‖ ≤ ‖ρ1(f(x+ y + z)− f(x+ y)− f(z))‖
+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖ ,

(3.1)

in the complex Banach space, where ρ1 and ρ2 are the fixed complex numbers with ‖ρ1‖ < 1
2 , ‖ρ2‖ < 1

2 .

Lemma 3.1. Let f : X → Y be a mapping. If it satisfies (3.1) for all x, y, z ∈ X, then f is additive.

Proof. By letting x = y = z = 0 in (3.1) for all x, y, z ∈ X, we get

‖4f(0)‖ ≤ ‖ρ1f(0)‖,

thus f(0) = 0 and by letting x = y = 0 in (3.1), we get

(1− |ρ2|)‖f(z) + f(−z)‖ ≤ 0,

and so f(−z) = −f(z) for all z ∈ X.
Let x = 0 in (3.1), so we have

‖f(y + z)− f(−y − z)− 2f(y)− 2f(z)‖ ≤ ‖ρ1(f(y + z)− f(y)− f(z))‖
+ ‖ρ2(f(y − z)− f(y) + f(z))‖

for all y, z ∈ X.
Thus

(2− |ρ1|)‖f(y + z)− f(y)− f(z)‖ ≤ |ρ2|‖f(y − z)− f(y) + f(z)‖ (3.2)

for all y, z ∈ X.
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By replacing z by −z in (3.2), we have

(2− |ρ1|)‖f(y − z)− f(y) + f(z)‖ ≤ |ρ2|‖f(y + z)− f(y)− f(z)‖ (3.3)

for all y, z ∈ X.
By (3.2) and (3.3), we get

(2− |ρ1|)2‖f(y + z)− f(y)− f(z)‖ ≤ |ρ2|2‖f(y + z)− f(y)− f(z)‖

for all y, z ∈ X.
Hence f : X → Y is additive.

Corollary 3.2. Let f : X → Y be a mapping satisfying

‖f(x+ y + z)− f(x− y − z)− 2f(y)− 2f(z)‖ = ‖ρ1(f(x+ y + z)− f(x+ y)− f(z))‖
+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖

for all x, y, z ∈ X. Then f : X → Y is additive.

We prove the Hyers-Ulam-Rassias stability of the additive functional inequality (3.1) in complex Banach
spaces.

Theorem 3.3. Let f : X → Y be a mapping. If there is a function ϕ : X3 → [0,∞) with ϕ(0, 0, 0) = 0
such that

‖f(x+ y + z)− f(x− y − z)− 2f(y)− 2f(z)‖ ≤ ‖ρ1(f(x+ y + z)− f(x+ y)− f(z))‖ (3.4)

+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖+ ϕ(x, y, z),

and

ϕ̃(x, y, z) :=

∞∑
j=0

1

2j
ϕ
(
2jx, 2jy, 2jz

)
<∞

for all x, y, z ∈ X, then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ϕ̃(x, x, 0) (3.5)

for all x ∈ X.

Proof. By letting x = y = z = 0 in (3.4), we get

‖4f(0)‖ ≤ ‖ρ1f(0)‖.

So f(0) = 0.
Let y = x and z = 0 in (3.4), so we get

‖f(2x)− 2f(x)‖ ≤ |ρ2|‖f(2x)− 2f(x)‖+ ϕ(x, x, 0)

for all x ∈ X. Thus ∥∥∥∥f(x)− f(2x)

2

∥∥∥∥ ≤ 1

1− |ρ2|
1

2
ϕ (x, x, 0) ≤ ϕ (x, x, 0)

for all x ∈ X, since |ρ2| < 1
2 , 1

1−|ρ2| < 2.
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Hence one may have the following formula for positive integers m, l with m > l,∥∥∥∥ 1

(2)l
f
(

(2)lx
)
− 1

(2)m
f ((2)mx)

∥∥∥∥ ≤ m−1∑
i=l

1

2i
ϕ
(
2ix, 2ix, 0

)
(3.6)

for all x ∈ X.
It follows from (3.6) that the sequence

{
f(2kx)

2k

}
is a Cauchy sequence for all x ∈ X. Since Y is a Banach

space, the sequence
{
f(2kx)

2k

}
converges. So one may define the mapping A : X → Y by

A(x) := lim
k→∞

{
f(2kx)

2k

}
, ∀x ∈ X.

By taking m = 0 and letting l→∞ in (3.6), we get (3.5).
It follows from (3.4) that

‖A(x+ y + z)−A(x− y − z)− 2A(y)− 2A(z)‖

= lim
n→∞

2n
∥∥∥∥f (x+ y + z

2n

)
− f

(
x− y − z

2n

)
− 2f

( y
2n

)
− 2f

( z
2n

)∥∥∥∥
≤ lim

n→∞
2n
∥∥∥∥ρ1(f (x+ y + z

2n

)
− f

(
x+ y

2n

)
− f

( z
2n

))∥∥∥∥
+ lim
n→∞

2n
∥∥∥∥ρ2(f (x+ y − z

2n

)
− f

( x
2n

)
− f

( y
2n

)
+ f

( z
2n

))∥∥∥∥
+ lim
n→∞

2nϕ
( x

2n
,
y

2n
,
z

2n

)
= ‖ρ1(A(x+ y + z)−A(x+ y)−A(z))‖

+ ‖ρ2(A(x+ y − z)−A(x)−A(y) +A(z))‖

for all x, y, z ∈ X. One can see that A satisfies the inequality (3.1) and so it is additive by Lemma 3.1.
Now, we show the uniqueness of A. Let T : X → Y be another additive mapping satisfying (3.4). Then

one has

‖A(x)− T (x)‖ =

∥∥∥∥ 1

2k
A
(

2kx
)
− 1

2k
T
(

2kx
)∥∥∥∥

≤ 1

2k

(∥∥∥A(2kx
)
− f

(
2kx
)∥∥∥

+
∥∥∥T (2kx

)
− f

(
2kx
)∥∥∥)

≤ 2
1

2k
ϕ̃(2kx, 2kx, 0),

which tends to zero as k →∞, for all x ∈ X. So we can conclude that A(x) = T (x) for all x ∈ X.

Corollary 3.4. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping such that

‖f(x+ y + z)− f(x− y − z)− 2f(y)− 2f(z)‖
≤ ‖ρ1(f(x+ y + z)− f(x+ y)− f(z))‖

+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2− 2r
‖x‖r

for all x ∈ X.
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Theorem 3.5. Let f : X → Y be a mapping with f(0) = 0. If there is a function ϕ : X3 → [0,∞) satisfying
(3.4) such that

ϕ̃(x, y, z) :=
∞∑
j=1

2jϕ
( x

2j
,
y

2j
,
z

2j

)
<∞

for all x, y, z ∈ X, then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ϕ̃
(x

2
,
x

2
, 0
)

for all x ∈ X.

Proof. The proof is similar to Theorem 3.3, we can get∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ ϕ(x
2
,
y

2
, 0
)

for all x ∈ X.
Next, we can prove that the sequence {2nf

(
x
2n

)
} is a Cauchy sequence for all x ∈ X, and define a

mapping A : X → Y by

A(x) := lim
n→∞

2nf
( x

2n

)
for all x ∈ X, that is similar to the corresponding part of the proof of Theorem 3.3.

Corollary 3.6. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be a mapping such that

‖f(x+ y + z)− f(x− y − z)− 2f(y)− 2f(z)‖
≤ ‖ρ1(f(x+ y + z)− f(x+ y)− f(z))‖

+ ‖ρ2(f(x+ y − z)− f(x)− f(y) + f(z))‖+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 21+rθ

2r − 1
‖x‖r

for all x ∈ X.
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