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Abstract

In this paper, we investigate the Cauchy problem for the generalized IBq equation with damping in
one dimensional space. When o = 1, the nonlinear approximation of the global solutions is established
under small condition on the initial value. Moreover, we show that as time tends to infinity, the solution is
asymptotic to the superposition of nonlinear diffusion waves which are given explicitly in terms of the self-
similar solution of the viscous Burgers equation. When ¢ > 2, we prove that our global solution converges
to the superposition of diffusion waves which are given explicitly in terms of the solution of linear parabolic
equation. (©)2016 all rights reserved.
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1. Introduction

We investigate the Cauchy problem for the following generalized improved modified Boussinesq (IBq)
equation with damping in one space dimension

Utt — Uggtt — Ugy — VUggt = ¢(U)xx (11)

with the initial value
t=0:u= f(x), u = 0zg(x). (1.2)
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Here v = u(z,t) is the unknown function of x € R and ¢t > 0, v > 0 is a constant. The nonlinear term is as
form of ¢(u) = O([u|*T?) (o > 1).
Boussinesq [2, 3] deduced an important model

Ut — Au — Autt == A(U2), (13)

which approximately describes the propagation of long waves on shallow water. Equation ([1.3]) is called
improved Boussinesq (IBq) equation by [11]. Equation (1.3) and its generalized form in n space dimensions

Ut — Au — Autt = A¢(’U,) (14)

can also describe the dynamical and thermodynamical properties of an harmonic monatomic and diatomic
chains (see [14, 15]). Existence and nonexistence of global solutions, the global existence of small amplitude
solutions for the Cauchy problem for were obtained by Wang et al. [13] 19, 20]. Cho and Ozawa [4]
studied the existence and scattering of global small amplitude solutions to (|1.4]).

To take into account internal friction (it is called this type of friction hydrodynamical), which is due to
irreversible processes taking place within the system, the dissipation function depends on the time derivatives
of the relative displacements, in [I] the authors obtained the following IBq equation with damping

uy — Au — Auy — vAu = A(u2).
Equation has the following generalized form
u — Au — Auy — vAu, = Ad(u). (1.5)
Polat [13] established the global existence and blow-up of solutions to ([1.5)) with the initial data.
(u, ug)(2,0) = (ug,ur)(x). (1.6)

Under smallness condition on the initial data, Wang and Xu [23] obtained asymptotic behavior of global
solutions to (1.5)) and (1.6 by the contraction mapping principle. Later, global existence and asymptotic
behavior of solutions were refined in [24]. More precisely, the decay estimate

[oku(®)l2 < C& 1+ (L.7)
is obtained, where no > 1 and s > [n/2] + 1, &1 = |luo||g=nrt + l|utll gsrpiy—11 and 0 < k < s. Moreover,
when no > 2, the proof in [24] also implies

k 140 _n_k
10 (w —ur) @)Lz < CETI(A+ 1) 5 2n(t) (1.8)

for 0 < k < s, where up(t) is the solution to and with ¢(u) = 0 and n(t) is defined by
1, n=1,
n(t) =4 (1+1) 2 log(2+1), no=2,
(1+1)72, no>3.

However, such a linear approximation does not hold for (1.1) with ¢ = 1. This comes from the slower
decay of the solution for n = 1 and 0 = 1. We note that, when n = 1, the decay estimate (|1.7)) for the

problem (L.1)), (1.2 is given by
|ou(®)ll < CEA(1+1)7372, (L9)
where s > 0,0 <k <s, and & = || fllgsnrt + 19l gs+1aL1-

The first main purpose of this paper is to establish nonlinear approximation to global solutions to the
problem (L.1)), (1.2) with o = 1. We state the result as follows.



Y. Z. Wang, Y. X. Wang, J. Nonlinear Sci. Appl. 9 (2016), 60046020 6006

Theorem 1.1. Let 0 = 1 and s > 1. Assume that f € H*(\L' and g € H*Y'N L', and put & =

I flles e + Ngllas+r - Let u(z,t) be the global solution to the problem (L.1), (1.2)), and let w be the
approzimation function defined by (3.10). Then for any ¢ > 0 and 0 < k < s, there is a small positive
constant 9o such that if By < 62, we have

10 (u — @) (t)[| 2 < C&E(1+1) 5757,

Theorem implies that the global solution w to the problem , is well approximated by the
solution w to the simpler problem . In the following result, we give the further approximation, i.e.,
we show that as time tends to infinity, the solution is asymptotic to the superposition of nonlinear diffusion
waves which are given explicitly in terms of the self-similar solution of the viscous Burgers equation. The
result is as follows:

Theorem 1.2. Let 0 =1 and s > 1. Assume that f,g € H*"' N L}, and put E = |(f, )| prs+1np1 and
& = ||(f, Q)HHH%LM- Let u be the global solution to the problem (1.1)), (1.2)), and let vy be the nonlinear

diffusion waves defined by (4.9) with the parameters in (4.11)). Then there is a small positive constant J3
such that if B4 < d3, then we have

105 (w — vy — v )(t)|| 12 < C&(1+1)7273, (1.10)
where 0 < k < s.

When o > 2, our global solution is approximated by the superposition of diffusion waves which are given
explicitly in terms of the solution of linear parabolic equation. We state the results as follows:

Theorem 1.3. Let s > 1 and 0 = 2. Assume that f,g € H*T'(L}. Put & = ||(f,9)|lgs=+1qr: and
& = |(fs9)lgs+1 - Let u be the global solution to the problem (L.1), (L.2), and let vy be the diffusion

waves defined by (5.2). There exists a small positive constant 03 such that if & < 03, we have
105 (u — vy —v_) (1) 2 < CE3(1+1)"172 log(2 + ¢)
for 0 <k <s.

Theorem 1.4. Let s > 1 and o > 3. Assume that f,g € H*"'NL1. Put & = I(f, Ol gs+1 e and
& = |(f, 9l gs+1qrr- Let u be the global solution to the problem (L.1), (1.2), and let vy be the diffusion

waves defined by (5.2). There exists a small positive constant d3 such that if E1 < d3, we have
105 (= vs —0-)(B)l12 < CE(L+1) 74

k
2

for 0 <k <s.

The global existence and asymptotic behavior of solutions to high order wave equation have been inves-
tigated by many authors. We may refer to [6] [, 16HI8, 21H24]. For quantum stochastic evolution inclusions
and variational inclusions, some related results have been established in [12].

The paper is organized as follows. In Section [2| we review the previous results on the problem ,
. A nonlinear approximation of global solutions to , with ¢ = 1 is established in Section |3l In
Section [l when o = 1, we prove that global solution is asymptotic to the superposition of nonlinear diffusion
waves which are given explicitly in terms of the self-similar solution of the viscous Burgers equation. Finally,
large time behavior of global solutions is obtained for ¢ > 2 in Section

2. Decay property of solution operator

To prove our main results, we need to deduce the solution formula for the problem ((1.1)), (1.2)), which
will be used in the present paper (see also [24]). For this purpose, we first investigate the linear equation of

TD):

Utt — Ugptt — Ugy — VUggt = 0. (21)
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Taking the Fourier transform, we have

(14 Dy + vE2a; + 20 = 0. (2.2)
The corresponding initial values are given as
t=0:0=f(£),a =i€y(£). (2.3)

The characteristic equation of (2.2) is
(1+EON A+ 2 =0. (2.4)
Let A = A1 (&) be the corresponding eigenvalues of (2.4), we obtain

_ —pgxig /e — 4

Ax(§)

2(1+¢€?)
The solution to the problem — is given in the form
a(€,1) = i€G(€,09(6) + H(E D (©), (2.5)
where 1
G = g @ (26)
+ - —
and )
&) = 35 —asg MO =A@ ). (27)

We define G(z,t) and H(x,t) by G(z,t) = .F 1 G(E,1)](x) and H(z,t) = .F 1 [H(E,1)](x), respectively, where
Z~1 denotes the inverse Fourier transform. Then, applying .# ! to (2.5)), we obtain

u(t) = G(t) * g + H(t) = f. (2.8)
By the Duhamel principle, we obtain the solution formula to (1.1)), (1.2)

t
u(t) =G(t) * Opg + H(t) x f —|—/ G(t — 1) x (I —*) 1020 (u)(7)dr. (2.9)
0
Next, we state the decay estimates of the solution operators G(¢) and H(t) appearing in the solution formula
(2.8]), which was established in [23] and [24].
Lemma 2.1. The solution of the problem ({2.2)), (2.3)) satisfies

(1+ &€, 1) + 2la(, 1) < CeON(1+ )23 + €I (€)1*)
for £ € R and t > 0, where w(§) =

52
1+€2°
Lemma 2.2. Let G(&,t) and H(&,t) be the fundamental solution of [2.1)) in the Fourier space, which are
given in (2.6) and (2.7), respectively. Then we have the estimates
G(&.1)] < Cle] ™ (1 +€%)2emeO

and R
IH(E )] < Cem )

for € e R and t > 0, where w(§) = 15_?
Lemma 2.3. Let k>0 and 1 < p < 2. Then we have

185G (£) % Dppl| 12 < C(1+ 1) 2
1051 (E) * |2 < C(1+ 1) 20

[SIE
N[

)—% C —ct ak
lollr + Ce 07l L2,

[l= W=

%)—g C —ct ak
lellze + Ce™ |05l L2,

and
k

105G (1) * (T — 82) 7102 12 < C(1+ 1) 2627373 |||| » + Ce |08 2. (2.10)
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3. Approximate to solution to (1.1), (1.2) with o =1

In this section, our main aim is to obtain the nonlinear approximation to the global solutions. It follows
from mean value theorem that

o — o3P 4 R,
eyl i
sin o ‘5’2 = sin(|¢|t) + Ko,
el /1 - =2 lee )
cos T ep = cos([¢|t) + K3,
1 _
— =1+ Ky,
\ V1= eleP
where
. V[t e (a—a)
Ky = 5" 1+|§\ ,
LTS B
4—12 1 #12
_ EP(1€? + 272t €1/ 1 — == [€]%t
Ky = — | | (117 + - =) cos[ T 02+(1—02)|§’t],
(1+ [¢]? >(\/1—4‘T”|£|2+1+!£I2)
. )
PR e NP et i SPAMITRPR TN
(1+ [e2)(/1 - %m? 14 [€2) L+ leP
~ 2)|£12
P
\ 8(1 — = 1€]204) 2

with 6;(i = 1,2,3,4) € (0,1).
When [£| < §, where § is a small positive constant, we obtain from the above four equalities

) At _ Aot 2 el § 5|62t
g(é_’t) _ e e _ 1 + |£| e 2(1+‘§‘2> Sin ‘5'2
A = A €| 1_M’£‘2 1+|§|
1 vey -
Ee 25 sin €|+ Jh
and
. )ure/\_t _ )\76)‘+t
H(E,t) =
— 2 4—12 | ¢12
A PVA I e o I Sl 1 = g l€]%t
Vil e 20+€?) gin i + e 20+EP) cos € (3.1)

= 2 2
2) /174*41/2|£|2 1+‘§| 1+’f‘

— e 5 cos €|t + Ja.
When |¢| < 6, J; and Jo satisfy
[Ti] < C(1L+ [P t)e e

and B ,
o] < C(1€] + |€]3t)e kI
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Taking
R 1 v N v
Go(€,t) = e H T simele, - Fo(€,1) = e F cos e
Then o , ) R ,
(G = Go) (&) < Ce & [(H = Ho)(&, )| < Clgle (3:2)
for |£] < 6.
Lemma 3.1. Let k>0 and 1 < p < 2. Then we have
k
105Go () % Bl 2 < C(1+1) 267272 g||1s + Ce™|0kp] 2, (3.3)
k
|05Ho (1) * pllza < CL+8) 7267272 g 1 + Ce Dkl 2, (3.4)
10£Go () % Baspllze < CL+1) 267272 ]l 1o + Cect 5 D12, (3.5)
and
k _l(l_l)_ﬁ
[02G0(t) * Ouipllr2 < Ct 22227 2| Lo (3.6)
Proof. We only give the proof of (3.5). The Plancherel theorem entails that
107Go(t) * Dugll72 = /5 o [EP721G0 (&, 1) P1(€)[Pdé + /lf . EP721G0 (& PI(E)Pde = L + I (3.7)
By (3.1)), Holder inequality and Hausdorff inequality, we have
L <1+ 2 6 F )3, (3.8)
Owing to (3.1)), I2 can be estimated as
I < Ce™® Sup(\SIQ(kl)edgzt)/ €12 p2dg < Ce=t= D |0k gl[7.. (3.9)
l¢1>1 l¢1>1
Inserting (3.8) and (3.9) into (3.7)) yields (3.5)). Thus we have completed the proof. O
Let
¢"(0) [* 2 2
w(t) = Go(t) * Opg + Ho(t) * f + 5 Go(t — 7) * 05w (T)dT. (3.10)
0

In order to obtain nonlinear approximation of global solutions to the Cauchy problem (1.1}, (1.2, we

need the following lemma, which comes from [9] (see also [25]).

Lemma 3.2. Assume that ¢ = ¢(v) is a smooth function. Suppose that ¢(v)

O([v]**?) (8 > 1 is an

integer) when |v| < vy. Then for integer m > 0, if v € W™4(R™) (| LP(R™) (N L>*(R™) and ||v||z~ < vp,

then ¢(v) € W™ (R™). Furthermore, the following inequality holds:
187 ()| < Cllv]leo 105 0] allv]
where 1 < p,q,r < +00 and % = % + %.
Lemma 3.3. Let s > 1. Assume that f,g € H*(R)(L'(R). Put
o = [[fllasqrr + gl as 0o
w(t) is defined by . If & is suitably small, then
|05z (t) 2 < Céo(1+8)737%

for 0 <k <s.

(3.11)
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Remark 3.4 1f “f,g € H*(R)(1L!(R)” is replaced by “f € H*(R)(1L!(R) and g € H*'(R) (\L}(R)", put

&= ([ fllasq o + gl zstr -

If & is suitably small, then
k
|0k (t)]| 2 < CEy(14+1¢) 5 2.

Proof. We only prove (3.11]). Set

M) =" sup (1+7)i+5 05w (t)]| 2.
o 0ST<t

By applying (3.10)) and Minkowski inequality, we arrive at

L "o
o (02 < 104G0(0) + 0glza + 105Halt) sz + [ T 108G(e — 7) 322
t /"
+ [ 10t - )+ 2 ) ar)ar

L4+ I+ I3+ I
It follows from with p = 1 that
I < CO+ 0772 gl
Due to with p = 1 to Is, it holds that
L < CU+D75 2| flae -

Equation ({3.5), Lemma and Gagliardo-Nirenberg inequality entail that

@®)||2(r)dr

12 i3
I3 < 0/2(1 Ft— 7)1 ||| pdr + 0/2 e =) (t — 1) 2 || 2| f2dr
0 0

ol

SCMQ(t)/ (1+t—7)" 127 2(1+7) 2dr
0

|+

ror() [T et ) e
0

< CM2(t)(1+ )1 2.

By exploiting (3.6)), Lemma and Gagliardo-Nirenberg inequality, we get
t
L < c/ (t — 1)} 052 padr
t
3

<o) [ mH e nH ey

2

< CM2(t)(1+1) 1 5.

Combining (3.13))-(3.17) yields
M(t) < Cé&y + CM?(t),

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

This inequality can be solved as M(t) < Cé& if & is sufficiently small. Thus we have completed the proof

of lemma.

O
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Lemma 3.5. Let k>0 and 1 < p < 2. Then we have
k
105(G = Go) (1) * Oucellzz < C(1+) 265727572 gl + Ce™|0k 2, (3.18)
1,1 1
105G — Ho)(#) * pll 2 < C(1+8) 25727572 | 1y + Ce™ 0 12, (3.19)
k 2\ —1 2 _1 l_l)_&_, ot _k+1 l
102Go(t) *{(L = 07)"" — I}0z¢ll 2 < C(L+1) 2% 272 2oL + Ce™t 1901l 2 (3:20)
and k 2\—142 —3(2—-3)-£—1 —ct || qk+
102(G — Go)(t) * (1 = 97) " Ozepllp2 < C(L+t) 2e 272 lg|[r + Ce™ ([0 @l 12
Proof. We only give the proof of (3.18)). By applying the Plancherel theorem, we deduce that
195G —Go) (1) = duel = [ 1614216 — o) 0PI
3.21
[ IePRIE - Go)e ORI (321)
€1>0
=11 + Is.
For the low frequency part Iy, using (3.2), Holder inequality and Hausdorff inequality, we estimate as
Ceolel2s L _1(2_q)_p_
nEo(f ek g, < 0+ ol (322
where % + [% =1 and % + % = 1. Also, for the high frequency part Is, we have
L<C | [PMPemgPde < Cem 07 7. (3.23)
€[>0
Combining (3.21)), (3.22) and (3.23) yields (3.18]). Thus we have completed the proof of lemma. O
In what follows, we prove Theorem
Proof. We introduce the quantity
S
X(t) =Y sup (1471308 (u — @) 2,
0<T<
k=0"STS
where £ > 0 is a fixed small constant. Due to (2.9 and (3.10)), we arrive at
(u—@)(t) = (G — Go)(t) * Oug + (H — Ho)(t) x f
! 2\ 172 ¢"(0) ,
+ Q(t —7) (I = 0;)7 0y((u) — ——u”)(r)dr
¢"(0 (1 - 02) 162 d
g 2) " 0x{(u+ @) (u — @) }(r)dr (3.24)
(z)//

/ (G = Go)(t =) x (I — 2) R (w?) (r)dr
¢>” / Go(t — )+ {(I — 2)~" — [}02(w?)(7)dr.
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Owing to and Minkowski inequality, we get
105 (u — @) ()| 12 < 105G — Go) () * Dugll 2 + |05 (H — Ho)(£) * £ 12
v / 06— 7) # (1 - )7 326 (w) — Do) () er
0
t /!
N0kG (= 7) (1 = 027 02 (b(u) - ‘ﬁf”u%)(ﬂum
+ 1710 / 056t —7) % (1~ 92)7 62w + @) — @)} (7)o
|¢”(0 )| kGt — 2\—192 _
. ua (t—7) % (I — 82) 7 0 (u + @) (u — @) }(7)|| oddr
(3.25)
/! 0
+ 1700 / 105(G — Go)(t — 7) * (1 — 82)702(w) () | r
/! O
+ 1700 / 056 — Go)(t — 7) » (I — 02)7 82(=") () 217
/! O
e e T
+ 120 / 05Go(t — )+ {(1 — 62) — 1}02(w?)(7)|| adr
L2 1+ Jo+ J31 + Jzo + Jug + Jao + Js1 + Js2 + Je1 + Jso.
By , we have
Ji < CA+ )15 (llgll g + llgllesr)- (3.26)
Making use of , we obtain
Jy < CL+ )T 5 (| fll 1 + [1f]1120)- (3.27)
Thanks to Lemma and , we obtain
// 0
lé(u) — ¢2()u2(7)”u < Cllu(r) ||z llu(r) 22 < CEF(1+7) (3.28)
wnd ¢"(0)
r\a§<¢<u> — ) (D)l < Cllu(m) [ |95u(r)l,2 < C&FL+7)737%, (3.29)
It follows from ) and - - that
3 3 K (0
Jn<cC /O (14t =) 0w) — Ci ) (r) e
: —c(t—7) || ok _ ¢//(0) 2 )
+ [F e 0k 00w - )02 530)

& X
2

3 3
gc&f’/ (I+t—7) i
0

<CE3(1+t) 18t

0

1+7)"Ydr +C&? ’ et (147 ~i-%dr
1
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By using (2.10) with p = 2 and (3.29)), it holds that
t /!
i <C [tk - S s
2
5 1 1 5_k (3.31)
< Cé& / (I+t—7)2(1+7) 4 2dr )
3
<CEX1+1)"i70.
From Lemma Gagliardo-Nirenberg inequality and (1.9), (3.12]), we arrive at
[(u? = @®)(T)|lpr < Cllu+ @]l 2llu — w2 < CEX(H)(1+ 7)1 (3.32)
and .
Hak( - @) ()| <CEXH(A+7)7i T (3.33)
For the term Jy1, applying (2.10]) and (| - - yields
Jn <C / "Wt - )+ O / I — )7
0 0
3 : 3 3.34
< Cng(t)/2(1+t—T)i§(1+t)1+6d7'+0é31X<t)/2 e—clt= )(1—i—t) —5+edr (3:34)
0 0
<CEX(H)(1+t) 12t
and
t
Jao §C’/ (1+t77)_%||8§(u27w ) (T HL2dT+C/ et— T)||8k (u? — @) (7)|| 2dr
t
2
t
< CéﬁX(t)/ (1+t—7) 5(1+7) i 5 dr + CEX(t )/ —elt=7)(1 )~ i-5vegr  (339)
t t
2 2
<CEX(H)(1+1t) 172t
Lemma Gagliardo-Nirenberg inequality and (3.12) give the estimates
|=* ()l < Cllw ()72 < C& (1 +7)72 (3:36)
and 3k
105 (7) |2 < Cllw(7)l| = |0y w ()]l L2 < CEF(L+7) 7572, (3.37)
Owing to (3.10]) and (3.36)), (3.37)), we deduce that
t t
Js1 < 0/2(1 +t— 7)1 3 @ ()| pdr + 0/2 e~ 0|0k (7) | padr
0 0
3 5 3 : 3.38
< 0312/2(1—|—t—7')_4_5(1—!—7)_;(17—1—0@@12/2 €_C(t_T)<1—|-T)_%_%dT (3.38)
0 0
<CEX1+1t) 172
Equations (3.10) and (3.37)) give the estimates
t
J5o < C’/ (1+t—7)" 0% (7)| p2dr + C/ =7)|| 9k 2 (7)|| 2 dT
t
3
(3.39)

t
§C£’12ﬁ(1+t—r)1(1+7) 1~ 2d7+051ﬁ (H)(l-i-T)*%’ng

2 2

< CEL+1) i,
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Using ((3.20]), (3.36)) and (3.37]), we have

Js1 gc/j<1+t—r> H || (r >HL1dT+c/ =t — 7) 2 |0h (7)o
<cs? /05(1 +t—r) i) hdr 4 06 /0 SIS TCNRIRS S PR )
< CEX(1+1)70 5.
By (3.20) and (3.37), we may obtain
Je2 < Cﬁ(l +t— )20 w? | padr + C[e‘c(t‘”(t —7)7 2|k 2 dr
2 2 (3.41)

2 [* _3 E R A 1 3_k
<CE | A4+t—7)2(147)" 4 2d7+C8 | e (t—7)"2(1+7) 1 2dr
13

2 2

l\)\?r

<CEX1+1t) 1 3.

Combining (3.25))-(3.41) yields

X(t) < C&E +CEX(t)+CEL+CED.

This inequality can be solved as X (t) < Cé&] if & is sufficiently small. This completes the proof of Theorem
L1l O

4. Asymptotic profile of solution to (L.1)), (1.2) with o =1

We may rewrite (3.10]) as
(Z)// ¢Il(0) t
w(t) = Gi(t) * / Gi(t — 7) * 0y (T)dT+Ga(t) * wy — 1 / Go(t — 1) % Opww?(T)dr, (4.1)
0
where 1 2
(@+1)
g —1 e £2+1£ e~ 20t 7
(1) = FHel 500 = -
1 (@=1)° ’
G- 1@571575_ et
® { } V2mut
and 1.1 1.1
wy = §f+ 29 o = §f_ 29 (4.3)
We need the following decay properties for Gi(t)* and Ga(t)x*.
Lemma 4.1 ([7]). Let 1 < ¢ <p<o0 and 0 < j < k. Then we have
K LAy k=i
10:G1(8) % @llr < Ct 22272 {050 La (4.4)
and I
105G (1) * ¢llur < O 3G9 3l o (4.5)
Lemma 4.2 ([7]). Let 1 <p<2,0<j<kand0<I1<k. Then
J1l(l_1y_ k=g . _
105G1 (1) % @l 2 < C(1+1) 257277 |9l + Ce™t T 0L 12 (4.6)

and & LAy ki —ct, =kl Al
102G2(2) * pllz < C(L+8) 2" 272 [0 1e + Ce™ ™2 || 02| 2
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When / o(z)dx = 0, the above decay properties may be improved as follows.

—00

Lemma 4.3 ([7]). Let 1 < p <00, 0 < B <1, and k > 0 be an integer. Assume that ¢ € Ly and
oo
/ o(x)dx = 0. Then we have

—00

_lq_1y_ k48
10561 () * ¢llze < CE2070 7 g (4.7)

and )
185G (1) * o||1» < Ct 21~ *‘wmu (4.8)

In what follows, we consider the self-similar solution of the viscous Burgers equation

1 v
yr + (iyz)x = S
.. . . . — 1 =z = 4
Note that the self-similar solution is a solution of the form y = \/Z(I)(\/Z)’ Let y = \/ (\[, K) be the

[e.9]

self-similar solution that satisfies / O(x; K)dzr = K. Tt is well-known that ®(z; K) is given explicitly as
(see [T])

—00

. v (e%—l) &
Pl = \[fﬂev—l)fj’;eydy

We define a function v(z,t) by

sty = L1 (a:—m(t—i-l)
R T el ARy

where a1 and b; # 0 be real constant. Then v(x,t) is a nonlinear diffusion wave which travels at the speed
a1 in the x direction and has the mass K. It satisfies

LK) (4.9)

14
vt + ayvg + by (v?), = o Vs v(x,0) = vo(z),

/_Zv(x,t)dx = /:: vo(z)dz = K, (4.10)

where vo(z) = 5~ L ©(x —ay; 261 K). Then we define the nonlinear diffusion waves v = v (z,t) corresponding
to (4.1)) by the formula (4.9) with the following parameters:

¢"(0) * 4
a; = F1, bi=7TF R K=K := wy (x)de, (4.11)

where wq (z) are defined in ([&3). We note that the diffusion waves v = vy (z,t) travel at the different
speeds F 1 in the z direction, respectively, and satisfy (4.10|) with the above parameters. In particular, the

corresponding initial data vo(z) = vi(z) are given by v (z) = 2—})1@(3: + 1; 21 Ky) with by = +2O and

4
satisfy the relations
/ vE (v)dr = Ky = / wi (x)dz.

Obviously, the nonlinear diffusion waves satisfy
vi(t) = Gi(t) xof + 2
(

Jo G
v_(t) = Ga(t) x vy — LD [1Gy(t — 7) % D, (v2)(7)dr,

where G1(z,t), Ga(x,t) are given by (4.2)).
The nonlinear diffusion waves have the following decay estimates, which has been established in [5], [7].

7) * Oy (v2 1) (7)dr,
(4.12)
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Lemma 4.4. Let K; = max{|Kt|} be suitably small. Then we have:

: 3054
10zv(@)][ze < CEL(1+1) 20w

and
050y ) (Bl r < CMFe, (413)
where 1 < p < oo and k > 0. Here we note that K1 < C||(f,9)||;2 < CE;.

To prove Theorem we also need to discuss the interaction between two diffusion waves in the different
fields. Let v(x,t) be the nonlinear diffusion wave defined by (4.9)). We consider the problem

Yot gt + ba(0)e = Dthan,  (@,0) =0, (4.14)

where ag, by and v are real constants with v > 0. Note that the problem (4.14) is equivalent to the integral
formula

w(t) = —bg/o S1(t — 7) % a(v?)(7)dr,

(z—agt)®
where &1 (x,t) = \/ﬁe_ 24~ is a modified heat kernel. The solution ¢ of (4.14) satisfies the following

decay estimate.

Lemma 4.5 ([6,10]). Let 1 <p < oo and k > 0. Let v(x,t) be the nonlinear diffusion wave defined by (4.9)).
Assume that |K| is suitably small and that ay # ay. Then the solution 1 of the problem (4.14) satisfies the

decay estimate
1

L 2 _l(l_L)_,_E
1039 ()[[r < CIK[F(1+1t) 2 v/ 72, (4.15)
Based on the preliminaries, we give the proof of Theorem

Proof. To prove (1.10)), we set w = w — vy — v_ and define

A ()= sup (1+7)2+5]|0kw(r)] 2.

o 0<T<t

It is not difficult to check

@ = w? 4+ 2w(vg +vo) + 0 + 02+ 2010- = w(w +vg +vo) + 03+ 02+ 2u40_.
By the above equality and (4.1)), (4.12), it holds that

w = Gi(t) * (vg — @) + Ga(t) * (vg — )
¢/I ¢/I
—1-4/ Gi(t —7) % 0y ((w + vy +v_)w)dr + ——= / Gi(t — 1) % Op(vyv_)dr
0

(4.16)

+ ¢"(0) /t Gi(t — 7) % Dp(v? )dr — ¢”(0) /t Ga(t = 7) % 0 (@ + v4 + v-)w) dr
_¢” /g (t —7)* Op(viv_) dT—¢II /g (+)d

By applying 0% to ([4.16) and taking the L? norm, by Minkowski’s inequality, we have

105wz < 195G1(t) * (v5 — @§)lz2 + 195G2(2) * (vg — )l 12

" t
L [ 105610 = )00 (01 + 0 )) e
0

+ 1
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// 0 t 1/ O t
1550 [ 1050a(e = 1) 0utoro i 4 152 [ 0hGu(e - ) 2u(e2
0
LA |/ 10465 Or (@ + vy +v_)w) || odr
QS// k ¢// & 9
+ | Ha ) % Oz (viv_)dr||r2 + || 8 — 7T) % Op(vy)dT|| L2
:]I+J+K+]L~I—]P’+Q+S~I—T.

For the term I, noting that fR (v — @, ) dz = 0, it follows from (4.7) with p =2 and 8 = % that

,_.

I[<C+t)27%(8 + &),

where & = [(£,)lz3
2

Similarly, we obtain
ko~
I<CA+t) 226 +&).

In what follows, we estimate the nonlinear term K. We divide K into two parts and write K = K; + Ko,
where K; and Kj are corresponding to the time intervals [0, §] and [£,¢], respectively. We estimate the term
K; by using (4.6)) with p =1,7 =0 and [ = k. Then we arrive

K1<C/ I+t —7) 3 5)|(@ + vy + v )|l rdr

+C/ e=ct=") (¢ )—%||31;((w_|_v++v,)w)\|L2dT

(4.17)

<CEN(t )/ (14t —7)"172(1 +7)"3dr + CEN () /2 et (¢ — )3 (1 4 1) "3dr

0 0
<CEN@)(1+1) 25,
Owing to (4.6) with p = 2,7 =k and | = k. This yields
Ko <C’/ I+t—7)" 2||6 (w+ vy +vo)w)||p2dr
e / t— 1) 305 (e + vy + v |padr

(4.18)

gC’é"l/V(t)C/ (I+t—7)2(1+7) " 2dr + CEN () [ et —7)"2(1+ 7)1 2dr
2

[\)M\
&*

=

<CEN B+ t)—%—a.
Combining the estimates and - 4.18)) yields
K < CEN(t)(1+1t)2 5.

Similarly, we can prove

Eol

Q< CEN()(1+1t) 2 5.
It follows from (4.4]) that

3_k
2

t
L<C /O (L4t = 1) 755 (foso_ (7)1 + 10 (o0 ) (7) | 12)dr
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< 08} /Ot(l +t—T)iReTdr
< &1+ t)_%_gv
where we used with < C’él. 3
Similarly, by and with < C'&7, we have
S<CE(1+1t) 2"

k
2 .

By applying (4.15)) to P and T, we deduce that
P<CE(1+t)2 5,

and 3 -
T <CER(1+1)"2 2.

Therefore, we arrive at

N () < CEN () +C (& + E2+&).
This inequality can be solved as A (t) < Cé&y if & is sufficiently small. This completes the proof of Theorem
1.2 O
5. Asymptotic profile of solutions to (1.1, (1.2)) with o > 2

The aim of this section is to derive a simpler asymptotic profile of the solution uy, to the problem (2.1),

. We now define @y, by
ur(t) = Go(t) * Ozg + Ho(t) = f. (5.1)

In what follows, we shall prove that @y is a asymptotic profile of the linear solution uy,. In fact we have:

Lemma 5.1. Let s > 0. Assume that f € H*NL' and g € H*Y'NLY, and put & = |Juol| grsnrt + 19l stz -
Let uy, be the linear solution and let uy, be defined by (5.1). Then we have

105 (ur, — ar)(t)|| 2 < CE(L+1)" 172
for0 <k <s.

From (5.1), we arrive at

b= esewiorls 1oy el L
up =€z (5f+359) +e2 (57 =39
Let G1(t) and Ga(t) be defined by (4.2)), then
- 1, 1 1, 1
ur, = Gi(t) * (§f + 59) + Ga(t) * (§f - 59)-

Let p(z,t), o(x,t) be the solutions to the following problems

5 1
Op — 53550/) = 0:p =0, p(z,0)=5(f+9)(2),

and

1

v
2
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e}

respectively. Set M4 = /

— 00

(§f + %g)(w)dm We call

(vg +v_)(x,t) = MyGi(z,t+ 1) + M_Go(z,t + 1) (5.2)

is the superposition of the diffusion wave with the amounts M and M_.
Noting that ar(z,t) = (p + 0)(z,t), therefore

U, —Vy — V- =p—0v4 +0—v_.

Then p — vy and o — v_ satisfy the following problem

14
Oh(p—vy) — 58:395@ —v4) — Ox(p—v4) =0,

(0= v)(2,0) = 5 (f +9)(&) — My Gz, 1),

and y
Ao —v-) — 502, (0 —v_) = de(0—v_) =0,

(0~ v-)(2,0) = (f — g)(x) — M_Galz, 1),

respectively. By (4.4), (4.5) and (4.7)), (4.8)), it is not difficult to prove the following lemma.

Lemma 5.2. Let s > 0. Assume that f,g € H*TIN\Li. Put & =|(f, 9)|| gstr Nzt and & = ||(f, g)HHanL%.

Let vy be the diffusion waves defined by (5.2]). There exists a small positive constant o3 such that if & < J3,
then we have

105 (p — v ) ()12 < CE(L+1) 7173
and .
105 (0= v)(B)llp2 < C&(L+1) 772
for0 <k <s.
Proof of Theorems and[[.4 Combining (1.8) and Lemmas[5.1]and[5.2] we immediately obtain Theorems
and Thus we have completed the proof of Theorems [I.3] and O
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