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Abstract

In this paper, we mainly discuss some applications of semi-prequasi-invex type functions for multiob-
jective optimization and generalized nonlinear programming problems. Some optimality results for semi-
prequasi-invex type multiobjective optimization problem are given, then some optimality necessary con-
ditions under directional derivative and saddle point theories in semi-prequasi-invex type nonlinear pro-
gramming problem are derived. Moreover, some duality theorems for the generalized nonlinear fractional
programming problem with semi-prequasi-invexity are also obtained. Our results improve the corresponding
ones in the literature. c©2016 All rights reserved.
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1. Introduction

Convexity and generalized convexity play a crucial role in optimization theory. Therefore, researching
on its applications is important in optimization theory. In recent decades, there have been many literatures
studying on this subject (e.g., see [1–7, 9–14, 16]). Martin [6], Ben-Israel and Mond [2] established the
characterizations for the classical invexity. In 1988, Weir and Mond[7] gave the definition of preinvex
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functions, and discussed some applications in multiple objective optimization. Yang and Li presented
some properties of preinvex functions and semistrictly preinvex functions in [12] and [13], respectively.
In 2001, Yang et al. [14] introduced a class of prequasi-invexity, and some applications of prequasi-invex
type functions in multiobjective optimization problem have been obtained. Luo et al. [4, 5] improved some
of the results in [14] under weaker assumptions. In 2007, Antczak in [1] introduced an important generalized
convex function named G-preinvex functions. Luo and Wu [3] discussed the relationships between G-preinvex
functions and semistrictly G-preinvex functions. Yang and Chen proposed a class of semi-preinvexity in
[11], and discussed applications of semi-preinvex functions in the pre-variational inequalities. A significant
generalization of convex functions, so-called semi-prequasi-invex functions, was introduced by Yang in [9].
Recently, Zhao et al. [16] developed the criterion for semi-prequasi-invex functions. Xu [8] established four
theorems of duality under suitable assumptions in fractional programming. Zhao [15] discussed a type of
generalized convexity and other related ones and their applications in optimization theory.

Motivated by the results in [8, 13, 16] and mentioned above, in this paper, we mainly study some op-
timality and saddle point theories for multiobjective optimization and generalized nonlinear programming
problems under semi-prequasi-invexity. We establish some optimality conditions and saddle point theo-
rems for nonlinear programming problem (P2) and multiobjective optimization problem (MP ), respectively.
Moreover, by employing the alternative theorem, we derive some duality results for generalized nonlinear
fractional programming problem (FP) with semi-prequasi-invex type functions. Our results improve the
corresponding ones in [8, 11, 15, 16].

2. Preliminaries

In this section, we first recall some concepts about semi-prequasi-invex functions.

Definition 2.1 ([9, 11]). A set K ⊆ Rn is said to be semi-connected if there exists a vector function
η : K ×K × [0, 1]→ K, such that

x, y ∈ K, λ ∈ [0, 1]⇒ y + λη(x, y, λ) ∈ K.

Remark 2.2. If Ki ⊆ Rn (i ∈ I) is a family of semi-connected sets with respect to the same vector function
η : K ×K × [0, 1]→ K, then, their intersection

⋂
i∈IKi is also a semi-connected set.

The following class of semi-prequasi-invex functions were introduced by Yang [9].

Definition 2.3 ([9]). Let K ⊆ Rn be a semi-connected set with respect to η : K ×K × [0, 1]→ K. We say
that f : K → Rn is semi-prequasi-invex if, for all x, y ∈ K,λ ∈ [0, 1],

f(y + λη(x, y, λ)) ≤ max{f(x), f(y)}.

Definition 2.4 ([9, 16]). Let K ⊆ Rn be a semi-connected set with respect to η : K ×K × [0, 1]→ K. Let
f : K → Rn. We say that f is semistrictly semi-prequasi-invex if, for all x, y ∈ K, f(x) 6= f(y), λ ∈ (0, 1),

f(y + λη(x, y, λ)) < max{f(x), f(y)}.

Definition 2.5 ([9, 16]). Let K ⊆ Rn be a semi-connected set with respect to η : K ×K × [0, 1]→ K. Let
f : K → Rn. We say that f is strictly semi-prequasi-invex if for all x, y ∈ K, x 6= y, λ ∈ (0, 1),

f(y + λη(x, y, λ)) < max{f(x), f(y)}.

Example 2.6. This example illustrates the existence of semi-prequasi-invex function with respect to η :
K ×K × [0, 1]→ K on the semi-connected set K. Let K = R, and

f(x) =

{
1, x > 0;
0, x ≤ 0,
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η(x, y, λ) =


λ2x− λy + λ3, x > 0, y > 0;

λx− λy + λ2

2 , x ≤ 0, y ≤ 0;
−λx2 − λy + 5λ, x > 0, y ≤ 0;
λx3 − λy − λ3, x ≤ 0, y > 0.

Obviously, K is a semi-connected set with respect to η, and f(x) is a semi-prequasi-invex function.

3. Optimality conditions and saddle points for optimization problems

In this section, we first consider the following multiobjective optimization problem:

(MP ) : min f(x) = (f1(x), · · · , fm(x))T ,
s.t. x ∈ K,

where f : K → Rm is a vector-valued function and K ⊆ Rn is a semi-connected set with respect to
η : K ×K × [0, 1]→ K, K ⊆ Rn.

Throughout this section, let

Rm+ = {x ∈ Rm
∣∣ x = (x1, · · · , xm), xi ≥ 0, 1 ≤ i ≤ m},

Rm++ = {x ∈ Rm
∣∣ x = (x1, · · · , xm), xi > 0, 1 ≤ i ≤ m}.

Firstly, we recall the definitions of efficient solutions and weakly efficient solutions.

Definition 3.1 ([14]). A point x̄ ∈ K is called a global efficient solution of (MP ), if there does not exist
any point y ∈ K, such that

f(y) ∈ f(x)−Rm+\{0}.

A point x̄ ∈ K is called a local efficient solution of (MP ), if there is a neighborhood N(x) of x̄, such
that there does not exist any point y ∈ K ∩N(x), such that

f(y) ∈ f(x)−Rm+\{0}.

Definition 3.2 ([14]). A point x̄ ∈ K is called a global weakly efficient solution of (MP ), if there does not
exist any point y ∈ K, such that

f(y) ∈ f(x)−Rm++.

A point x̄ ∈ K is called a local weakly efficient solution of (MP ), if there is a neighborhood N(x) of x̄,
such that there does not exist any point y ∈ K ∩N(x), s.t.

f(y) ∈ f(x)−Rm++.

Similar to the proof of Lemma 1 in [11] (using the same method with some suitable modifications), we
can obtain Lemma 3.3 as follows.

Lemma 3.3. Let K be a semi-connected set of Rn, and fi(x), i = 1, · · · ,m, be semi-prequasi-invex functions.
Then exactly one of the following two systems is solvable:

(i) there exists x̄ ∈ K, s.t. f1(x̄) < 0, · · · , fm(x̄) < 0;

(ii) there exists λ ∈ Rm+\{0}, s.t.
m∑
i=1

λifi(x) ≥ 0 ∀x ∈ K.

Theorem 3.4. Let K ⊆ Rn be a semi-connected set with respect to η : K ×K × [0, 1]→ K, and fi(x), i =
1, · · · ,m, be semi-prequasi-invex functions with respect to the same η. If x∗ ∈ K is a global weakly efficient
(efficient) solution of (MP ), then there exists λ ∈ Rm+\{0}, such that x∗ is an optimal solution of the
following scalar optimization problem:

(Pλ) : min λT f(x),

s.t. x ∈ K,λ ∈ Rm+\{0}.
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Proof. Since x∗ ∈ K is a global weakly efficient solution of (MP ), then, the systems that there exists
x ∈ K, such that fi(x) − fi(x

∗) < 0 (i = 1, · · · ,m), have no solution. From Lemma 3.3, there exists
λ ∈ Rm+\{0}, λi ≥ 0 (i = 1, · · · ,m), s.t.

m∑
i=1

λi(fi(x)− fi(x∗)) ≥ 0, ∀x ∈ K,

which implies that
m∑
i=1

λifi(x) ≥
m∑
i=1

λifi(x
∗), ∀x ∈ K,

or
λT f(x) ≥ λT f(x∗), ∀x ∈ K,

where λ = (λ1, · · · , λm) ≥ 0, with λk > 0, k ∈ {1, · · · ,m}.
Note that λ ∈ Rm+\{0}, then x∗ is an optimal solution of min{λT f(x)}, s.t. x ∈ K, λ ∈ Rm+\{0}. This

completes the proof.

Next, we recall some definitions of directional derivative (for more details, see [8]).

Definition 3.5. Let K ⊆ Rn be a semi-connected set with respect to η : K×K×[0, 1]→ K, f(x) : K → Rn.
If the following limit exists for x, y ∈ K, denoted by f+(Px, y(0)),

f+(Px, y(0)) = lim
θ↓0

f(y + θη(x, y, θ))

θ
,

then, f+(Px, y(0)) is called the right directional derivative of f(x) at y along the path y + θη(x, y, θ).

Definition 3.6. Let K ⊆ Rn be a semi-connected set with respect to η : K×K×[0, 1]→ K, f(x) : K → Rn.
For x, y ∈ K, if there exists {θi} ⊆ [0, 1], lim

i→∞
θi = 0, such that the following limit exists, denoted by

ξ(f, x, y),

ξ(f, x, y) = lim
θi↓0

f(y + θiη(x, y, θi))

θi
,

then, ξ(f, x, y) is called a right directional limit of f(x) at y along the path y + θη(x, y, θ). M(f, x, y)
denote all right directional limits of f(x) at y along the path y + θη(x, y, θ), that is,

M(f, x, y) = {ξ(f, x, y)
∣∣ ∃ {θi} ⊆ [0, 1], lim

i→∞
θi = 0, s.t. ξ(f, x, y) = lim

θi↓0

f(y + θiη(x, y, θi))

θi
}.

Now, we consider the following nonlinear programming problem with inequality constraints.

(P2) : min f(x),

gi(x) ≤ 0, i ∈ J = {1, · · · ,m}, x ∈ K,

where K is a subset of Rn, f, gi (i ∈ J) are real-valued functions on K, and D = {x ∈ K
∣∣ gi(x) ≤ 0, i ∈ J}

denotes the feasible set of (P2).

Theorem 3.7. Let K ⊆ Rn be a semi-connected set with respect to η : K × K × [0, 1] → K, assume
f(x) : K → R, gi(x) : K → R, i = 1, · · · ,m, are semi-prequasi-invex functions on K with respect to
the same vector valued function η(x, y, θ). If x̄ is an optimal solution of (P2), and the right directional
derivatives of f(x), gi(x), i = 1, · · · ,m, at x̄ along the path x+ θη(x, x, θ) exist for all x ∈ K. Then, there
exists vector (λ, µ) ∈ (R+ ×Rm+ )\{0}, such that

λf+(Px, x(0)) +
m∑
i=1

µig
+(Px, x(0)) ≥ 0,

m∑
i=1

µigi(x) = 0.
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Proof. By the condition that x̄ is an optimal solution of (P2), it follows that the following systems have no
solution on K.

f(x)− f(x) < 0,

gi(x) < 0, i = 1, · · · ,m.

By fi(x) : K → R, gi(x) : K → R, i = 1, · · · ,m are semi-prequasi-invex functions, and Lemma 3.3, there
exists vector (λ, µ) ∈ (R+ ×Rm+ )\{0}, such that

λ(f(x)− f(x)) +
m∑
i=1

µigi(x) ≥ 0, ∀x ∈ K. (3.1)

Taking x = x into (3.1), then we have
m∑
i=1

µigi(x) ≥ 0. Meanwhile, we derive from µ ≥ 0, gi(x) ≤ 0, i =

1, · · · ,m that
m∑
i=1

µigi(x) ≤ 0. Thus,

m∑
i=1

µigi(x̄) = 0. (3.2)

From K is a semi-connected set with respect to η(x, y, θ), we derive that for all x ∈ K,

x+ θη(x, x, θ) ∈ K, ∀θ ∈ [0, 1].

This fact together with (3.1) yields

λ(f(x+ θη(x, x, θ))− f(x)) +

m∑
i=1

µigi(x+ θη(x, x, θ) ≥ 0.

Combining (3.2) and the above inequality yields

λ(f(x+ θη(x, x, θ))− f(x))

θ
+

m∑
i=1

µi
gi(x+ θη(x, x, θ)− gi(x)

θ
≥ 0, ∀θ > 0.

By the arbitrariness of θ > 0 and the existence of the right directional derivatives of f(x), gi(x), i = 1, · · · ,m,
at x̄ along the path x+ θη(x, x, θ), we obtain that

λf+(Px, x(0)) +
m∑
i=1

µig
+(Px, x(0)) ≥ 0 for all x ∈ K.

This completes the proof.

Remark 3.8. Theorem 3.7 improves and generalizes Theorem 3.1.2 in [15] from the semi-preinvexity case to
the semi-prequasi-invexity case.

In order to research the property of problem (P2), we give the following definition of Lagrangian function
L(x, µ) and saddle point.

L(x, µ) = f(x) +

m∑
i=1

µigi(x) : K ×Rm+ → R, K ⊆ Rn.

Definition 3.9 ([15]). A point (x, µ) ∈ K×Rm+ is said to be a saddle point for Lagrangian function L(x, µ)
if the following condition is satisfied:

L(x, µ) ≤ L(x, µ) ≤ L(x, µ), ∀x ∈ K, µ ∈ Rm+ .
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Theorem 3.10. Let K ⊆ Rn be a semi-connected set with respect to η : K × K × [0, 1] → K, assume
f(x) : K → R, gi(x) : K → R, i = 1, · · · ,m, are semi-prequasi-invex functions on K with respect to
η(x, y, θ). If x̄ is an optimal solution of (P2), and there exists x′ ∈ K, such that gi(x

′) < 0, i = 1, · · · ,m,
then, there exists a vector µ ∈ Rm+ , such that

L(x, µ) ≤ L(x, µ) ≤ L(x, µ), ∀x ∈ K, µ ∈ Rm+ ,

where

L(x, µ) = f(x) +

m∑
i=1

µigi(x) : K ×Rm+ → R.

Proof. By the condition that x̄ is an optimal solution of (P2), it follows that the following two systems
exclude each other on K.

f(x)− f(x) < 0,

gi(x) < 0, i = 1, · · · ,m.

The semi-prequasi-invexity of f(x), gi(x), i = 1, · · · ,m, on K with respect to the same η(x, y, θ) and Lemma
3.3, implies that there exists (λ, β) ∈ R+ ×Rm+ satisfying

λ(f(x)− f(x)) +
m∑
i=1

βigi(x) ≥ 0, ∀x ∈ K. (3.3)

Taking x = x into (3.3), we have
m∑
i=1

βigi(x) ≥ 0. However, βi ≥ 0, gi(x) ≤ 0, i = 1, · · · ,m imply that

m∑
i=1

βigi(x) ≤ 0. Consequently,

λ

m∑
i=1

βigi(x) = 0. (3.4)

Next we prove that λ > 0. Otherwise, there must be λ = 0, β ≥ 0, β 6= 0, taking them into (3.3), we
have

m∑
i=1

βigi(x) ≥ 0, ∀x ∈ K. (3.5)

Especially, taking x = x′ in (3.5), it follows that
m∑
i=1

βigi(x
′) ≥ 0, which contradicts the fact that β ≥ 0, β 6= 0,

and gi(x) < 0, for all i = 1, · · · ,m. Therefore, λ > 0. Then, dividing (3.3), (3.4) by λ, respectively, we
obtain

f(x) +
m∑
i=1

µigi(x) ≥ f(x), (3.6)

m∑
i=1

µigi(x) = 0, (3.7)

where µi = βi/λ.
Clearly, (3.6) and (3.7) imply that L(x, µ) ≥ L(x, µ). Because of µT g(x) ≤ 0 for all µ ∈ Rm+ , we have

L(x, µ) = f(x) +

m∑
i=1

µigi(x) ≥ f(x) +

m∑
i=1

µigi(x) = L(x, µ).

The proof is complete.

Remark 3.11. Theorem 3.10 is a true generalization of Theorem 3.1.5 of [15], in which the semi-preinvexity
is extended to the semi-prequasi-invexity.
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4. Duality in generalized nonlinear fractional programming

In this section, we shall study the applications of semi-prequasi-invex type functions in generalized
nonlinear fractional programming (FP), and we also demonstrate that the same results or even general ones
than [8] and [15] can be obtained under the semi-prequasi-invexity assumptions.

Throughout this section, let ‖·‖ denote l1-norm.
Consider the following generalized nonlinear fractional programming problem:

(FP ) : θ = inf
x∈S

max
1≤i≤p

{fi(x)

gi(x)
},

where fi(x) : K → R, gi(x) : K → R for all x ∈ K, gi(x) > 0 (i = 1, · · · , p), hj(x) : K → R (j =
1, · · · ,m), K ⊆ Rn, and S = {x ∈ K : hj(x) ≤ 0, j = 1, · · · ,m} 6= ∅. Furthermore, the feasible set S 6= ∅,
implies that θ < +∞. Throughout this section, unless otherwise is specified, we use the following notations.

F (x) = (f1(x), · · · , fp(x))T ,

G(x) = (g1(x), · · · , gp(x))T ,

H(x) = (h1(x), · · · , hp(x))T .

To investigate the dual for (FP ), let us first recall some definitions and lemmas about problem (FP )
(for more details, see [8] and [15]).

Definition 4.1. For x ∈ K, µ ∈ Rp+, ‖µ‖ = 1, and v ∈ Rm+ , we denote

GL(x, µ, v) =
µTF (x) + vTH(x)

µTG(x)
,

GK(x, v) = max
1≤i≤p

fi(x)

gi(x)
+

m∑
j=1

vj max
1≤i≤p

hj(x)

gi(x)
.

Then, we define

φ1(µ, v) = inf
x∈K

GL(x, µ, v),

φ2(v) = inf
x∈K

GK(x, v),

and two duals of the problem (FP ):

(FD1) : sup
µ∈Rp

+\{0},v∈Rm
+

φ1(µ, v),

(FD2) : sup
v∈Rm

+

φ2(v).

In the sequel, we cite the following three lemmas (for more details, see [8] and [15]), which declare a
weak duality relationship between (FD1) and (FP ), (FD2) and (FP ).

Lemma 4.2. Let x ∈ S, then for any µ ∈ Rp+, ‖µ‖ = 1 and v ∈ Rm+ , we have

φ1(µ, v) ≤ max
1≤i≤p

fi(x)

gi(x)
,

φ2(v) ≤ max
1≤i≤p

fi(x)

gi(x)
.

Lemma 4.3. Let v(FDi), i ∈ {1, 2}, denote the optimal value of (FDi), i ∈ {1, 2}, if v(FD1) = θ, then
v(FD2) = θ.
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Remark 4.4. Obviously, if θ = −∞, then v(FD1) = v(FD2) = −∞. So we focus on the case when
+∞ > θ > −∞.

Lemma 4.5. If x̄ is an optimal solution of (FP ), then x̄ is a weakly efficient solution of the system (TFP1),
where

(TFP1) : min(F (x)− θG(x))

H(x) ≤ 0, x ∈ K.

Now, we give two duality results and a saddle point theorem to (FP).

Theorem 4.6. Let K ⊆ Rn be a nonempty semi-connected set with respect to η : K × K × [0, 1] → K,
assume fi(x) − θ gi(x) (i = 1, · · · , p), hj(x) (j = 1, · · · ,m) are semi-prequasi-invex functions on K with
respect to the same η(x, y, θ) and there exists x′ ∈ K, such that H(x′) < 0. Then, (FD1) must have an
optimal solution (µ, v), with v(FD1) = v(FD2) = θ.

Proof. For all x ∈ S, since max
1≤i≤p

{fi(x)
gi(x)} ≥ θ, we have the following systems that have no solution.

max
1≤i≤p

{fi(x)− θ gi(x)} < 0,

H(x) ≤ 0, x ∈ K.

This implies that the following systems also have no solution.

fi(x)− θ gi(x) < 0, i = 1, · · · , p,
hj(x) < 0, i = 1, · · · ,m, x ∈ K.

Note that fi(x) − θ gi(x), hj(x) (i = 1, · · · , p, j = 1, · · · ,m) are semi-prequasi-invex functions on K with
respect to the same η(x, y, θ). This fact together with Lemma 3.3 yields that there exist µ ∈ Rp+, v ∈
Rm+ , (µ, v) 6= 0 such that

µT (F (x)− θG(x)) + vTH(x) ≥ 0 for allx ∈ K,

or
µTF (x)− θµTG(x) + vTH(x) ≥ 0 for allx ∈ K. (4.1)

Since (µ, v) 6= 0, H(x′) < 0, there must be µ 6= 0. Without loss of generality, we set ‖µ‖ = 1, then, we
get µTG(x) > 0. Hence, from (4.1) we can deduce that

µTF (x) + vTH(x)

µTG(x)
≥ θ for allx ∈ K. (4.2)

Therefore, by (4.2), Lemmas 4.2 and 4.3 we get the conclusion.

Theorem 4.7. Let K ⊆ Rn be a nonempty semi-connected set with respect to η : K × K × [0, 1] → K.
Suppose max1≤i≤p{fi(x) − θgi(x)}, hj(x) (j = 1, · · · ,m), are semi-prequasi-invex functions on K with
respect to the same η(x, y, θ), and there exists x′ ∈ K, s.t. H(x′) < 0. Then, (FD2) must have an optimal
solution µ̄, with v(FD2) = θ.

Proof. For all x ∈ S, since max
1≤i≤p

{fi(x)
gi(x)} ≥ θ, we have the following systems with no solution.

max
1≤i≤p

{fi(x)− θ gi(x)} < 0,

H(x) < 0, x ∈ K.
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By the semi-prequasi-invexity of max
1≤i≤p

{fi(x) − θgi(x)}, hj(x) (j = 1, · · · ,m) and Lemma 3.3, using the

same proof in Theorem 4.6, it holds that there exists µ ∈ Rm+ , such that

max
1≤i≤p

{fi(x)− θgi(x)}+ µTH(x) ≥ 0 for allx ∈ K. (4.3)

Then, for any fixed x ∈ K, let s
∆
= s(x) ∈ {1, · · · , p}, such that

max
1≤i≤p

{fi(x)− θgi(x)} = fs(x)− θgs(x). (4.4)

Note that gs(x) > 0 for all x ∈ K. This fact together with (4.3) and (4.4) leads to

0 ≤ fs(x)

gs(x)
− θ +

µTH(x)

gs(x)

≤ max
1≤i≤p

{fi(x)

gi(x)
}+

m∑
j=1

µj max
1≤i≤p

{hj(x)

gi(x)
} − θ

= GK(x, µ)− θ.

Combining the above inequality with Lemma 4.2 and the definition of θ yields

v(FD2) = θ, φ2(µ) = inf
x∈K

GK(x, µ) = θ.

Therefore µ is an optimal solution of (FD2) and thus completes the proof.

Remark 4.8. Obviously, convexity and semi-preinvexity are special cases of semi-prequasi-invexity, thus,
Theorem 4.7 generalizes Theorem 3.4 in [8] and Theorem 3.4.2 in [15].

In the sequel, we discuss the saddle point for GK(x, µ).

Theorem 4.9. Let K ⊆ Rn be a nonempty semi-connected set with respect to η : K × K × [0, 1] → K.
Suppose max1≤i≤p{fi(x) − θ gi(x)}, hj(x) (j = 1, · · · ,m), are semi-prequasi-invex functions on K with
respect to the same η(x, y, θ). If x̄ is an optimal solution of (FP ), and there exists x′ ∈ K, s.t. H(x′) < 0.
Then, there exists µ ∈ Rp+, such that (x, µ) is a saddle point of GK(x, µ) on K×Rm+ , that is, for all x ∈ K,
for all µ ∈ Rm+ , we have

GK(x, µ) ≤ GK(x, µ) ≤ GK(x, µ),

where

GK(x, µ) = max
1≤i≤p

{fi(x)

gi(x)
}+

∑m

j=1
µj max

1≤i≤p
{hj(x)

gi(x)
}.

Proof. We first consider the following semi-prequasi-invexity programming problem,

(TFP2) : min max
1≤i≤p

{fi(x)− θgi(x)},

s.t. H(x) ≤ 0, x ∈ K.

Let
HL(x, µ) = max

1≤i≤p
{fi(x)− θgi(x)}+ µTH(x).

One can easily check that x̄ is an optimal solution of (TPF2). By the fact that (TPF2) is a semi-prequasi-
invexity programming and Theorem 3.7, we obtain that there exists µ ∈ Rm+ , such that

max
1≤i≤p

{fi(x)− θgi(x)}+ ξTH(x) ≤ max
1≤i≤p

{fi(x)− θgi(x)}+ µTH(x)

≤ max
1≤i≤p

{fi(x)− θgi(x)}+ µTH(x) for allx ∈ K, ξ ∈ Rm+ ,
(4.5)
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and
m∑
j=1

µjhj(x) = 0. (4.6)

Note that the problem θ = max
1≤i≤p

{fi(x)
gi(x)} is equivalent to the problem max

1≤i≤p
{fi(x)−θgi(x)}. This fact together

with (4.6) yields

0 = max
1≤i≤p

{fi(x)− θgi(x)}+ µTH(x)

= max
1≤i≤p

{fi(x)

gi(x)
} − θ + µTH(x)

= max
1≤i≤p

{fi(x)

gi(x)
}+

m∑
j=1

µj max
1≤i≤p

{hj(x)

gi(x)
} − θ

= GK(x, µ)− θ.

(4.7)

Then, taking ξj = µj [ min
1≤i≤p

{ 1
gi(x)}] into (4.5), we have

0 ≥ max
1≤i≤p

{fi(x)− θgi(x)}+

m∑
j=1

µj max
1≤i≤p

{hj(x)

gi(x)
}

= max
1≤i≤p

{fi(x)

gi(x)
}+

m∑
j=1

µj max
1≤i≤p

{hj(x)

gi(x)
} − θ

= GK(x, µ)− θ for allµ ∈ Rm+ .

(4.8)

In the sequel, for any x ∈ K, let s
∆
= s(x) ∈ {1, · · · , p} such that

max
1≤i≤p

{fi(x)− θgi(x)} = fs(x)− θgs(x).

By gs(x) > 0 for all x ∈ K and (4.5), we have

0 ≤
max
1≤i≤p

{fi(x)− θgi(x)}+ µTH(x)

gi(x)

=
fs(x)

gs(x)
+

m∑
j=1

µj
hj(x)

gi(x)
− θ

≤ max
1≤i≤p

{fi(x)

gi(x)
}+

m∑
j=1

µj max
1≤i≤p

{hj(x)

gi(x)
} − θ

= GK(x, µ)− θ for allx ∈ K.

(4.9)

By virtue of (4.7)-(4.9), we obtain that

GK(x, µ) ≤ GK(x, µ) ≤ GK(x, µ) for allx ∈ K, µ ∈ Rm+ .

Hence, the proof is complete.
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