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Abstract
In this paper, firstly, we gain some basic properties and characterization theorems of the differential and local sub-differential

of the fuzzy mapping, obtain an important result that the local sub-differential of fuzzy mapping is an empty set or a convex
set. Secondly, we generalize the concept of local differentiability of fuzzy mapping, and obtain some basic properties about
the concept. At last, we study the relationships between sub-differential of fuzzy mapping and differential of convex fuzzy
mappings. Moreover, a sufficient condition that a class of fuzzy mapping have convex extension is gained. c©2017 all rights
reserved.
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1. Introduction

In 1972, Chang and Zadeh introduced the concept of fuzzy number in paper [6], from then on, many
scholars conducted in-depth research for fuzzy mapping (fuzzy value function in fuzzy number), and
obtained a series of important conclusions in differential and integral of fuzzy mapping [4, 5, 7, 11].
At same time, by the classical mathematical programming methods, the convexity of fuzzy mapping on
convex sets and its application in fuzzy programming are discussed [1–3, 9], which greatly enriched the
research contents of mathematical programming [10, 13, 16].

Convex fuzzy planning is a kind of fuzzy programming problem, which objective function is convex
fuzzy mapping (fuzzy convex function) and constraint set is convex set. In order to better use the analysis
methods to discuss convex fuzzy programming problem, Wang and Wu [14] gave the concepts of the
differential and gradient of fuzzy mapping in 2003. At the same time, the concept of sup-differential and
sup-gradient of fuzzy mapping was first given, and the characterization theorem which the differentiabil-
ity (sub-differentiability) of fuzzy mapping was gained; in addition, in the application of sub-differential
in convex fuzzy planning, two important conclusions were obtained. But, the basic properties of the
sub-differential of fuzzy mapping were not studied. So, in 2005, Zhang [16] gave some concepts of sub-
gradient, sub-differential, differential of convex fuzzy mapping and so on, study the application of convex
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fuzzy planning, and obtained some corresponding important conclusions. Convex fuzzy mappings have
a promising application prospect in fuzzy planning, but the difficulty of its application is that few fuzzy
mappings have convexity. So the convex extension of normal fuzzy mapping is such a very meaningful
work, which enables us to study of optimization problem on the fuzzy mapping by the principle of fuzzy
convex analysis.

On convexification for fuzzy mapping, a method of changing normal fuzzy mapping into convex
fuzzy mapping is given via the epigraph of fuzzy mapping [8, 17], and a characterization theorem of
convex fuzzy mapping is obtained. The second purpose of this paper is to study convex extension
problem of fuzzy mapping by means of the methods of convex fuzzy mapping. Firstly, in Section 3, we
discuss some basic properties of differential and sub-differential (referred to the local sub-differential in
this paper) of fuzzy mapping given by Wang and Wu [14]. Secondly, in the fourth section, the concept
of sub-differentiability of fuzzy mapping is generalized, and its basic properties are discussed. At last, in
Section 4, some convex continuation problems of fuzzy mapping are studied, a sufficient condition that
the convex extension of fuzzy mapping exists is gained.

2. Preliminaries

First, we recall some definitions and results about fuzzy numbers (see [14, 15]).
Let R be the real numbers field. A fuzzy set u on R is called a fuzzy number, if it has the following

properties:

(1) u is upper semi-continuous;

(2) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1;

(3) u is convex, i.e., u(λx+ (1 − λ)y) 6 min((u(x),u(y)) whenever x,y ∈ R and λ ∈ [0, 1];

(4) [u]0 = {x|u(x) > 0} is a compact set.

Let F0 denote the family of all fuzzy numbers and F0 is called fuzzy number space.
For any α ∈ R, define a fuzzy number α̃ by

α̃(t)=

{
1, t = α,
0, t 6= α,

for any t ∈ R.
For r ∈ [0, 1], the r-level set of fuzzy number u is the nonempty bounded closed interval [u]r =

[u∗(r),u∗(r)].
We call

u = {(u∗(r),u∗(r), r)|0 6 r 6 1}

is the parametric expression of u.
For any u, v ∈ F0 and λ ∈ R, the addition and scalar multiplication on F0 can be represented as:

u+ v = {(u∗(r) + v∗(r),u∗(r) + v∗(r), r)|0 6 r 6 1} ,

λu =

{
{(λu∗(r), λu∗(r), r)|o 6 r 6 1} , λ > 0,
{(λu∗(r), λu∗(r), r)|o 6 r 6 1} , λ < 0,

for any r ∈ [0, 1].

(u+ v)∗(r) = u∗(r) + v∗(r), (u+ v)∗(r) = u∗(r) + v∗(r),

(λu)∗(r) =

{
λu∗(r), λ > 0,
λu∗(r), λ > 0,
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(λu)∗(r) =

{
λu∗(r), λ > 0,
λu∗(r), λ > 0.

For u, v ∈ F0, if

u∗(r) 6 v∗(r) and u∗(r) 6 v∗(r) for any r ∈ [0, 1],

then we call u 6 v.

Theorem 2.1 ([14]). Let u, v,w ∈ F0.

(1) u 6 v ⇐⇒ u+w 6 v+w;
(2) u 6 v =⇒ λu 6 λv, λ > 0; u 6 v =⇒ λu 6 λu, λ < 0.

For u, v ∈ F0, define

D(u, v) = sup
r∈[0,1]

max {|u∗(r) − v∗(r)|, |u∗(r) − v∗(r)|} ,

then (F0,D) is a complete metric space, and satisfies

D(u+w, v+w) = D(u, v), D(λu, λv) =| λ | D(u, v),

for any u, v,w ∈ F0, λ ∈ R.
A subset H of F0 is said to be a lower bound if there exists a fuzzy number v ∈ F0, such that u > v

for any u ∈ H. v0 ∈ F0 is called the infimum of H, if v0 is a lower bound of H and satisfies v0 > v for any
lower bound v of H, and we denote it as v0 = inf {u|u ∈ H}.

Theorem 2.2 ([15]). Let a subset M of F0 is lower bounded, then its infimum must exist.

For ui ∈ F0,ui =
{
(ui∗(r),u∗i (r), r)|0 6 r 6 1

}
(i = 1, 2, · · · ,n), we define

u = (u1,u2, · · · ,un)

is n-dimensional fuzzy vector in F0, the set of all n-dimensional fuzzy vectors is denoted by Fn
0 .

Let Rn denotes n-dimensional Euclidean space. For

x = (x1, x2, · · · , xn),y = (y1,y2, · · · ,yn) ∈ Rn,

we define x 6 y if and only if xi 6 yi (i = 1, 2, · · · ,n). d(x,y) is the Euclidean distance between x and y.
For u = (u1,u2, · · · ,un), v = (v1, v2, · · · , vn)∈ Fn

0 and λ ∈ R, the addition and scalar multiplication on
Fn

0 are defined by

u+ v = (u1 + v1,u2 + v2, · · · ,un + vn), λu = (λu1, λu2, · · · , λun),

and we define u = v if and only if ui = vi (i = 1, 2, · · · ,n).

Theorem 2.3. Let mapping Dn: Fn
0 ×Fn

0 −→ [0,+∞) be defined by

Dn(u, v) =

(
n∑

i=1

(D(ui, vi))p
) 1

p

(p > 1).

Then

(1) Dn(u, v) = Dn(v,u);
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(2) Dn(u, v) > 0;

(3) Dn(u, v) = 0⇐⇒ u = v;

(4) Dn(u, v) 6 Dn(u,w) +Dn(w, v),

where
D(ui, vi) = sup

r∈[0,1]
max {| ui∗(r) − vi∗(r) |, | u∗i (r) − v

∗
i (r) |} .

Proof. (1) and (2) obviously are established.
(3) Dn(u, v) = 0⇐⇒ D(ui, vi) = 0 (i = 1, 2, · · · ,n)⇐⇒ ui = vi ⇐⇒ u = v.
(4) By Minkowski inequality,

Dn(u, v) =

(
n∑

i=1

(D(ui, vi))p
) 1

p

6

(
n∑

i=1

(D(ui,wi) +D(wi, vi))p
) 1

p

6

(
n∑

i=1

(D(ui,wi))
p

) 1
p

+

(
n∑

i=1

(D(wi, vi))p
) 1

p

6 Dn(u,w) +Dn(w, v),

hence mapping Dn is the distance on Fn
0 .

In this paper, the fuzzy mapping (fuzzy-valued function) is referred to the mapping projecting of a
nonempty subsetM of Rn to fuzzy number space F0, namely F :M→ F0. Form the parametric expression
of fuzzy number, that fuzzy mapping can be expressed as:

F(x) = {(F(x)∗(r), F(x)∗(r), r)|0 6 r 6 1} ,

where for any r ∈ [0, 1], F(x)∗(r) and F(x)∗(r) are defined as real-valued functions on M.
A fuzzy mapping F :M → F0 is called to be lower bound if there exists a fuzzy number v ∈ F0, such

that F(u) > v for any u ∈M .

Definition 2.4 ([17]). Let F : M → F0 be a fuzzy mapping, G = Co(epi(F)), then the fuzzy mapping
defined on CoM

FC(x) = inf {u|(x,u) ∈ G,u ∈ F0}

is called the convex hull of F, denoted by FC = CoF, where

epi(F) = {(x,u)|x ∈M,u ∈ F0, F(x) 6 u}

is the epigraph of F, CoM and Co(epi(F)) are the convex hulls corresponding toM and epi(F), respectively.
We can easily prove that FC = CoF is the convex fuzzy mapping on CoM, and FC is called the

convexification fuzzy mapping of F.

Theorem 2.5 ([17]). Let FC be the convexification fuzzy mapping of fuzzy mapping F :M→ F0, then

FC(x) = inf
m∈N

{λ1F(x
1) + λ2F(x

2) + · · ·+ λmF(xm)|λj > 0,

xj ∈M(j = 1, 2, · · · ,m),
m∑
j=1

= 1,
m∑
j=1

λjx
j = x}.
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Definition 2.6 ([14]). Let F :M→ F0 be a fuzzy mapping, x0 = (x0
1, x0

2, · · · , x0
n) ∈ int(M). If there exists an

u = (u1,u2, · · · ,un) ∈ Fn
0 , such that

lim
x→x0

D
(
F(x) +

∑
xi<x0

i
| xi − x

0
i | ui, F(x

0) +
∑

xi>x0
i
| xi − x

0
i | ui

)
d(x, x0)

= 0,

then we say F to be differentiable at x0, and call (u1,u2, · · · ,un) (denoted by ∇F(x0) = (u1,u2, · · · ,un))
the gradient of F at x0, where x = (x1, x2, · · · , xn).

Definition 2.7 ([15]). Let F :M → F0 be a fuzzy mapping. F is lower semi-continuous at a point x0 if for
any ε > 0, there exists δ > 0 such that

F(x0) 6 F(x) + ε̃

holds for all x ∈ M and ‖x − x0‖ < δ. F is called to be lower semi-continuous on M if it is lower
semi-continuous at every point of M.

Theorem 2.8. If F be the lower semi-continuous fuzzy mapping on M, then F(x)∗(r) and F(x)∗(r) are lower
semi-continuous real-valued functions on M for any r ∈ [0, 1].

Proof. Let F be the lower semi-continuous fuzzy mapping on M, x0 ∈ M, then for any ε > 0, there exists
δ > 0 such that

F(x0) 6 F(x) + ε̃

holds for all x ∈M and ‖x− x0‖ < δ. Therefore, for any r ∈ [0, 1], we have

F(x0)∗(r) 6 F(x)∗(r) + ε,

F(x0)∗(r) 6 F(x)∗(r) + ε.

It follows that F(x)∗(r) and F(x)∗(r) are lower semi-continuous fuzzy-valued functions on M.

Remark 2.9. Let f :M → (−∞,+∞) be a real-valued function, x0 ∈M , then the following conditions are
equivalent:

(1) f is lower semi-continuous at point x0;

(2) for any ε > 0 , there exists δ > 0 such that f(x0) 6 f(x) + ε, holds for all x ∈M and ‖x− x0‖ < δ.

(3) for any xn ∈M (n = 1, 2, · · · ), if ‖x− x0‖ → 0(n→∞), then

f(x0) 6 lim
n→∞ f(xn).

Related concepts of real function can be found in [12].

3. The differentiability and local sub-differentiability of the fuzzy mapping

In this section, we discuss some basic properties of the differential and local sub-differential of the
fuzzy mapping.

Theorem 3.1. Let F,G be fuzzy mappings (M→ F0), and be differentiable at point x0 ∈ int(M), then λF(λ > 0)
and F+G are differentiable at point x0, and

∇(λF)(x0) = λ∇F(x0), ∇(F+G)(x0) = ∇F(x0) +∇G(x0).
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Proof. (1) Let ∇F(x0) = (u1,u2, · · · ,un), then

lim
x→x0

D
(
λF(x) +

∑
xi<x0

i
| xi − x

0
i | (λui), λF(x

0) +
∑

xi>x0
i
| xi − x

0
i | (λui)

)
d(x, x0)

= λ lim
x→x0

D
(
F(x) +

∑
xi<x0

i
| xi − x

0
i | (ui), F(x0) +

∑
xi>x0

i
| xi − x

0
i | (ui)

)
d(x, x0)

= 0.

Therefore, we have
∇(λF)(x0) = (λu1, λu2, · · · , λun).

So
∇(λF)(x0) = λ∇F(x0).

(2) Let ∇F(x0) = (u1,u2, · · · ,un), then

lim
x→x0

D
(
F(x) +

∑
xi<x0

i
| xi − x

0
i | (ui), F(x0) +

∑
xi>x0

i
| xi − x

0
i | (ui)

)
d(x, x0)

= lim
x→x0

sup
r∈[0,1]

max{
| (F(x) +

∑
xi<x0

i
(x0

i − xi)ui)∗(r) − (F(x0) +
∑

xi>x0
i
(xi − x

0
i)ui)∗(r) |

d(x, x0)
,

| (F(x) +
∑

xi<x0
i
(x0

i − xi)ui)
∗(r) − (F(x0) +

∑
xi>x0

i
(xi − x

0
i)ui)

∗(r) |

d(x, x0)
} = 0.

Therefore, we have

lim
x→x0

sup
r∈[0,1]

| F(x)∗(r) − F(x
0)∗(r) −

∑n
i=1(xi − x

0
i)ui∗(r) |

d(x, x0)
= 0,

lim
x→x0

sup
r∈[0,1]

| F(x)∗(r) − F(x0)∗(r) −
∑n

i=1(xi − x
0
i)u
∗
i (r) |

d(x, x0)
= 0.

Let ∇G(x0) = (v1, v2, · · · , vn), then can similarly obtain

lim
x→x0

sup
r∈[0,1]

| G(x)∗(r) −G(x
0)∗(r) −

∑n
i=1(xi − x

0
i)vi∗(r) |

d(x, x0)
= 0,

lim
x→x0

sup
r∈[0,1]

| G(x)∗(r) −G(x0)∗(r) −
∑n

i=1(xi − x
0
i)v
∗
i (r) |

d(x, x0)
= 0.

So

sup
r∈[0,1]

| (F(x)∗(r) +G(x)∗(r)) − (F(x0)∗(r) +G(x
0)∗(r)) −

∑n
i=1(xi − x

0
i)(ui∗(r) + vi∗(r)) |

d(x, x0)

6 sup
r∈[0,1]

| F(x)∗(r) − F(x
0)∗(r) −

∑n
i=1(xi − x

0
i)ui∗(r) |

d(x, x0)

+ sup
r∈[0,1]

| G(x)∗(r) −G(x
0)∗(r) −

∑n
i=1(xi − x

0
i)vi∗(r) |

d(x, x0)
,

sup
r∈[0,1]

| (F(x)∗(r) +G(x)∗(r)) − (F(x0)∗(r) +G(x0)∗(r)) −
∑n

i=1(xi − x
0
i)(u

∗
i (r) + v

∗
i (r)) |

d(x, x0)



Y.-E Bao, J.-J. Li, J. Nonlinear Sci. Appl., 10 (2017), 1–17 7

6 sup
r∈[0,1]

| F(x)∗(r) − F(x0)∗(r) −
∑n

i=1(xi − x
0
i)u
∗
i (r) |

d(x, x0)

+ sup
r∈[0,1]

| G(x)∗(r) −G(x0)∗(r) −
∑n

i=1(xi − x
0
i)v
∗
i (r) |

d(x, x0)
.

Thus we can obtain

0 6 lim
x→x0

D

(F+G)(x) +
∑

xi<x0
i

| xi − x
0
i | (ui + vi), (F+G)(x

0) +
∑

xi>x0
i

(xi − x
0
i)(ui + vi)


6 lim

x→x0
D

F(x) + ∑
xi<x0

i

| xi − x
0
i | ui, F(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui


+ lim

x→x0
D

G(x) + ∑
xi<x0

i

| xi − x
0
i | ui,G(x

0) +
∑

xi>x0
i

(xi − x
0
i)vi

 = 0.

Therefore,

lim
x→x0

D

(F+G)(x) +
∑

xi<x0
i

| xi − x
0
i | (ui + vi), (F+G)(x

0) +
∑

xi>x0
i

(xi − x
0
i)(ui + vi)

 = 0.

So
∇(F+G)(x0) = (u1 + v1,u2 + v2, · · · ,un + vn) = ∇F(x0) +∇G(x0).

Definition 3.2 ([10]). Let F : M → F0 be a fuzzy mapping, x0 = (x0
1, x0

2, · · · , x0
n) ∈ M. If there exist

u = (u1,u2, · · · ,un) ∈ Fn
0 and δ > 0, such that

F(x) +
∑

xi<x0
i

| xi − x
0
i | ui > F(x

0) +
∑

xi6x0
i

(xi − x
0
i)ui

holds for all x ∈ U(x0, δ)∩M (where U(x0, δ) =
{
x ∈ Rn|d(x, x0) < δ

}
), then we call u = (u1,u2, · · · ,un) a

sub-gradient at x0 of F, and say the set of all sub-gradients of to be sub-differential of F at x0 of F (denoted
by ∂F(x0)), i.e.,

∂F(x0) = {ξ|u = (u1,u2, · · · ,un) ∈ Fn
0

and there exists δ > 0, such that

F(x) +
∑

xi<x0
i

| xi − x
0
i | ui > F(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui for any x ∈ U(x0, δ)∩M}.

Remark 3.3. In this paper, we define the sub-differential of Definition 3.2 that is local sub-differential at x0,
denoted as ∂̂F(x0).

Theorem 3.4. Let Fi :M→ F0 (i = 1, 2) be fuzzy mappings, x0 ∈M, then

(1) ∂̂(λF)(x0) = λ∂̂F(x0) for any λ > 0;

(2) ∂̂F1(x
0) + ∂̂F2(x

0) ⊂ ∂̂(F1 + F2)(x
0).
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Proof. (1) For u = (u1,u2, · · · ,un) ∈ ∂̂(λF)(x0), by Definition 3.2, there exists δ > 0, such that

λF(x) +
∑

xi<x0
i

| xi − x
0
i | ui > λF(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui,

for any x = (x1, x2, · · · , xn) ∈ U(x0, δ)∩M.
By λ > 0, we have

F(x) +
∑

xi<x0
i

| xi − x
0
i | (

ui
λ
) > F(x0) +

∑
xi>x0

i

(xi − x
0
i)(
ui
λ
).

Therefore, (u1

λ
,
u2

λ
, · · · ,

un

λ

)
=

1
λ
(u1,u2, · · · ,un) ∈ ∂̂F(x0).

So u = (u1,u2, · · · ,un) ∈ λ∂̂F(x0), i.e., ∂̂(λF)(x0) ∈ λ∂̂F(x0).
We can similarly obtain λ∂̂F(x0) ⊂ ∂̂(λF)(x0). So λ∂̂F(x0) = ∂̂(λF)(x0).
(2) Let u ∈ ∂̂F1(x

0) + ∂̂F2(x
0), then there exist u1 ∈ ∂̂F1(x

0), u2 ∈ ∂̂F2(x
0), such that u = u1 + u2. By

Definition 3.2, there exist δ1, δ2 > 0, such that

F1(x) +
∑

xi<x0
i

| xi − x
0
i | u

1
i > F1(x

0) +
∑

xi>x0
i

| xi − x
0
i | u

1
i, (3.1)

for any x ∈ U(x0, δ1)∩M,

F2(x) +
∑

xi<x0
i

| xi − x
0
i | u

2
i > F2(x

0) +
∑

xi>x0
i

| xi − x
0
i | u

2
i, (3.2)

for any x ∈ U(x0, δ2)∩M.
Take δ = min{δ1, δ2}, then by (3.1) and (3.2) we have

(F1 + F2)(x) +
∑

xi<x0
i

| xi − x
0
i | (u

1
i + u

2
i) > (F1 + F2)(x

0) +
∑

xi>x0
i

(xi − x
0
i)(u

1
i + u

2
i),

for any x ∈ U(x0, δ)∩M.
Therefore, we have

u = u1 + u2 ∈ ∂̂(F1 + F2)(x
0).

So
∂̂F1(x

0) + ∂̂F2(x
0) ⊂ ∂̂(F1 + F2)(x

0).

Corollary 3.5. If there exists α > 0, such that F1(x) = αF2(x) for any x ∈M, then

∂̂(F1 + F2)(x
0) = ∂̂F1(x

0) + ∂̂F2(x
0).

Proof. By Theorem 3.4 we only need to prove

∂̂(F1 + F2)(x
0) ⊂ ∂̂F1(x

0) + ∂̂F2(x
0).

Let u = (u1,u2, · · · ,un) ∈ ∂̂(F1 + F2)(x
0), then there exists δ > 0, such that

(F1 + F2)(x) +
∑

xi<x0
i

| xi − x
0
i | ui > (F1 + F2)(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui,
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for any x ∈ U(x0, δ)∩M.
By F1(x) = αF2(x), for any x ∈M we have

(1 +α)F2(x) +
∑

xi<x0
i

| xi − x
0
i | ui > (1 +α)F2(x

0) +
∑

xi>x0
i

| xi − x
0
i | ui,

(1 +
1
α
)F1(x) +

∑
xi<x0

i

| xi − x
0
i | ui > (1 +

1
α
)F1(x

0) +
∑

xi>x0
i

| xi − x
0
i | ui,

for any x ∈ U(x0, δ)∩M.
Therefore,

u1 =

(
1

1 +α
u1,

1
1 +α

u2, · · · ,
1

1 +α
un

)
∈ ∂̂F2(x

0),

u2 =

(
α

1 +α
u1,

α

1 +α
u2, · · · ,

α

1 +α
un

)
∈ ∂̂F1(x

0).

Thus, we obtain

u = u1 + u2 ∈ ∂̂F1(x
0) + ∂̂F2(x

0), i.e., ∂̂(F1 + F2)(x
0) ⊂ ∂̂F1(x

0) + ∂̂F2(x
0).

Theorem 3.6. Let F : M → F0 be a fuzzy mapping, u = (u1,u2, · · · ,un) ∈ Fn, then u ∈ ∂̂F(x0) if and only if
u∗(r) ∈ ∂F̂(x0)∗(r) and u∗(r) ∈ ∂F̂(x0)∗(r) for any ∈ r[0, 1], where

u∗(r) = (u1∗(r),u2∗(r), · · · ,un∗(r)),u∗(r) = (u∗1(r),u
∗
2(r), · · · ,u∗n(r)),

for any r ∈ [0, 1].

Proof. Let u ∈ ∂̂F(x0), then there exists δ > 0, such that

F(x) +
∑

xi<x0
i

| xi − x
0
i | ui > F(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui for any x ∈ U(x0, δ)∩M

⇐⇒ F(x)∗(r) +
∑

xi<x0
i

| xi − x
0
i | ui∗(r) > F(x

0)∗(r) +
∑

xi>x0
i

(xi − x
0
i)ui∗(r)

F(x)∗(r) +
∑

xi<x0
i

| xi − x
0
i | u

∗
i (r) > F(x

0)∗(r) +
∑

xi>x0
i

(xi − x
0
i)u
∗
i (r)

⇐⇒ F(x)∗(r) > F(x
0)∗(r) +

n∑
i=1

(xi − x
0
i)ui∗(r)

F(x)∗(r) > F(x0)∗(r) +

n∑
i=1

(xi − x
0
i)u
∗
i (r)

⇐⇒ F(x)∗(r) > F(x
0)∗(r) +

〈
x− x0,u∗(r)

〉
F(x)∗(r) > F(x0)∗(r) +

〈
x− x0,u∗(r)

〉
⇐⇒ u∗(r) ∈ ∂F̂(x0)∗(r) and u∗(r) ∈ ∂F̂(x0)∗(r),

for any r ∈ [0, 1].

Theorem 3.7. Let a fuzzy mapping F :M→ F0 be differentiable at x0 ∈ int(M), then F is local sub-differential at
x0, and ∇F(x0) ∈ ∂̂F(x0).
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Proof. Let F be differentiable at x0 = (x0
1, x0

2, · · · , x0
n), then there exists u = (u1,u2, · · · ,un) ∈ Fn, such that

lim
x→x0

D(F(x) +
∑

xi<x0
i
| xi − x

0
i | ui, F(x

0) +
∑

xi>x0
i
(xi − x

0
i)ui)

d(x, x0)
= 0.

So

lim
x→x0

sup
r∈[0,1]

max{
| (F(x) +

∑
xi<x0

i
| xi − x

0
i | ui)∗(r), (F(x

0) +
∑

xi>x0
i
(xi − x

0
i)ui)∗(r) |

d(x, x0)
,

| (F(x) +
∑

xi<x0
i
| xi − x

0
i | ui)

∗(r), (F(x0) +
∑

xi>x0
i
(xi − x

0
i)ui)

∗(r) |

d(x, x0)
} = 0

⇐⇒ lim
x→x0

sup
r∈[0,1]

| F(x)∗(r) − F(x
0)∗(r) −

∑n
i=1(xi − x

0
i)ui∗(r) |

d(x, x0)
= 0,

lim
x→x0

sup
r∈[0,1]

| F(x)∗(r) − F(x0)∗(r) −
∑n

i=1(xi − x
0
i)u
∗
i (r) |

d(x, x0)
= 0

⇐⇒ F(x)∗(r) = F(x
0)∗(r) +

n∑
i=1

(xi − x
0
i)ui∗(r) + o(d(x, x0)),

F(x)∗(r) = F(x0)∗(r) +

n∑
i=1

(xi − x
0
i)u
∗
i (r) + o(d(x, x0)),

for any r ∈ [0, 1].
Therefore, for any r ∈ [0, 1], F(x)∗(r) and F(x)∗(r) all are n-element differentiable real-valued functions

on M, and

∇F(x0)∗(r) = (u1∗(r),u2∗(r), · · · ,un∗(r)),∇F(x0)∗(r) = (u∗1(r),u
∗
2(r), · · · ,u∗n(r)).

So

∂̂F(x0)∗(r) =
{
∇F(x0)∗(r)

}
,

∂̂F(x0)∗(r) =
{
∇F(x0)∗(r)

}
,

for any r ∈ [0, 1].
Therefore by Theorem 3.6, we have

∇F(x0) = (u1,u2, · · · ,un) ∈ ∂̂F(x0).

Theorem 3.8. Let F :M→ F0 be a fuzzy mapping, then ∂̂F(x) is convex set or empty set.

Proof. Let ∂̂F(x) 6= ∅, then for any u1,u2 ∈ ∂̂F(x) and λ ∈ (0, 1), by Theorem 3.4, we have

(1 − λ)u1 ∈ ∂̂((1 − λ)F1)(x), λu2 ∈ ∂̂(λF2)(x).

Therefore, there exist δ1 > 0, δ2 > 0, such that

(1 − λ)F(y) +
∑

yi<xi

| yi − xi | (1 − λ)u1
i > (1 − λ)F(x) +

∑
yi>xi

(yi − xi)(1 − λ)u1
i, (3.3)

for any y ∈ U(x0, δ1)∩M,

λF(y) +
∑

yi<xi

| yi − xi | λu
2
i > λF(x) +

∑
yi>xi

(yi − xi)λu
2
i, (3.4)



Y.-E Bao, J.-J. Li, J. Nonlinear Sci. Appl., 10 (2017), 1–17 11

for any y ∈ U(x0, δ2)∩M.
Take δ = min {δ1, δ2}, then by (3.3) and (3.4) we have

F(y) +
∑

yi<xi

| yi − xi | [(1 − λ)u1
i + λu

2
i] > F(x) +

∑
yi>xi

(yi − xi)[(1 − λ)u1
i + λu

2
i],

for any y ∈ U(x0, δ)∩M.
Therefore, we have (1 − λ)u1 + λu2 ∈ ∂̂F(x), i.e., ∂̂F(x) is convex set.

4. The sub-differentiability of the fuzzy mapping

In this section, in order to discuss the problem of convex extension of fuzzy mapping, we will do some
little change on the previous concept of local sub-differential of fuzzy mapping, and give a new concept
of the sub-differentiability of the fuzzy mapping.

Definition 4.1. Let F : M → F0 be a fuzzy mapping, x0 = (x0
1, x0

2, · · · , x0
n) ∈ M. If there exists u =

(u1,u2, · · · ,un) ∈ Fn
0 , such that

F(x) +
∑

xi<x0
i

| xi − x
0
i | ui > F(x

0) +
∑

xi>x0
i

| xi − x
0
i | ui

holds for all x = (x1, x2, · · · , xn) ∈M, then we call u = (u1,u2, · · · ,un) a sub-gradient at x0 of F, and say
the set of all sub-gradients of F at x0 to be sub-differential of x0 of F, i.e.,

∂F(x0) =

u|u ∈ Fn
0 , F(x) +

∑
xi<x0

i

| xi − x
0
i | ui > F(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui, for any x ∈M

 .

When ∂F(x0) 6= ∅, we say the fuzzy mapping F is sub-differentiable at x0.
Obviously sub-differential ensures local sub-differential, the converse is not necessarily true. So in

the last section Theorems 3.4, 3.6, and 3.7 about local sub-differential are gained. But there is different
conclusion for Theorem 3.8, as follows:

Theorem 4.2. Let F :M→ F0 be a fuzzy mapping, then ∂F(x) is closed convex set or empty set.

Proof. Let ∂F(x) 6= ∅, then ∂F(x) the proof is similar to the proof of Theorem 3.8, so we omit it.
We will prove ∂F(x) is closed set.
Let um = (um1 ,um2 , · · · ,umn ) ∈ ∂F(x) (m = 1, 2, · · · ) and limm→∞Dn(u

m,u) = 0, then by Theorem 2.3,
we have

lim
m→∞Dn(u

m,u) =

(
n∑

i=1

(D(umi ,ui))p
) 1

p

= 0(p > 1)

⇐⇒ lim
m→∞D(umi ,ui) = lim

m→∞ sup
r∈[0,1]

max {| umi∗(r) − ui∗(r) |, | u
m∗
i (r) − u∗i (r) |} = 0(i = 1, 2, · · · ,n)

⇐⇒ lim
m→+∞ | umi∗(r) − ui∗(r) |= 0 and lim

m→+∞ | um∗i (r) − u∗i (r) |= 0(i = 1, 2, · · · ,n) for any r ∈ [0, 1],

⇐⇒ lim
m→+∞umi∗(r) = ui∗(r) and lim

m→+∞um∗i (r) = u∗i (r)(i = 1, 2, · · · ,n) for any r ∈ [0, 1].

On the other hand, form um ∈ ∂F(x) (m = 1, 2, · · · ), we have

F(y) +
∑

yi<xi

| yi − xi | u
m
i (r) > F(x) +

∑
yi>xi

(yi − xi)u
m
i (r)



Y.-E Bao, J.-J. Li, J. Nonlinear Sci. Appl., 10 (2017), 1–17 12

⇐⇒ F(y)∗(r) +
∑

yi<xi

| yi − xi | u
m
i∗(r) > F(x)∗(r) +

∑
yi>xi

(yi − xi)u
m
i∗(r), (4.1)

F(y)∗(r) +
∑

yi<xi

| yi − xi | u
m∗
i (r) > F(x)∗(r) +

∑
yi>xi

(yi − xi)u
m∗
i (r), (4.2)

for any y ∈M.
Therefore, let m→∞, then by (4.1) and (4.2), we have

F(y)∗(r) +
∑

yi<xi

| yi − xi | ui∗(r) > F(x)∗(r) +
∑

yi>xi

(yi − xi)ui∗(r),

for any y ∈M, i.e., u = (u1,u2, · · · ,un) ∈ ∂F(x). So ∂F(x) is closed set.

5. Convex extensibility of fuzzy mapping

By means of the convexification method (Definition 2.4), we study the relations between the sub-
differential of fuzzy mappings and the sub-differential of convexification fuzzy mappings, then we will
obtain the sufficiency conditions of existence of convex extension for fuzzy mappings.

Theorem 5.1. Let Fc be the convexification fuzzy mapping of F :M→ F0, x0 ∈M, then F is sub-differentiable at
x0 if and only if Fc(x0) = F(x0) and Fc is also sub-differentiable at x0.

Proof. Necessity: Let F be sub-differentiable at x0, then there exists

u = (u1,u2, ...,un) ∈ Fn
0 ,

such that
F(x) +

∑
xi<x0

i

|xi − x
0
i |ui > F(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui,

for any x ∈M.
So, for any m ∈ N, αj > 0 (j = 1, 2, ...,m),

∑m
j=1 αj = 1, xj ∈ M (j = 1, 2, · · · ,m) and

∑m
j=1 αjx

j = x0,
by

F(xj) +
∑

x
j
i<x0

i

|x
j
i − x

0
i |ui > F(x

0) +
∑

x
j
i>x0

i

(xji − x
0
i)ui,

we have ∑
m
j=1αjF(x

j) +
∑

m
j=1αj(

∑
x
j
i<x0

i

(x0
i − x

j
i))ui > F(x

0) +
∑

m
j=1αj(

∑
x
j
i>x0

i

(xji − x
0
i))ui,

i.e., ∑
m
j=1αjF(x

j) +
∑

x
j
i<x0

i

(x0
i −
∑

m
j=1αjx

j
i)ui > F(x

0) +
∑

x
j
i>x0

i

(
∑

m
j=1αjx

j
i − x

0
i)ui.

On the other hand, for x0 = (x0
1, x0

2, · · · , x0
n), xj = (xj1, xj2, ..., xjn, ) (j = 1, 2, · · · ,m), we know∑

m
j=1αjx

i = x0 ⇐⇒
∑

m
j=1αjx

j
i = x

0
i(i = 1, 2, ...,n).

Therefore,
∑

m
j=1αjF(x

i) > F(x0), thus we obtain

FC(x
0) = inf

m∈N

{∑
m
j=1αjF(x

j)|αj > 0, xj ∈M(j = 1, 2, · · · ,m),
∑

m
j=1αj = 1,

∑
m
j=1αjx

j = x0

}
> F(x0).
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By Theorem 2.5, we easily gain Fc(x0) 6 F(x0). So F(x0) = F(x0).
Now, we will prove that Fc is sub-differentiable at x0.
For x ∈ CoM, there exist αj > 0 (j = 1, 2, · · · ,m),

∑
m
j=1αj = 1, and xj ∈M (j = 1, 2, · · · ,m), such that∑

m
j=1αjx

j = x.
By F is sub-differentiable at x0, there exists u = (u1,u2, · · · ,un) ∈ Fn

0 such that

F(xj) +
∑

x
j
i<x0

i

|x
j
i − x

0
i |ui > F(x) +

∑
x
j
i>x0

i

(xji − xi)ui, (j = 1, 2, · · · ,m) for any x ∈M.

So ∑
m
j=1αjF(x

j) +
∑

x
j
i<x0

i

∑
m
j=1(x

0
i − x

j
i)ui > F(x0) +

∑
x
j
i>x0

i

∑
m
j=1(x

j
i − x

0
i)ui.

It follows from the fact xji < x
0
i implies

∑
m
j=1αjx

j
i = xi < x

0
i, that∑

m
j=1αjF(x

j) +
∑

x
j
i<x0

i

(x0
i − xi)ui > F(x0) +

∑
x
j
i>x0

i

(xi − x
0
i)ui.

Therefore, we have

inf
m∈N

{∑
m
j=1αjF(x

j)|αj > 0, xj ∈M(j = 1, 2, · · · ,m),
∑

m
j=1αjx

j = x0
}

+
∑

xi<x0
i

(x0
i − xi)ui > F(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui.

By FC(x0) = F(x0), we have

FC(x
0) +

∑
xi<x0

i

(x0
i − xi)ui > FC(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui.

So u = (u1,u2, · · · ,un) ∈ ∂F(x0), that is, FC is sub-differentiable at x0.
Sufficiency: since Fc is sub-differentiable at x0, there exists u ∈ Fn

0 , such that

FC(x) +
∑

xi<x0
i

(x0
i − xi)ui > F(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui for any x ∈ CoM.

It follows from FC(x
0) = F(x0) and M ⊂ CoM, that

F(x) +
∑

xi<x0
i

(x0
i − xi)ui > Fc(x) +

∑
xi<x0

i

(x0
i − xi)ui > Fc(x

0) +
∑

xi>x0
i

(xi − x
0
i)ui,

for any x ∈ CoM. Thus we have u ∈ ∂F(x0), that is, F is sub-differentiable at x.

Theorem 5.2. Let F : M → F0 be a lower semi-continuous fuzzy mapping. If for any convex extreme subset
E (dimE > 0) of CoM, the set B where the sub-differential of F |E∩D exists is dense in E∩M, then

(1) The convexification fuzzy mapping Fc of F is the extension of F.

(2) The sub-differential of FC |E is on B.
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Proof. By lower semi-continuity of F, we can easily prove F is a lower bound. Therefore, by Theorems 2.2
and Theorems 2.5 , we can easily prove the convexification fuzzy mapping Fc of F must exist.

(1) Let x0 ∈M. If x0 is an extreme point of M, then have Fc(x0) = F(x0).
If x0 is not an extreme point of M, then there exist xj ∈ M, λj > 0 (j = 1, 2, · · · ,m) and

∑m
j=1 λj = 1,

such that
m∑
j=1

λjx
j = x0.

Let E be the minimum convex extreme subset of CoM containing x0, x1, · · · , xm. Since x0 is not an extreme
point, so dimE > 0.

Next, we will prove Co(E∩M) = E.
By E∩M ⊂ E, we have

Co(E∩M) ⊂ CoE = E.

Conversely, for y ∈ E ⊂ CoM, there exist yj ∈ M , βj > 0 (j = 1, 2, · · · ,m) and
∑m

j=1 βj = 1, such that∑m
j=1 βjy

j = y.
Since E is the extreme subset, yj ∈ E (j = 1, 2, · · · ,m), hence

yj ∈ E∩M(j = 1, 2, · · · ,m).

Therefore
y ∈ Co(E∩M).

So Co(E∩M) = E.
Next, we prove that x0 ∈ icrE (where icrE is the relative interior point set of E).
Assume x0 /∈ icrE, then x0 ∈ E/icrE, by the separation theorem of convex sets, there exists

x∗ ∈ Rn,

such that
< x∗, x0 >> sup

y∈E
< x∗,y > .

Hence
< x∗, xj >6< x∗, x0 > (j = 1, 2, · · · ,m).

It follows from

< x∗,
m∑
j=1

λjx
j >=< x∗, x0 >,

that
< x∗, xj >=< x∗, x0 > (j = 1, 2, · · · ,m).

Let
A = {y ∈ E| < x∗,y >=< x∗, x0 >},

then we easily prove A ⊂ E and A is the convex extreme subset of E. So A is the convex extreme subset
of CoM and containing x0, x1, ..., xm.

This contradicts E is the minimum convex extreme subset of CoM containing x0, x1, · · · , xm. Thus
x0 ∈ icrE.

Let G : E→ F0(Co(E∩M) = E) be the convexification fuzzy mapping of F|E∩M, then for any r ∈ [0, 1],
G(x)∗(r) and G(x)∗(r) are the real-valued convex functions on E . Hence it is continuous at x0 ∈ icrE.

Since the set B where the sub-differential of F|E∩M exists is dense in E∩M. So, for x0 ∈ E∩M, exists
is {zm} ⊂ B such that zm → x0(m→∞). By Theorem 5.1, we have

F(zm) = G(zm) = F|E
⋂
M(zm).
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Because F is lower semi-continuous, F(x)∗(r) and F(x)∗(r) are lower semi-continuous at x0 ∈ icrE (by
Theorems 2.8). By Remark 2.9, for any r ∈ [0, r], we have

F(x0)∗(r) 6 lim
n→∞ F(zm)∗(r) = lim

n→∞G(zm)∗(r) = G(x
0)∗(r),

F(x0)∗(r) 6 lim
n→∞ F(zm)∗(r) = lim

n→∞G(zm)∗(r) = G(x0)∗(r).

Thus we can obtain
F(x0) 6 G(x0).

So

G(x0) = inf
m∈N


m∑
j=1

λjF(x
j)|λj > 0, xj ∈M∩ E (j = 1, 2, · · · ,m),

m∑
j=1

λj = 1,
m∑
j=1

λjx
j = x0

 6
m∑
j=1

λjF(x
j).

Therefore, we have F(x0) 6
∑m

j=1 λjF(x
j), thus

F(x0) 6 inf
m∈N


m∑
j=1

λjF(x
j)|λj > 0, xj ∈M (i = 1, 2, · · · ,m),

m∑
j=1

λj = 1,
m∑
j=1

λjx
j = x0

 ,

i.e., F(x0) 6 FC(x0).
On the other hand, F(x0) > FC(x

0). So F(x0) = FC(x
0). Thus, by M ⊂ CoM we have F is the extension

of F.
(2) We now prove that the sub-differential of FC|E exists on B.
For any x ∈ B, by the known conditions, we have ∂F|E⋂D(x) 6= ∅. Next, we prove

∂FC|E(x) ⊃ ∂F|E∩M(x).

For y ∈ E ⊆ CoM, take yj ∈ M, λj > 0(j = 1, 2, · · · ,m), and
∑m

j=1 λj = 1, such that y =
∑m

j=1 λjy
j.

Since E is the extreme subset and yj ∈ E(j = 1, 2, · · · ,m), we have

yj ∈M∩ E(j = 1, 2, · · · ,m).

Hence, for ux = (ux1 ,ux2 , ...,uxn) ∈ ∂F|E∩M(x), we have

F(yj) +
∑

y
j
i<xi

(xi − y
j
i)u

x
i > F(x) +

∑
y
j
i>xi

(yji − xi)u
x
i (j = 1, 2, ...,m).

So
m∑
j=1

λjF(y
j) +

∑
y
j
i<xi

(xi −

m∑
j=1

λjy
j
i)u

x
i > F(x) +

∑
y
j
i<xi

(

m∑
j=1

λjy
j
i − xi)u

x
i ,

i.e.,
m∑
j=1

λjF(y
j) +

∑
y
j
i<xi

(xi − y
j
i)u

x
i > F(x) +

∑
y
j
i<xi

(yji − xi)u
x
i .

Therefore,

inf
m∈N


m∑
j=1

λjF(y
j) | λj > 0,yj ∈M (j = 1, 2, · · · ,m),

m∑
λj = 1,

m∑
j=1

λjy
j = y
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+
∑

xi<yi

(xi − yi)u
x
i > F(x) +

∑
yi>xi

(yi − xi)u
x
i .

Because FC(x) = F(x) on B ⊂M. Hence, for any y ∈ E, there has

FC(y) +
∑

xi<yi

(xi − yi)u
x
i > F(x) +

∑
yi>xi

(yi − xi)u
x
i .

Thus, ux ∈ ∂F|E(x), so ∂F|E(x) ⊃ ∂F|E∩D(x). By the arbitrariness of x, the sub-differential of FC|E exists on
B.

By Theorem 5.2, we easily obtain the following Corollary 5.3.

Corollary 5.3. Let F :M→ F0 be a lower semi-continuous fuzzy mapping and M be a convex set. If the set where
the sub-differential is of F |E is dense in E for any convex extreme subset E of M, then F is convex fuzzy mapping.

6. Conclusion

In [14], the concept of sub-differential of fuzzy mapping is introduced by Wang and Wu. In this paper,
we call it the local sub-differential, then we study the basic properties of local sub-differential, obtain
some results which are similar to general sub-differential. These conclusions are helpful to study the
approximation and regulation of sub-differential of fuzzy mapping and related issues. It is well-known
that not every fuzzy mapping can be extended to convex fuzzy mapping. Hence convex extension of gen-
eral fuzzy mapping is a natural and important problem which is helpful to improve the efficiency of the
global optimization method. In this paper, in order to study the convex extension of fuzzy mapping, we
generalize the concept of local sub-differential of fuzzy mapping, which has the basic properties of local
sub-differential. And its sub-differential is an empty set or closed convex set. As an application, based on
the new sub-differential of fuzzy mapping and convex method of fuzzy mapping, we study the relations
between sub-differential of general fuzzy mapping and sub-differential of its convex fuzzy mapping, ob-
tain a sufficient condition that lower semi-continuous fuzzy mapping can be extended to convex fuzzy
mapping. According to these conclusions, we propose a new method to research optimization problems
of general fuzzy mapping.
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