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Abstract
We prove a new fixed point theorem of order-Lipschitz mappings in Banach spaces without assumption of normalities of the

involving cones, which presents a positive answer to a problem raised in [S. Jiang, Z. Li, Fixed Point Theory Appl., 2016 (2016),
10 pages] and improves the corresponding results of Krasnoselskii and Zabreiko’s and Zhang and Sun’s since the normality of
the involving cone is removed. c©2017 All rights reserved.

Keywords: Fixed point theorem, order-Lipschitz mapping, Picard-completeness, non-normal cone.
2010 MSC: 06A07, 47H10.

1. Introduction and preliminaries

Let P be a cone of a Banach space (E, ‖ · ‖), D ⊂ E and � the partial order in E deduced by P. Recall
that a mapping T : D → E is an order-Lipschitz mapping, if there exist two linear bounded mappings
A,B : P → P such that

−B(x− y) � Tx− Ty � A(x− y), ∀ x,y ∈ D, y � x. (1.1)

In particular, when A = B, Krasnoselskii and Zabreiko [4] proved the following fixed point theorem of
order-Lipschitz mappings by using the Banach contraction principle.

Theorem 1.1 ([4]). Let P be a normal solid cone of a Banach space (E, ‖ · ‖) and T : E → E an order-Lipschitz
mapping such that (1.1) is satisfied with linear bounded mappings A and B. If A = B and ‖A‖ < 1, then T has a
unique fixed point x∗ ∈ E, and xn

w→ x∗ for each x0 ∈ E, where {xn} = O(T , x0) and O(T , x0) denotes the Picard
iterative sequence of T at x0, i.e., xn = Tnx0 for each n.
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Afterward, Zhang and Sun [7] showed Theorem 1.1 is still valid in the case that the spectral radius
r(A) < 1, and obtained the following fixed point result.

Theorem 1.2 ([7]). Let P be a normal solid cone of a Banach space (E, ‖ · ‖) and T : E → E an order-Lipschitz
mapping such that (1.1) is satisfied with linear bounded mappings A and B. If A = B and r(A) < 1, then T has a
unique fixed point x∗ ∈ E, and xn

w→ x∗ for each x0 ∈ E, where {xn} = O(T , x0) and O(T , x0) denotes the Picard
iterative sequence of T at x0, i.e., xn = Tnx0 for each n.

In particular when A,B are nonnegative real numbers, Sun [6] proved the following fixed point theo-
rem by using the sandwich theorem in the sense of norm-convergence.

Theorem 1.3 ([6]). Let P be a normal cone of a Banach space (E, ‖ · ‖), u0, v0 ∈ E with u0 � v0 and T : [u0, v0]→ E

an order-Lipschitz mapping such that
u0 � Tu0, Tv0 � v0, (1.2)

and (1.1) is satisfied with nonnegative real numbers A and B. If A ∈ [0, 1) and B ∈ [0,+∞), then T has a unique
fixed point x∗ ∈ [u0, v0], and xn

w→ x∗ for each x0 ∈ [u0, v0], where {xn} = O(T , x0).

Note that the normality of P in Theorems 1.1 and 1.2 is essential for the completeness of (E, ‖ · ‖0),
where ‖ · ‖0 is a new norm in E defined by ‖x‖0 = infu∈P{‖u‖ : −u � x � u}, which leads to that the
Banach contraction principle is applicable there. And the normality of P in Theorem 1.3 is essential for
ensuring that the sandwich theorem holds in the sense of norm-convergence, which makes an important
role in its proof. It is well-known that if P is non-normal then the sandwich theorem does not hold in the
sense of norm-convergence, and consequently, the method used in [6] becomes invalid.

In most of the existing works concerned with fixed point theory of order-Lipschitz mappings, the
cone is necessarily assumed to be normal. Recently, Jiang and Li [3] considered fixed point theory of
order-Lipschitz mappings without assuming the normality of P. By introducing the concept of Picard-
completeness and using the sandwich theorem in the sense of w-convergence, they proved the following
fixed point theorem of order-Lipschitz mappings in Banach algebras.

Theorem 1.4 ([3]). Let P be a solid cone of a Banach algebra (E, ‖ · ‖), u0, v0 ∈ E with u0 � v0, and T : [u0, v0]→ E

an order-Lipschitz mapping such that (1.1) and (1.2) are satisfied with A,B ∈ P. If r(A) < 1 and B = θ, then T
has a unique fixed point x∗ ∈ [u0, v0], and xn

w→ x∗ for each x0 ∈ [u0, v0], where {xn} = O(T , x0).

In [3] , the authors failed to improve Theorem 1.1 to the case that the cone is non-normal. Instead, they
raised a problem whether the normality of P in Theorem 1.1 could be removed. In the paper, we present
a positive answer to this problem, and prove that Theorems 1.1 and 1.2 are still valid without assuming
the normality of P. In addition, we give an suitable example to show the usability of our theorem.

Let (E, ‖ · ‖) be a Banach space. A nonempty closed subset P of E is a cone, if it is such that ax+by ∈ P
for each x,y ∈ P and each a,b > 0, and P ∩ (−P) = {θ}, where θ is the zero element of E. Each cone P
of a Banach space E determines a partial order � on E by x � y ⇔ y− x ∈ P for each x,y ∈ X. For
each u0, v0 ∈ E with u0 � v0, we set [u0, v0] = {u ∈ E : u0 � u � v0}, [u0,+∞) = {x ∈ E : u0 � x} and
(−∞, v0] = {x ∈ E : x � v0}. A cone P is solid [1] if intP is nonempty, where intP denotes the interior of P.
For each x,y ∈ E with y− x ∈ intP, we write x� y.

A cone P is normal [1], if there is some positive number N such that x,y ∈ E and θ � x � y implies
that ‖x‖ 6 N‖y‖, and the minimal N is called a normal constant of P. Note that an equivalent condition
of a normal cone is that inf{‖x+ y‖ : x,y ∈ P and ‖x‖ = ‖y‖ = 1} > 0, then a cone P is non-normal, if

and only if there exist {un}, {vn} ⊂ P such that un + vn
‖·‖→ θ 6⇒ un

‖·‖→ θ. This yields that the sandwich
theorem does not hold in the sense of norm-convergence.

Definition 1.5 ([3]). Let P be a solid cone of a Banach space (E, ‖ · ‖), {xn} ⊂ E and D ⊂ E.

(i) The sequence {xn} is w-convergent, if for each ε ∈ intP, there exist some positive integer n0 and
x ∈ E such that x− ε � xn � x+ ε for each n > n0 (denote xn

w→ x and x is called a w-limit of
{xn});
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(ii) the sequence {xn} is w-Cauchy, if for each ε ∈ intP, there exists some positive integer n0 such that
−ε� xn − xm � ε for each m,n > n0, i.e., xn − xm

w→ θ(m,n→∞);

(iii) the subset D is w-closed, if for each {xn} ⊂ D, xn
w→ x implies x ∈ D.

The following lemmas are very important for our further discussions.

Lemma 1.6 ([3]). Let P be a solid cone of a Banach space (E, ‖ · ‖) and {xn} a w-convergent sequence of E. Then
{xn} has a unique w-limit.

Lemma 1.7 ([5, 2]). Let P be a solid cone of a Banach space (E, ‖ · ‖) and {xn}, {yn}, {zn} ⊂ E with xn � yn � zn
for each n. If xn

w→ z and zn
w→ z, then yn

w→ z.

Lemma 1.8 ([5, 2]). Let P be a solid cone of a Banach space (E, ‖ · ‖) and xn ⊂ E. Then xn
‖·‖→ x implies xn

w→ x.

Moreover, if P is normal then xn
w→ x⇔ xn

‖·‖→ x.

Lemma 1.9 ([1]). Let P be a solid cone of a Banach space (E, ‖ · ‖)). Then there is τ > 0 such that for each x ∈ E,
there exist y, z ∈ P with ‖y‖ 6 τ‖x‖ and ‖z‖ 6 τ‖x‖ such that x = y− z.

Definition 1.10 ([3]). Let P be a solid cone of a Banach space (E, ‖ · ‖), x0 ∈ E and T : E → E. If the
Picard iterative sequence O(T , x0) is w-convergent provided that it is w-Cauchy, then T is said to be
Picard-complete at x0. If T is Picard-complete at each x ∈ E, then it is said to be Picard-complete on E.

Remark 1.11.

(i) If O(T , x0) is w-convergent, then T is certainly Picard-complete at x0.

(ii) If P is a normal cone then each mapping T : E→ E is Picard-complete on E by Lemma 1.8.

2. Main results

Theorem 2.1. Let P be a solid cone of a Banach space (E, ‖ · ‖) and T : E → E an order-Lipschitz mapping such
that (1.1) is satisfied with linear bounded mappings A and B. If A = B, r(A) < 1 and

ET−C = {x ∈ E : T is Picard-complete at x} 6= Ø,

then T has a unique fixed point x∗ ∈ E. Moreover, for each x0 ∈ ET−C, we have xn
w→ x∗, where {xn} = O(T , x0).

Proof.

Step 1. We show that for each x,y ∈ X, there exists u ∈ P such that

− u � x− y � u, (2.1)

and
−Anu � Tnx− Tny � Anu, ∀ n. (2.2)

It follows from the solidness of P and Lemma 1.9 that there is a τ > 0 such that for each x ∈ E, there
exist y, z ∈ P with ‖y‖ 6 τ‖x‖ and ‖z‖ 6 τ‖x‖ such that x = y− z, and so we have

−(y+ z) � x � y+ z.

This shows that for each x ∈ E, there exists u ∈ P such that

−u � x � u,
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and so for each x,y ∈ E, there exists u ∈ P such that (2.1) is satisfied. For each x,y ∈ E, by (2.1) we get

x+ y− u

2
� x,

x+ y− u

2
� y.

Thus by (1.1), we have

−A(
x− y+ u

2
) � Tx− T(x+ y− u

2
) � A(x− y+ u

2
), (2.3)

and
−A(

y− x+ u

2
) � Ty− T(x+ y− u

2
) � A(y− x+ u

2
),

which can be rewritten as

−A(
y− x+ u

2
) � T(x+ y− u

2
) − Ty � A(y− x+ u

2
). (2.4)

By adding (2.3) and (2.4), we get
−Au � Tx− Ty � Au,

i.e., (2.2) holds for n = 1. Suppose that (2.2) holds for n, then

Tnx+ Tny−Anu

2
� Tnx,

Tnx+ Tny−Anu

2
� Tny.

Moreover by (1.1), we have

−A(
Tnx− Tny+Anu

2
) � Tn+1x− T(

Tnx+ Tny−Anu

2
) � A(T

nx− Tny+Anu

2
), (2.5)

and
−A(

Tny− Tnx+Anu

2
) � Tn+1y− T(

Tnx+ Tny−Anu

2
) � A(T

ny− Tnx+Anu

2
),

which can be rewritten as

−A(
Tny− Tnx+Anu

2
) � T(T

nx+ Tny−Anu

2
) − Tn+1y � A(T

ny− Tnx+Anu

2
). (2.6)

By adding (2.5) and (2.6), we get −An+1u � Tn+1x− Tn+1y � An+1u for each x,y ∈ E, i.e., (2.2) holds
for n+ 1. Thus (2.2) holds true by induction.

Step 2. We show that there exists a positive integer n0 such that Tn0 has a unique fixed point in E.
By r(A) < 1, I−A is invertible, denote the inverse of I−A by (I−A)−1. Moreover, it follows from

Neumann’s formula that

(I−A)−1 =

∞∑
n=0

An = I+A+A2 + · · ·+An + · · · , (2.7)

which implies that (I−A)−1 : P → P is a linear bounded mapping. It follows from r(A) < 1 and Gelfand’s
formula that there exists a positive integer n1 and β ∈ (r(A), 1) such that

‖An‖ 6 βn, ∀ n > n1. (2.8)

Thus for each u ∈ P, we get
‖Anu‖ 6 ‖An‖‖u| 6 βn‖u‖, ∀ n > n1,

which implies Anu
‖·‖→ θ for each u ∈ P, and hence by Lemma 1.8,

Anu
w→ θ, ∀ u ∈ P. (2.9)
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Since (I−A)−1 : P → P is a linear bounded mapping, in analogy to (2.9), by (2.8) we obtain

An(I−A)−1u
w→ θ, ∀ u ∈ P. (2.10)

Let x0 ∈ ET−C and set {xn} = O(T , x0), then by Step 1, there exists ux0,x1 ∈ P such that

−ux0,x1 � x0 − x1 � ux0,x1

and
−Anux0,x1 � xn+1 − xn = Tnx1 − T

nx0 � Anux0,x1 , ∀ n.

Thus by (2.7), for each m > n we have

−An(I−A)−1ux0,x1 � −

m−1∑
i=n

Aiux0,x1 � xm − xn =

m−1∑
i=n

(xi+1 − xi) �
m−1∑
i=n

Aiux0,x1

� An(I−A)−1ux0,x1 ,

which together with (2.10) and Lemma 1.7 implies that

xm − xn
w→ θ(m > n→∞), (2.11)

i.e., {xn} is w-Cauchy. Note that T is Picard-complete at x0, then there exists some x∗ ∈ E such that

xn
w→ x∗(n→∞). (2.12)

By Step 1, there exists ux0,x∗ ∈ P such that −ux0,x∗ � x0 − x
∗ � ux0,x∗ and

−Anux0,x∗ � xn − Tnx∗ = Tnx0 − T
nx∗ � Anux0,x∗ ,

which together with (2.9) and Lemma 1.7 implies that

xn − Tnx∗
w→ θ(n→∞). (2.13)

For each ε ∈ intP, it follows from (2.11) and (2.13) that there exists a positive integer n0 such that

−
ε

2
� xm − xn �

ε

2
, ∀ m > n > n0, (2.14)

and
−
ε

2
� xn − Tnx∗ � ε

2
, ∀ n > n0. (2.15)

Thus by (2.14) and (2.15) we get

−ε� xm − Tn0x∗ = xm − xn0 + xn0 − T
n0x∗ � ε, ∀ m > n0,

and hence
xm

w→ Tn0x∗(m→∞).

Moreover by Lemma 1.6, we get x∗ = Tn0x∗, since {xn} has a unique w-limit. Suppose that z is a fixed
point of Tn0 , then by Step 1, there exists uz,x∗ such that −uz,x∗ � z− x∗ � uz,x∗ and

−Ann0uz,x∗ � z− x∗ = Tnn0z− Tnn0x∗ � Ann0uz,x∗ , ∀ n,

which together with (2.9) and Lemma 1.7 implies that z = x∗. Hence x∗ is the unique fixed point of Tn0 .
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Step 3. We show that x∗ is the unique fixed point of T .
Note that Tn0(Tx∗) = Tn0+1x∗ = T(Tn0x) = Tx∗, then Tx∗ is a fixed point of Tn0 , and hence x∗ = Tx∗

by the uniqueness of fixed point of Tn0 . This shows x∗ is a fixed point of T . Suppose that z ∈ E is a fixed
point of T , then z is a fixed point of Tn0 , and hence z = x∗ by the unique existence of fixed point of Tn0 .
Hence x∗ is the unique fixed point of T .

Example 2.2. Let E = C1
R[0, 1] be endowed with the norm ‖x‖ = ‖x‖∞ + ‖x ′‖∞ and

P = {x ∈ E : x(t) > 0,∀ t ∈ [0, 1]},

where ‖x‖∞ = max
t∈[0,1]

x(t) for each x ∈ CR[0, 1]. Then (E, ‖ · ‖) is a Banach space and P is a non-normal

solid cone [1]. Let x0(t) ≡ 1
2 , D = {x ∈ E : ‖x‖ 6 1

2 } and (Tx)(t) =
∫t

0 x
2(s)ds for each x ∈ E and each

t ∈ [0, 1]. Clearly, x0 ∈ D and T(D) ⊂ D since ‖Tx‖ = ‖Tx‖∞ + ‖(Tx) ′‖∞ 6 1
2 for each x ∈ D.

Set {xn} = O(T , x0). By induction we get

xn(t) =

∫t
0
x2
n−1(s)ds =

t2n−1

22n(22 − 1)2n−2
(23 − 1)αn−3 · · · (2n − 1)

, ∀ t ∈ [0, 1], ∀ n > 2,

and so
θ � xn �

1
22n(22 − 1)2n−2

(23 − 1)αn−3 · · · (2n − 1)
, ∀ n > 2,

which together with Lemma 1.7 implies that xn
w→ θ. Moreover by (i) of Remark 1.11, we know that T is

Picard-complete at x0.
For each x,y ∈ D with y � x and each t ∈ [0, 1], we have

−

∫t
0
(x(s) − y(s))ds 6 (Tx)(t) − (Ty)(t) =

∫t
0
(x(s) − y(s))(x(s) + y(s))ds 6

∫t
0
(x(s) − y(s))ds,

and so
−A(x− y) � Tx− Ty � A(x− y), ∀ x,y ∈ D, y � x,

where (Ax)(t) =
∫t

0 x(s)ds for each x ∈ E and each t ∈ [0, 1]. This shows that T : D → D is an order-
Lipschitz mapping.

For each x ∈ E and t ∈ [0, 1], by induction we get (Anx)(t) 6 ‖x‖∞tn
n! 6 ‖x‖

n! , and so ‖Anx‖∞ 6 ‖x‖
n! .

On the other hand, we have ‖(Anx) ′‖∞ = ‖An−1x‖∞ 6 ‖x‖
(n−1)! since (Anx) ′(t) = (An−1x)(t). Thus

‖Anx‖ = ‖Anx‖∞ + ‖(Anx) ′‖∞ 6 ‖x‖
n! +

‖x‖
(n−1)! and ‖An‖ 6 1

n! +
1

(n−1)! . By Gelfand’s formula, we obtain

r(A) = lim
n→∞ n

√
1
n! +

1
(n−1)! 6 lim

n→∞ 1
n√
n!

+ lim
n→∞ 1

n
√

(n−1)!
= 0. Therefore T : D → D has a unique fixed

point in D by Theorem 2.1 (in fact, θ is the unique fixed point of T ).
However, Theorems 1.1, 1.2, 1.3 and 1.4 are not applicable here since P is non-normal and there do not

exist A,B ∈ P or nonnegative real numbers A,B such that (1.1) is satisfied.

Remark 2.3. Theorem 2.1 implies that Theorems 1.1 and 1.2 are still valid in the case that P is non-normal,
and hence Theorem 2.1 improves Theorems 1.1 and 1.2. In fact, Theorems 1.1 and 1.2 are immediate
consequences of Theorem 2.1 by Remark 1.11 (ii).

In particular when E is a Banach algebra and A,B ∈ P, we have the following corollary by Theorem
2.1.

Corollary 2.4. Let P be a solid cone of a Banach algebra (E, ‖ · ‖) and T : E→ E an order-Lipschitz mapping such
that (1.1) is satisfied with A,B ∈ P. If A = B, r(A) < 1 and ET−C is nonempty, where

ET−C = {x ∈ E : T is Picard-complete at x},

then T has a unique fixed point x∗ ∈ E. Moreover, for each x0 ∈ ET−C, we have xn
w→ x∗, where {xn} = O(T , x0).
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Remark 2.5. It is clear that Theorem 5 in [3] is a particular case of our Corollary 2.4 with normal cones.
Note that if (1.1) is satisfied with A ∈ P and B = θ then T : [u0, v0] → E is nondecreasing, and hence
Corollary 2.4 partially improves Theorem 1.4 since (1.2) and the nondecreasing property of T are not
assumed.
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