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Abstract
In this paper, we solve the quadratic ρ-functional inequalities

‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖ 6
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

)∥∥∥∥ , (1)

where ρ is a fixed complex number with |ρ| < 1, and∥∥∥∥4f
(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

∥∥∥∥ 6 ‖ρ(f(x+ y) + f(x− y) − 2f(x) − 2f(y))‖, (2)

where ρ is a fixed complex number with |ρ| < 1.
Using the direct method, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (1) and (2) in β-

homogeneous complex Banach spaces. c©2017 all rights reserved.

Keywords: Hyers-Ulam stability, β-homogeneous space, quadratic ρ-functional inequality.
2010 MSC: 39B62, 39B72, 39B52, 39B82.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [16] concerning the
stability of group homomorphisms.

The functional equation f(x+y) = f(x)+ f(y) is called the Cauchy equation. In particular, every solution
of the Cauchy equation is said to be an additive mapping. Hyers [4] gave a first affirmative partial answer
to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive
mappings and by Rassias [9] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach.
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The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) is called the quadratic functional equation.
In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The
stability of quadratic functional equation was proved by Skof [15] for mappings f : E1 → E2, where E1
is a normed space and E2 is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true
if the relevant domain E1 is replaced by an Abelian group. The stability problems of various functional
equations have been extensively investigated by a number of authors (see [5–8, 11–14]).

Definition 1.1. Let X be a linear space. A nonnegative valued function ‖ · ‖ is an F-norm if it satisfies the
following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;

(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;

(FN3) ‖x+ y‖ 6 ‖x‖+ ‖y‖ for all x,y ∈ X;

(FN4) ‖λnx‖ → 0 provided λn → 0;

(FN5) ‖λxn‖ → 0 provided xn → 0.

Then (X, ‖ · ‖) is called an F∗-space. An F-space is a complete F∗-space.

An F-norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all t ∈ C (see [10]). A
β-homogeneous F-space is called a β-homogeneous complex Banach space.

In Section 2, we solve the quadratic ρ-functional inequality (1) and prove the Hyers-Ulam stability of
the quadratic ρ-functional inequality (1) in β2-homogeneous complex Banach space.

In Section 3, we solve the quadratic ρ-functional inequality (2) and prove the Hyers-Ulam stability of
the quadratic ρ-functional inequality (2) in β2-homogeneous complex Banach space.

Throughout this paper, let β1,β2 be positive real numbers with β1 6 1 and β2 6 1. Assume that X is a
β1-homogeneous real or complex normed space with norm ‖ · ‖ and that Y is a β2-homogeneous complex
Banach space with norm ‖ · ‖.

2. Quadratic ρ-functional inequality (1) in β-homogeneous complex Banach spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1
2 .

We solve and investigate the quadratic ρ-functional inequality (1) in complex normed spaces.

Lemma 2.1. If a mapping f : G→ Y satisfies

‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖ 6
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

)∥∥∥∥ , (2.1)

for all x,y ∈ G, then f : G→ Y is quadratic.

Proof. Assume that f : G→ Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖2f(0)‖ 6 |ρ|‖f(0)‖. So f(0) = 0.
Letting y = x in (2.1), we get ‖f(2x) − 4f(x)‖ 6 0 and so f(2x) = 4f(x) for all x ∈ G. Thus

f
(x

2

)
=

1
4
f(x), (2.2)

for all x ∈ G.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖ 6
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

)∥∥∥∥
= |ρ|‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖
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and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y),

for all x,y ∈ G.

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (2.1) in β- homoge-
neous complex Banach spaces.

Theorem 2.2. Let r > 2β2
β1

and θ be nonnegative real numbers and let f : X→ Y be a mapping satisfying f(0) = 0
and

‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖ 6
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

)∥∥∥∥
+ θ(‖x‖r + ‖y‖r),

(2.3)

for all x,y ∈ X. Then there exists a unique quadratic mapping Q : X→ Y such that

‖f(x) −Q(x)‖ 6 2θ
2β1r − 4β2

‖x‖r, (2.4)

for all x ∈ X.

Proof. Letting y = x in (2.3), we get

‖f(2x) − 4f(x)‖ 6 2θ‖x‖r, (2.5)

for all x ∈ X. So ∥∥∥f(x) − 4f
(x

2

)∥∥∥ 6
2θ

2β1r
‖x‖r,

for all x ∈ X. Hence∥∥∥4lf
( x

2l
)
− 4mf

( x

2m
)∥∥∥ 6

m−1∑
j=l

∥∥∥4jf
( x

2j
)
− 4j+1f

( x

2j+1

)∥∥∥ 6
2

2β1r

m−1∑
j=l

4β2j

2β1rj
θ‖x‖r, (2.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6) that the sequence
{4kf( x2k )} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence {4kf( x2k )} is convergent. So one
can define the mapping Q : X→ Y by

Q(x) := lim
k→∞ 4kf

( x
2k

)
,

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.6), we get (2.4).
It follows from (2.3) that

‖Q (x+ y) +Q (x− y) − 2Q(x) − 2Q(y)‖ = lim
n→∞

∥∥∥∥4n
(
f

(
x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y
2n

))∥∥∥∥
6 lim
n→∞

∥∥∥∥4nρ
(

4f
(
x+ y

2n+1

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y
2n

))∥∥∥∥
+ lim
n→∞ 4β2n

2β1rn
θ(‖x‖r + ‖y‖r)

=

∥∥∥∥ρ(4Q
(
x+ y

2

)
+Q (x− y) − 2Q(x) − 2Q(y)

)∥∥∥∥ ,
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for all x,y ∈ X. So∥∥∥∥Q(
x+ y

2

)
+Q

(
x− y

2

)
− 2Q(x) − 2Q(y)

∥∥∥∥ 6

∥∥∥∥ρ(4Q
(
x+ y

2

)
+Q (x− y) − 2Q(x) − 2Q(y)

)∥∥∥∥ ,

for all x,y ∈ X. By Lemma 2.1, the mapping Q : X→ Y is quadratic.
Now, let T : X→ Y be another quadratic mapping satisfying (2.4). Then we have

‖Q(x) − T(x)‖ =
∥∥∥4qQ

( x
2q

)
− 4qT

( x
2q

)∥∥∥ 6
∥∥∥4qQ

( x
2q

)
− 4qf

( x
2q

)∥∥∥+
∥∥∥4qT

( x
2q

)
− 4qf

( x
2q

)∥∥∥
6

2θ
2β1r − 4β2

4β2q

2β1qr
‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T(x) for all x ∈ X. This
proves the uniqueness of Q, as desired.

Theorem 2.3. Let r < 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be an even mapping satisfying
f(0) = 0 and (2.3). Then there exists a unique quadratic mapping Q : X→ Y such that

‖f(x) −Q(x)‖ 6 2θ
4β2 − 2β1r

‖x‖r, (2.7)

for all x ∈ X.

Proof. It follows from (2.5) that ∥∥∥∥f(x) − 1
4
f(2x)

∥∥∥∥ 6
2θ
4β2
‖x‖r,

for all x ∈ X. Hence∥∥∥∥ 1
4l
f(2lx) −

1
4m
f(2mx)

∥∥∥∥ 6
m−1∑
j=l

∥∥∥∥ 1
4j
f
(
2jx

)
−

1
4j+1 f

(
2j+1x

)∥∥∥∥ 6
2θ
4β2

m−1∑
j=l

2β1r

4β2j
‖x‖r, (2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.8) that the sequence
{ 1

4n f(2
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence { 1

4n f(2
nx)} is convergent.

So one can define the mapping Q : X→ Y by

Q(x) := lim
n→∞ 1

4n
f(2nx),

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.8), we get (2.7).
The rest of proof is similar to the proof of Theorem 2.2.

Remark 2.4. If ρ is a real number such that −1 < ρ < 1 and Y is a β-homogeneous real Banach space, then
all the assertions in this section remain valid.

3. Quadratic ρ-functional inequality (2) in β-homogeneous complex Banach spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1.
We solve and investigate the quadratic ρ-functional inequality (2) in β-homogeneous complex normed

spaces.

Lemma 3.1. If a mapping f : G→ Y satisfies∥∥∥∥4f
(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

∥∥∥∥ 6 ‖ρ(f(x+ y) + f(x− y) − 2f(x) − 2f(y))‖, (3.1)

for all x,y ∈ G, then f : G→ Y is quadratic.
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Proof. Assume that f : G→ Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖f(0)‖ 6 |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.1), we get

∥∥4f
(
x
2

)
− f(x)

∥∥ 6 0 and so

4f
(x

2

)
= f(x), (3.2)

for all x ∈ G.
It follows from (3.1) and (3.2) that

‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖ =
∥∥∥∥4f

(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

∥∥∥∥
6 |ρ|‖f(x+ y) + f(x− y) − 2f(x) − 2f(y)‖

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y),

for all x,y ∈ G.

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (3.1) in β- homoge-
neous complex Banach spaces.

Theorem 3.2. Let r > 2β2
β1

and θ be nonnegative real numbers and let f : X→ Y be a mapping satisfying f(0) = 0
and ∥∥∥∥4f

(
x+ y

2

)
+ f (x− y) − 2f(x) − 2f(y)

∥∥∥∥ 6 ‖ρ(f(x+ y) + f(x− y) − 2f(x) − 2f(y))‖

+ θ(‖x‖r + ‖y‖r),
(3.3)

for all x,y ∈ X. Then there exists a unique quadratic mapping Q : X→ Y such that

‖f(x) −Q(x)‖ 6 2β1rθ

2β1r − 4β2
‖x‖r, (3.4)

for all x ∈ X.

Proof. Letting y = 0 in (3.3), we get∥∥∥f(x) − 4f
(x

2

)∥∥∥ =
∥∥∥4f

(x
2

)
− f(x)

∥∥∥ 6 θ‖x‖r, (3.5)

for all x ∈ X. So∥∥∥4lf
( x

2l
)
− 4mf

( x

2m
)∥∥∥ 6

m−1∑
j=l

∥∥∥4jf
( x

2j
)
− 4j+1f

( x

2j+1

)∥∥∥ 6
m−1∑
j=l

4β2j

2β1rj
θ‖x‖r, (3.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6) that the sequence
{4kf( x2k )} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence {4kf( x2k )} is convergent. So one
can define the mapping Q : X→ Y by

Q(x) := lim
k→∞ 4kf

( x
2k

)
,

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.4).
The rest of proof is similar to the proof of Theorem 2.2.
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Theorem 3.3. Let r < 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be an even mapping satisfying
f(0) = 0 and (3.3). Then there exists a unique quadratic mapping Q : X→ Y such that

‖f(x) −Q(x)‖ 6 2β1rθ

4β2 − 2β1r
‖x‖r, (3.7)

for all x ∈ X.

Proof. It follows from (3.5) that ∥∥∥∥f(x) − 1
4
f(2x)

∥∥∥∥ 6
2β1r

4β2
θ‖x‖r,

for all x ∈ X. Hence∥∥∥∥ 1
4l
f(2lx) −

1
4m
f(2mx)

∥∥∥∥ 6
m−1∑
j=l

∥∥∥∥ 1
4j
f
(
2jx

)
−

1
4j+1 f

(
2j+1x

)∥∥∥∥ 6
m∑

j=l+1

2β1rj

4β2j
θ‖x‖r, (3.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8) that the sequence
{ 1

4n f(2
nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence { 1

4n f(2
nx)} is convergent.

So one can define the mapping Q : X→ Y by

Q(x) := lim
n→∞ 1

4n
f(2nx),

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.8), we get (3.7).
The rest of proof is similar to the proof of Theorem 2.2.

Remark 3.4. If ρ is a real number such that −1 < ρ < 1 and Y is a β-homogeneous real Banach space, then
all the assertions in this section remain valid.
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