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Abstract

In this paper, we introduce viscosity approximation forward-backward splitting method for an accretive operator and an
m-accretive operator in Banach spaces. The strong convergence of this viscosity method is proved under certain assumptions
imposed on the sequence of parameters. Applications to the minimization optimization problem and the linear inverse problem
are included. The results presented in the paper extend and improve some recent results announced in the current literature.
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1. Introduction

Splitting methods have recently received much attention due to the fact that many nonlinear problems
arising in applied areas such as image recovery, signal processing, and machine learning are mathemat-
ically modeled as a nonlinear operator equation and this operator is decomposed as the sum of two
(possibly simpler) nonlinear operators. The central problem is to iteratively find a zero of the sum of two
monotone operators, namely, let X be a real Banach space, find x* € X such that

0 € Ax" + Bx", (1.1)

where A : X — X is an operator and B : X — 2% is a set-valued operator. This problem includes, as special
cases, convex programming, variational inequalities, split feasibility problem, linear inverse problem and
minimization problem.

A classical method for solving problem (1.1) is the forward-backward splitting method [11, 16, 23, 29]
which is defined by the following manner: x; € X and

Xnt1 = (I+71B) Hxn —TAXn), n>1,

*Corresponding author
Email addresses: zhaofuhai@swust.edu.cn (Fu Hai Zhao), yangli@swust.edu.cn (Li Yang)

doi:10.22436 /jnsa.010.01.13
Received 2016-09-29


http://dx.doi.org/10.22436/jnsa.010.01.13

F. H. Zhao, L. Yang, J. Nonlinear Sci. Appl., 10 (2017), 130-140 131

where v > 0. We see that each step of iterates involves only with A as the forward step and B as the
backward step, but not the sum of B. This method includes, in particular, the proximal point algorithm
[4, 6, 14, 20, 27] and the gradient method [3, 13]. Lions-Mercier [16] introduced the following splitting
iterative methods in a real Hilbert space:

Xn+1 = (21? - I)(ZIE —Dxn, n2>1,

and
*nt1 =JR (2] = Dxn+ (1= JB)xn, n>1,

where JI = (I+7T)~!. The first one is often called Peaceman-Rachford algorithm [24] and the second
one is called Douglas-Rachford algorithm [12]. We note that both algorithms can be weakly convergent
in general [23].
In 2012, Lopez et al. [17] introduced the following Halpern-type forward-backward method: x; € X
and
Xn41 = GnU+ (1— (Xn)(]]rgn (xn —Tn(Axn +an)) +bn), (1-2)

where JB is the resolvent of B, {r,} C (0,00), {on} C (0,1] and {an}, {by} are error sequences in X. It was
proved that the sequence {x,} generated by (1.2) strongly converges to a zero point of the sum of A and
B under some appropriate conditions. There have been many works concerning the problem of finding
zero points of the sum of two monotone operators (in Hilbert spaces) and accretive operators (in Banach
spaces), see [10, 28, 29, 32].

In 2016, Cholamjiak [8] studied a generalized forward-backward method for solving the inclusion
problem (1.1) for an accretive and an m-accretive operator in Banach spaces. They then proved its strong
convergence under some mild conditions.

The viscosity approximation method for nonexpansive mapping in Hilbert spaces was introduced by
Moudafi [22], following the ideas of Attouch [1]. Refinements in Hilbert spaces and extensions to Banach
spaces were obtained by Xu [31].

Let T : X — X be a nonexpansive mapping and f : X — X be a contraction. Explicit viscosity method
for nonexpansive mappings generates a sequence {xn} through the iteration process:

Xn+1 = &nf(xn) + (I—an)Txn, >0,

where [ is the identity of X. It is well-known [22, 31] that under certain conditions, the sequence {x,}
converges in norm to a fixed point q of T.

Motivated and inspired by the research going on in this direction. The purpose of this paper is
to introduce viscosity approximation forward-backward splitting method for an accretive operator and
an m-accretive operator in the framework of Banach spaces. More precisely, we consider the following
iterative algorithm:

Xn+1 = anf(xn) + )\an + 5nJEn(Xn - TTLAXTL) +en, N2 1.

Under certain assumptions imposed on the sequence of parameters, the strong convergence of this
viscosity method is proved.

2. Preliminaries

Throughout the paper, X is a real Banach space with norm || - || and dual space X*. The expressions
Xn — x and xn, — x denote the strong and weak convergence of the sequence {x}, respectively.
The modulus of convexity of X is the function 5(¢) : (0,2] — [0, 1] defined by

x+yll

3(e) = infl1 — TVl <1yl <1 fx -yl > e
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A Banach space X is said to be uniformly convex, if 5(e) > 0 for every e € (0,2].
Let p : [0,00) — [0, 00) be the modulus of smoothness of X defined by

1
p(t) = sup{z (I +ty[| + [lx —ty|) = 1%,y € X, [Ix]| = [ly[} = 1}-

A Banach space X is said to be uniformly smooth if @ — 0ast — 0. Let q be a fixed real number
with q > 1. Then a Banach space E is said to be q-uniformly smooth if there exists a constant b > 0 such
that p(t) < bt9 for all t > 0. It is well-known that every g-uniformly smooth Banach space is uniformly
smooth.

Let J4(q > 1) denote the generalized duality mapping from X into 2X° given by

Jq(x) :{jq(x) € X*: <erq(X)> = [Ix]|9, ||]q(x)” = ||X”q71}z vx € X,

where (-, -) denotes the duality pairing between X and X*. In particular, ], := ] is called the normalized
duality mapping on X. It is also known (e.g., [30, p.1128]) that

jq(x) = [x[172](x), x #0.
We next provide some properties of the duality mapping.
Lemma 2.1 ([9]). Let 1 < q < oo.
(i) The Banach space X is smooth, if and only if the duality mapping ] q is single-valued.

(ii) The Banach space X is uniformly smooth, if and only if the duality mapping ] 4 is single-valued and norm-to-
norm uniformly continuous on bounded subsets of X.

By using the concept of sub-differentials, we know the following inequality:

Lemma 2.2 ([7, p. 33]). Let q > 1 and X be a real normed space with the generalized duality mapping J. Then,
forany x,y € X, we have

Ix+yl[* <X+ aqly,jq(x +y)),
forall jq(x+y) € Jq(x+y).

We define the domain and the range of an operator A : X — 2X by D(A) = {x € X : Ax # (} and
R(A) = {Az : z € D(A)}, respectively. The inverse of A, denoted by A~!, is defined by x € A~ ly, if
and only if y € Ax. A set-valued operator A is said to be accretive, if for each x,y € D(A), there exists
j(x —y) € J(x —y) such that

(u—v,jlx—y)) >0, ue Ax, ve Ay.

An accretive operator A is said to be m-accretive, if R(I+1A) = X for all r > 0.
Given « > 0 and q € (1, 00), we say that an accretive operator A is 3-inverse strongly accretive (3-isa)
of order g, if for each x,y € D(A), there exists jq(x —y) € J(x —y) such that

(U=v,jq(x—y)) = Bllu—v[[, weAx, veAy.

Let C be a nonempty subset of a real Banach space X. Let T : C — C be a nonlinear mapping. We
denote the fixed point set of T by Fix(T), that is, Fix(T) = {x € C:x = Tx}.

Lemma 2.3 ([25, Corollary 1]). Let C be a closed convex subset of a uniformly smooth Banach space X and let
T : C — C be a nonexpansive mapping with a fixed point. For each fixed w € C and every t € (0,1), the unique
fixed point x¢ € C of the contraction C 3 x — tu+ (1 —t)Tx converges strongly as t — 0 to a fixed point of T .

In what follows, we shall use the following notation:

TAB — JB(1—1A) = (I+7B) " 1(I—71A), 1> 0.
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Lemma 2.4 ([17, Lemma 3.1 and Lemma 3.2]). Let X be a Banach space. Let A : X — X be an o-isa of order q
and B : X — 2% an m-accretive operator. Then we have

(i) Forr >0, Fix(TMB) = (A+B)~1(0).
(ii) For0<s <tandx € X, |x—TMBx|| < 2|x — TABx|.

Lemma 2.5 ([17, Lemma 3.3]). Let X be a uniformly convex and q-uniformly smooth Banach space for some
q € (1,2]. Assume that A is a single-valued «-isa of order q in X. Then, given r > 0, there exists a continuous,
strictly increasing and convex function ¢4 : RY — R with ¢4 (0) = 0 such that, for all x,y € B,

ITAPx = TPy |9 < fx =yl = (g =197 kg )[|Ax — Ay
— dq(II=JH)I=rAx— (1] (I-rA)y]),
where kq is the q-uniform smoothness coefficient of X.

Lemma 2.6 ([18, Lemma 3.1]). Let {an} and {cn} are sequences of nonnegative real numbers such that

Ani1 < (I1-dn)an+bn+cn, n>1,

where {6n} is a sequence in (0,1) and {byn} is a real sequence. Assume ) cyn < oco. Then the following results

n=1
hold:

(i) If bn < 6nM for some M > 0, then {an} is a bounded sequence.
(ii) If 3 8n = oo and limsup 2 <0, then lim a, = 0.
n=1 n—ooo n—00

By employing the technique of Maingé [19], He and Yang [15] proved the following lemma.

Lemma 2.7 ([15, Lemma 8]). Assume {sn} is a sequence of nonnegative real numbers such that

Sn+1 < (1 =vn)sn+v¥YnTh, n2>1,
and
Snl <KSn—TNn+pPn, n2>1,

where {yn} is a sequence in (0,1), {Nn} is a sequence of nonnegative real numbers and {t}, and {pn} are real
sequences such that

(i) 2 yn=o0.
n=1

(i) lim pn =0.
n—o0

(iii) klim Mn, = 0 implies limsup tn, < 0, for any subsequence {ny} C {n}.
— k—o0

Then lim s, = 0.
n—oo

Lemma 2.8 ([21, p. 63]). Let q > 1. Then the following inequality holds:

1 —1
abgaaq—l—q b%,

for arbitrary positive real numbers a and b.
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Lemma 2.9 ([8, Proposition 3.1]). Let q > 1 and let X be a real smooth Banach space with the generalized duality
m

mapping jq. Let m € N be fixed. Let {x;}]*; C Xand t; > 0, foralli=1,2,..,mwith ) t; < 1. Then we have
i=1

m

2 tifxif|

m .
1Y tix)|9 < ————.
i=1 a—(a-1 Y &

3. Main results
In this section, we first establish a crucial proposition and then prove our main theorem.

Proposition 3.1. Let X be a uniformly convex and q-uniformly smooth Banach space. Let A : X — X be an (-isa
of order q and B : X — 2X an m-accretive operator such that Q := (A +B)~1(0) # 0. Let {en} be a sequence in X
and f be a contraction on X with coefficient « € [0,1). Let {xn} be generated by x; € X and

Xn+1 = (an(Xn) +Anxn + 6n]§n (Xn - rnAXn) +en, n2>1,

where ]?n = (I4+mB)™, 0<r < (Bq/kq)l/(q*” and {xn}, {An}, and {dn} are sequences in [0,1] with

n +A+0n=11If ) |len] < ooor lgn llenl|/on =0, then {xn} is bounded.
n o0

n=1

Proof. For eachn € N, we put T, = ]F‘n (I—rnA) and let {yn} be defined by

Ynt+1 = O‘nf(yn) + )\nyn + 6nTnyn- (31)

Firstly, we compute the following:

Xnt1 —=Ynt1ll = an(f(xn) = f(yn)) + An(xn —yn) + 0n(Tuxn — Tnyn) +enl,
< on[f(xn) = f(yn) | + Anllxn =yl + Onl[Taxn — Tayn|| + [len]|
< on [ Xn = Yn| +An[xn —yYnl[ 4+ dnxn —ynll + [en]
= (1 —on(1—a))[[xn —ynll +[len]-

By the assumptions and Lemma 2.6 (ii), we conclude that 1i_r>n Ixn —yn]|| = 0. Let z € Fix(T,). We
n—oo
next show that {y, } is bounded. Indeed

l[ynt1 =zl = [[en (flyn) —2) + An(Yn —2) + 0n(Tayn —2)|,
< on[f(yn) =zl + Anllyn —z[| + 8n[[Thyn — z||
< an([[flyn) = f@)[| + [[f(z) = z[]) + Anflyn =zl + nllyn — z|
< an&|lyn —z| + an [[f(z) — z|| + Anllyn — zl| + dnllyn — z||
= (1—on(l=a))|lyn —z[[ + an|[f(z) — z|.

This shows that {yn} is bounded by Lemma 2.6 (i) and hence {x, } is also bounded. O

Theorem 3.2. Let X be a uniformly convex and q-uniformly smooth Banach space. Let A : X — X be an 3-isa of
order q and B : X — 2% an m-accretive operator such that Q = (A +B)~1(0) # (. Let {en} be a sequence in X
and f be a contraction on X with coefficient « € [0,1). Let {xn} be generated by x, € X and

Xn+1 = o‘nf(xn) + Anxn + 611]1]?“ (Xn - rnAxn) +en, n2=1,

where ]Fn = (I+71aB)~ L {rn} C (0,00) and {an}, {An}, and {5,,} are sequences in [0,1] with oty + Ay + 6n = 1.
Assume that
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(i)

on =00, im o, =0;
n—oo

™M

1

(ii) 0 <liminfr, <limsupr, < (Bq/kq)l/(qfl);

n—oo n—oo

(iii) liminfd, > 0;
n—oo

Z llen|| < oo or hm llen||/on = 0.
n=1

Then {xn} strongly converges to some z € Q).

Proof. Let z € Fix(Ty), from Lemma 2.2 and Lemma 2.8, we have

[Ynt1 —zl|T = [len (flyn) —2) + An(yn — 2) +8n(Toyn — 2)[|9,
An(Yn —2) + 0n(Tnyn —2) || +q0‘n<(f(yn)_Z)/jq(yn+l—2)>
[An(Yn —2) + 0n(Tayn —2) |9
+ qoen ((f(yn) — f(2),iq(Yns1 —2)) + (f(2) —2,iq(Yn1 —2)))
< [An(Yyn —2) + 0n(Tayn —2) |9

+qoenafyn =zl [yns1 —z[|* 4 qo‘ﬂ(ﬂl)—zrjq(UnH—ZD)
< An(Yn —2) + 00 (Tayn —2) ||

<
<

1 —1 .
+ qocnoc(allyn —z[|T + qTHUnJrl —z||) + qoen (f(z) — 2,jq (Ynt1 — 2)).

After simplifying, it follows that

1
—z||9 < A — on (T —2z)||4
||Un+1 Z’H 1—(q—1)(xnCX|| Tl(yn Z)+ n( nYn Z)” (3 2)
by 2 o (f(2) — 2, (Ynt1 —2)). |
1—(g—1Doana 1—(gq—1Doanax q
On the other hand, by Lemma 2.9 and Lemma 2.5, we obtain
||}\n(yn_z)+5n(Tnyn_Z)”q
S ang 1o, Anllyn —z[|7 4+ 8n [ Thyn —z[|9)
1 _
< ————Mnllyn — 2|+ 8nlllyn —zl|9 =T (Bqg — 7 'kq) [ Ayn — Az|
ong+1—on (3.3)
_d)q(”yn —TnAYn — Tnyn +TrAzZ||))) ‘
1_0(n 6nrn(ﬁq_rﬂ_1k )
<{—————— —z||9 — 9 Ayn — Az]||9
on
— m%(llyn —TnAYn — Tnyn + rnAzl]).
By replacing (3.3) into (3.2), it follows that
anq(l—a—(q—1)ana)
—z||l9 < (1— n _ -4
91
o 6TLTTL(Bq TTI kq) HAyn—AZHq
(I—(g—Dana)(ong+1—oan) (3.4)
on
— —ThAyn — A
o4 .
b 4(2) — 2, jq(yns1 — 2)-

1—(gq—1Doanax
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We can check that (Pofgi(ll);i;)(?o:‘%ﬁfzxn) is in (0,1), since 1 < q < 2, {an} C (0,1) and hm an = 0.

5nTn(Bq*Tﬂ71kq)
(1—(g—Doanax)(xng+I—xn)

On
(I—(g—1)ono) (otng+1—on)

Moreover, by condition (ii), and

For each n > 1, we set

are positive.

angq(l—a—(q—1)ana)
—(q—Dona)(ng+1—an)’

sn=llyn—2zl|9, vn= §

(an+1—ocn .
= f(z) — _
Tn 1_0(_(q_1)o(no(< (Z) Z/]q(yn+1 Z)>/
OnT B
Nn = nTn(Bq n q) )IIAyn—Azllq
n

(1—(g—1Doanx)(otng+1—
- On ¢
(1—=(g—1Donax)(xng+1—an)

q(Hyn —ThAYn — Thyn + TTLAZ‘H)/

qon .
— f(z) -z, —2)).
Pn 1—(q—1)ocnoc< (z) Z]q(yn—i—l z))
From (3.4), we have

Sl < (1=vYn)sSn+VnTn, n2>1,

and
Sn+1 < —Mn+pn, n=>1

Since Z xn = 00, it follows that Z Yn = o0o. By the boundedness of {y,} and hm on = 0, we see that
n=1 =1

lim pn = 0. In order to complete the proof, by using Lemma 2.7, it remains to show that 11m 1 Nny = 0
n—o0

implies lim sup 1, < 0, for any subsequence {ny} C {n}.
k—o00
Let {ny} be a subsequence of {n} such that klim Mn, = 0. So, by our assumptions and the property of
—00

¢4, we can deduce that

lim HAynk —Az[| = lim ||ynk — Y AYn — Ty Yny + TnkAZH =0.
k—o0 k—o00
This gives, by the triangle inequality, that

khm HTleyle _ynkH =0. (3-5)
—00

Since lign infr, > 0, there is v > 0 such that r, > r, for all n > 1. In particular, r,, > r for all k > 1.
— 00
Lemma 2.4 (ii) yields that
HTA'BUnk Yni | < 2[[ T Ynye — Y |-

Then, by (3.5), we obtain

limsup |[TAPyn, —yn, || <2 hm [T Yny — Ynell-
k—o0
It follows that
Jim [T Py, —yn, || =0. (3.6)

Let zy = tf(z¢) + (1 —t)TMBz,t € (0,1). By employing Lemma 2.3, we have zy =z € ) ast — 0. From
Lemma 2.2 we have that
2e = yn I = [[t(F(z6) = yn,) + (1= (TP ze —yn, )|
<(1- qHTTA th —ynqu + qt<f(zt) _ynk/jq(zt _Unk)>
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< A=A Pze =T Pyn | + T Pyne —yn, )9
+ qt(f(zt) — zt,iq (2t —Yn, ) + 9zt —Yny iq(zt —Yny))
< A= Ylze =yni | + 1T Py, —yn,
+ qt(f(ze) —ze,Jq(ze —yn)) + qtllze —yn, ||
This shows that

(1—t)d qt—1
B B A

(zt — f(zt),iq(zt —Yny)) < 1z —Yn, )19 3.7)

From (3.7) and (3.6), we obtain

i - 1-1t)9 t—1
hmsup(zt—f(zt),]q(zt_ynk)> < ( ) Mq—|-q7]\/[q
k—o00 qt qt (3 8)
_-994qt-1
qt ’
where M = limsup ||z¢ —yn, ||, t € (0,1). We see that “_t):%t_] — 0ast — 0. From Lemma 2.1 (ii), we

k—o00
know that jq is norm-to-norm uniformly continuous on bounded subsets of X. Since z; — zas t — 0, we

have [[jq(zt —Yn,) —iq(z—yYn,)|| = 0 as t — 0. Observe that
{zt = f(zt)jq(z¢ —yn,)) — (2= f(2),iq(z—yn )
<Nzt —z+z2—1(2) + f(z) = f(z¢),iq (2t —yn,)) — (2= f(2),iq(z = yn, )
< |<Zt_erq(zt_Unkm+|<Z_f(z)rjq(zt_ynk) _jq(z_ynkm
+[{f(z) = f(ze),jq(zt —Yn, )l

< (L4 a)lze = zlllze = yn 197 + 2= F(2)[[[liq (e = Yni) =iqz—=yn I

Soast— 0, we get
(zt = f(zt),jq(zt —yn,)) = (z—TF(2),iq(z—Yn,))-

From (3.8), as t — 0, it follows that

limsup(z — f(z),jq(z —yn,)) <O0. (3.9)

k—o0

By Proposition 3.1, {yn } is bounded, and so is {f(xn )}, by condition (i) and (3.1), (3.5), we have
||ynk+1 Yy H = H‘xnkf(ynk) + )\nkynk + 6T1kTT1kyT1k “Yny H (3 10)
< (xnka(ynk) _ynkH + 6T1k||TTkaTLk _ynkH -0,

as k — oo. By combining (3.9) and (3.10), we get that

lim sup(z — f(z), q (z— ynk+1)> < 0.
k—o00

It also follows that limsup T, < 0. We conclude that lim s, = 0 by Lemma 2.7. Hence yn — z as
k—00 n—o0
n — oo, by Proposition 3.1, lim |[xn —yn| =0,s0 lim x, =z € Q. We thus complete the proof. O
n—o0 n—oo

By setting A,, = 0 for all n > 1, we obtain the following result:

Corollary 3.3. Let X be a uniformly convex and q-uniformly smooth Banach space. Let A : X — X be an 3-isa of
order q and B : X — 2% an m-accretive operator such that Q = (A +B)~1(0) # (. Let {en} be a sequence in X
and f be a contraction on X with coefficient « € [0,1). Let {xn,} be generated by x, € X and

Xn+1 = Xnf(xn) +(1— ocn)]]fn(xn —ThAxn)+en, n>1,

where JB = (I+1:B) "1, {rn} C (0,00) and {on} is a sequences in [0,1]. Assume that
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n =00, lim oy =0;
1 n—oo

(i)

™M

(ii) 0 <liminfr, <limsupr, < ([Sq/kq)l/(q_l);

n—o00 n—oo

o0
i) 3 [len]l < 00, or lim [en]|/om = 0.
n—=1 n—oo

Then {xn} strongly converges to some z € Q).

4. Applications

4.1. Minimization problem

In this subsection, we apply Theorem 3.2 to the convex minimization problem. Let H be a real Hilbert
space. Let F: H — R be a convex smooth function and G : H — R be a convex, lower-semicontinuous and
nonsmooth function. We consider the problem of finding x* € H such that

F(x*) + G(x") < F(x) + G(x), (4.1)

for all x € H. This problem (4.1) is equivalent, by Fermat’s rule, to the problem of finding x* € H such
that
0 e VF(x*)+0G(x"),

where VF is a gradient of F and 0G is a subdifferential of G. In this point of view, we can set A = VF
and B = 90G in Theorem 3.2. This is because if VF is (1/L)-Lipschitz continuous, then it is L-inverse
strongly monotone [2, Corollary 10]. Moreover, G is maximal monotone [26, Theorem A]. So we obtain
the following result.

Theorem 4.1. Let H be real Hilbert space. Let F : H — R be a convex and differentiable function with (1/L)-
Lipschitz continuous gradient VF and G : H — R be a convex and lower semi-continuous function which F + G
attains a minimizer. Let {en} be a sequence in H and f be a contraction on X with coefficient o« € [0,1). Let {xn} be
generated by x; € H and

Xn+1 = (an(Xn) +Anxn + 6n]rn (Xn - rnVF(Xn)) +en, n2>1,

where Jy, = (I+1120G) 1, {rn} C (0,00) and {on}, {An}, and {81} are sequences in [0, 1] with ot + An + 6n = 1.
Assume that
(i) X oan =00, lim an =0;
n—1 n—oo

(ii) 0 <liminfr, <limsupry < 2L;
n—oo n—oo

(iii) liminfd, > 0;

n—oo

o0
(iv) > |lenl]] < oo, 0r lim |en]|/on =0.
=1 n—00

Then {xn} strongly converges to a minimizer of F + G.

4.2. Linear inverse problem
In this subsection, we apply Theorem 3.2 to solve the unconstrained linear system

Cx=d, (4.2)
where C is a bounded linear operator on H and d € H. For each x € H, we define F: H — R by
1
Fix) = 5lICx—d|f”

From [5] we know that VF(x) = CT(Cx—d) and VF is K-Lipschitz continuous with K the largest eigenvalue
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of CTC. So we obtain the following result.

Theorem 4.2. Let H be real Hilbert space. Let C : H — H be a bounded linear operator and d € H with K the
largest eigenvalue of CTC. Let {en} be a sequence in H and f be a contraction on X with coefficient o € [0,1). Let
{xn} be generated by x; € H and

Xni1 = Onf(xn) +Anxn + 0n(Xn —rnCT(C(xn) —d))+en, n>1,

where {rn} C (0, 00) and {xn}, {An}, and {6} are sequences in [0,1] with &y + An + dn = 1. Assume that

o
(i) X an=o00, lim an=0;
n—1 n—oo

(i) 0 <liminfr, <limsupr, <2/K;
n—oo n—oc0

(iii) liminf &, > 0;
n—oo

[e°]
(iv) ) |len|| < o0, or lim |len]||/oxn =0.
n—1 n—00

If (4.2) is consistent, then {xn} strongly converges to a solution of a linear system.
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