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Abstract
In this paper, we investigate a new simultaneous iterative algorithm for the split equality fixed-point problem of demicon-

tractive mappings in real Hilbert spaces and obtain a strong convergence result with no compactness assumptions on the spaces
or the mappings and with no extra conditions on the fixed point sets. The results obtained in this paper generalize and improve
the recent ones announced by many others. c©2017 All rights reserved.
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1. Introduction

The split feasibility problem (SFP) arises in many areas of applications such as phase retrieval, medical
image reconstruction, image restoration and radiation therapy treatment planning (see, e.g. Byrne [1],
Censor et al. [2] and Censor and Elfving [3]). It is formulated as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where C and Q are respectively closed convex subsets in Hilbert spaces H1 and H2, and A : H1 → H2
is a bounded linear mapping. The SFP was first introduced in 1994 by Censor and Elfving [3] in finite-
dimensional Hilbert spaces for modelling inverse problems arising from phase retrieval and medical
image reconstruction. Recently the SFP has been widely studied by many authors (see, e.g., [15–17]). An
efficient algorithm for solving the SFP is Byrne’s CQ algorithm [1]: for any x0 ∈ H1, the CQ algorithm
generates an iterative sequence as

xk+1 = PC(I+ γA
∗(PQ − I)A)xk,

where 0 < γ < 2/‖A‖2, PC and PQ are the metric projections from H1 onto C and from H2 onto Q,
respectively. It is known that the CQ algorithm converges weakly to a solution of the SFP (1.1), if such a
solution exists.
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In 2009, Censor and Segal [4] introduced the following split common fixed-point problem (SCFP):

Find x ∈ F(U) such that Ax ∈ F(T), (1.2)

where A : H1 → H2 is a bounded linear operator, U : H1 → H1 and T : H2 → H2 are two nonexpansive
operators, F(U) = C and F(T) = Q are the fixed point sets of U and T , respectively.

To solve the SCFP (1.2), Censor and Segal [4] proposed and proved, in finite-dimensional spaces, the
convergence of the following algorithm

xk+1 = U(xk + γA
t(T − I)Axk), k ∈ N,

where γ ∈ (0, 2
λ) with λ being the largest eigenvalue of the matrix AtA (At stands for matrix transposi-

tion).
Let H1,H2,H3 be real Hilbert spaces. In 2013, Moudafi [9] proposed a new split equality problem

(SEP): Let A : H1 → H3,B : H2 → H3 be two bounded linear operators, C ⊂ H1,Q ⊂ H2 be two nonempty
closed convex sets.

Find x ∈ C, y ∈ Q such that Ax = By. (1.3)

In addition, assume that U : H1 → H1 and T : H2 → H2 are two firmly quasi-nonexpansive operators,
Moudafi [10] introduced the following split equality fixed-point problem (SEFP):

Find x ∈ C := F(U), y ∈ Q := F(T) such that Ax = By, (1.4)

which allows asymmetric and partial relations between the variables x and y. The interest is to cover
many situations, for instance, in decomposition methods for PDF’s, applications in game theory and
in intensity-modulated radiation therapy (IMRT). Note that the SEFP (1.4) reduces to the SCFP (1.2) if
H2 = H3 and B = I (where I is the identity operator on H2) in (1.4).

For solving the SEFP (1.4), Moudafi [10] introduced the following iterative scheme:{
xk+1 = U(xk − γkA

∗(Axk −Byk)),
yk+1 = T(yk + γkB

∗(Axk+1 −Byk)),

where γk ∈ (ε, min{ 1
λA

, 1
λB

}− ε), λA and λB are the spectral radius of A∗A and B∗B, respectively. Using
this iterative scheme, he obtained a weak convergence for the SEFP (1.4).

Subsequently, Moudafi and Al-Shemas [11] introduced the following simultaneous iterative method
to solve the SEFP (1.4): {

xk+1 = U(xk − γkA
∗(Axk −Byk)),

yk+1 = T(yk + γkB
∗(Axk −Byk)),

(1.5)

for firmly quasi-nonexpansive operators U and T , where γk ∈ (ε, 2
λA+λB

− ε), λA and λB are the spectral
radius of A∗A and B∗B, respectively. Using the iterative scheme (1.5), they obtained a weak convergence
for the SEFP (1.4).

Recently, Zhao and He [18] introduced the following simultaneous iterative algorithm for solving the
SEFP (1.4): For any x0 ∈ H1,y0 ∈ H2,

uk = xk − γkA
∗(Axk −Byk),

xk+1 = αkuk + (1 −αk)U(uk),
vk = yk + γkB

∗(Axk −Byk),
yk+1 = βkvk + (1 −βk)T(vk),

where γk is the same as in (1.5), A : H1 → H3,B : H2 → H3 are two bounded linear operators, U : H1 → H1
and T : H2 → H2 are two quasi-nonexpansive operators. They proved the weak convergence of this
algorithm.
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Very recently, Shehu and Ogbuisi [12] used a modified Mann iterative algorithm
x0 ∈ H1,
wk = (1 −αk)xk,
yk = wk + γA

∗(T − I)Awk,
xk+1 = (1 −βk)yk +βkUyk,

to approximate the solution of the SCFP (1.2) for demicontractive mappings in a real Hilbert space and
obtained a strong convergence result with no compactness assumptions.

Motivated by the above works, in this paper, we introduce a new simultaneous iterative scheme for
solving the SEFP (1.4): 

∀ x0 ∈ H1, y0 ∈ H2,
uk = xk − γkA

∗(Axk −Byk),
wk = (1 − tk)uk,
xk+1 = αkwk + (1 −αk)U(wk),
vk = yk + γkB

∗(Axk −Byk),
pk = (1 − tk)vk,
yk+1 = βkpk + (1 −βk)T(pk),

(1.6)

and obtain a strong convergence result with no compactness assumptions on the spaces or the mappings
and with no extra conditions on the fixed point sets.

2. Preliminaries

Throughout this paper, let N and R be the set of positive integers and real numbers, respectively. Let
H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed convex
subset of H and T be a mapping of C into H. We denote the set of fixed points of T by F(T). We always
denote strong and weak convergence by “ → and ⇀ ”, respectively, and use ωw(xk) = {x : ∃ xkj ⇀ x} to
denote the weak ω-limit set of {xk}.

Definition 2.1. Let H be a real Hilbert space. An operator T : H→ H is said to be

(i) nonexpansive, if ‖Tx− Ty‖ 6 ‖x− y‖, ∀ x,y ∈ H;
(ii) quasi-nonexpansive, if F(T) 6= ∅ and if ‖Tx− q‖ 6 ‖x− q‖ for all x ∈ H and q ∈ F(T);

(iii) firmly nonexpansive, if

‖Tx− Ty‖2 6 ‖x− y‖2 − ‖(I− T)x− (I− T)y‖2, ∀ x,y ∈ H,

or equivalently,
‖Tx− Ty‖2 6 〈x− y, Tx− Ty〉, ∀ x,y ∈ H;

(iv) firmly quasi-nonexpansive, if F(T) 6= ∅ and

‖Tx− q‖2 6 ‖x− q‖2 − ‖x− Tx‖2, ∀ x ∈ H, q ∈ F(T);

(v) µ-demicontractive, if F(T) 6= ∅ and there exists a constant µ ∈ (−∞, 1) such that

‖Tx− q‖2 6 ‖x− q‖2 + µ‖x− Tx‖2, ∀ x ∈ H, q ∈ F(T). (2.1)

In Hilbert spaces, (2.1) is equivalent to

2〈Tx− x, x− q〉 6 (µ− 1)‖x− Tx‖2. (2.2)

Remark 2.2. Notice that 0-demicontractive is exactly quasi-nonexpansive. In particular, we say that it is
quasi-strict pseudo-contractive [7], if 0 6 µ < 1. Moreover, if µ 6 0, every µ-demicontractive mapping
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becomes quasi-nonexpansive. Therefore, it is sufficient only to take µ ∈ (0, 1) in (v) of Definition 2.1, or
as the notion of quasi-strict pseudo-contraction due to [7].

Remark 2.3. The following inclusions are obvious.
Firmly quasi-nonexpansive mappings ⊂ quasi-nonexpansive mappings ⊂ demicontractive mappings.

Example 2.4. Let H = `2 and T : `2 → `2 be defined by T(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ), for arbitrary
(x1, x2, x3, · · · ) ∈ `2. Then T is a quasi-nonexpansive mapping which is not firmly quasi-nonexpansive
mapping.

In fact, it is obvious that T has a unique fixed point x = 0. For arbitrary x = (x1, x2, x3, · · · ) ∈ `2, we
have

‖Tx− 0‖ = ‖x− 0‖,

so T is quasi-nonexpansive. For every x 6= 0, suppose

‖Tx− 0‖2 6 ‖x− 0‖2 − ‖x− Tx‖2,

which implies that x = Tx. Thus x = 0, which is a contradiction. Therefore, T is not firmly quasi-
nonexpansive.

Example 2.5. Let H = `2 and T : `2 → `2 be defined by Tx = −kx, for arbitrary x ∈ `2, where k > 1. Then
F(T) = {0} and T is a demicontractive mapping which is not quasi-nonexpansive.

In fact, it is obvious that T has a unique fixed point x = 0. For each x ∈ `2, we have

‖Tx− 0‖2 = k2‖x− 0‖2,

which implies that T is not quasi-nonexpansive. And

‖x− Tx‖2 = ‖x− (−kx)‖2 = (1 + k)2‖x− 0‖2,

which implies that

‖x− 0‖2 =
1

(1 + k)2 ‖x− Tx‖
2.

Thus we have

‖Tx− 0‖2 = ‖x− 0‖2 + (k2 − 1)‖x− 0‖2 = ‖x− 0‖2 +
k2 − 1
(k+ 1)2 ‖x− Tx‖

2.

It follows from k2−1
(k+1)2 ∈ (0, 1) that T is a k2−1

(k+1)2 -demicontractive mapping.
In real Hilbert spaces, we easily get the following equality:

2〈x,y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2, ∀ x,y ∈ H.

The metric (or nearest point) projection PC from H onto C is defined as follows: Given x ∈ H, the
unique point PCx ∈ C satisfies the property

‖x− PCx‖ = inf
y∈C
‖x− y‖.

It is well-known [13] that PC is a nonexpansive mapping and is characterized by the inequality

PCx ∈ C, 〈x− PCx,y− PCx〉 6 0, ∀ y ∈ C. (2.3)

Definition 2.6. Let T : H → H be a nonlinear mapping. Then T is said to be demiclosed at y ∈ H, if
xn ⇀ x ∈ H and Txn → y, then y = Tx.
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In what follows, we shall make use of the following lemmas.

Lemma 2.7 ([14]). Assume that {ak} is a sequence of nonnegative real numbers such that

ak+1 6 (1 − λk)ak + λkδk, k > 0,

where {λk} is a sequence in (0,1) and {δk} is a sequence in R such that

(a)
∑∞
k=0 λk =∞ and limk→∞ λk = 0;

(b) lim supk→∞ δk 6 0 or
∑∞
k=0 λk|δk| <∞.

Then limk→∞ ak = 0.

Lemma 2.8 ([7, Proposition 2.1 (iii)]). Assume C is a closed convex subset of a Hilbert space H. Let T : C→ C be
a self-mapping of C. If T is a µ-demicontractive mapping (which is also called µ-quasi-strictly-contraction in [7]),
then the fixed point set F(T) is closed and convex.

Lemma 2.9 ([6]). Let {Γn} be a sequence of real numbers that does not decrease at infinity in the sense that there
exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1, for all i ∈ N. Define the sequence {τ(n)}n>n0 of
integers as follows:

τ(n) = max{k 6 n : Γk < Γk+1},

where n0 ∈N such that {k 6 n0 : Γk < Γk+1}} 6= ∅. Then, the following hold:

(i) τ(n0) 6 τ(n0 + 1) 6 · · · , and τ(n)→∞;
(ii) Γτ(n) 6 Γτ(n)+1 and Γn 6 Γτ(n)+1, ∀ n > n0.

Lemma 2.10 ([5], demiclosedness principle). Let H be a real Hilbert space, C a nonempty closed convex subset
of H, and T : C→ H a nonexpansive mapping. Then the mapping I− T is demiclosed on C, where I is the identity
mapping; that is, xn ⇀ x in H and (I− T)xn → y imply that x ∈ C and (I− T)x = y.

Here the following question is naturally raised: If T : C → H is quasi-nonexpansive, is I − T still
demiclosed at 0? The answer is negative as follows.

Example 2.11. The mapping T : [0, 1]→ [0, 1] is defined by

Tx =

{
x
5 , x ∈ [0, 1

2 ],
x sinπx, x ∈ ( 1

2 , 1].

Then T is a quasi-nonexpansive mapping, but I− T is not demiclosed at 0.

In fact, F(T) = {0}. For any x ∈ [0, 1
2 ], we have

|Tx− 0| =
∣∣x
5
− 0
∣∣ 6 |x− 0|,

and for any x ∈ ( 1
2 , 1], we have

|Tx− 0| = |x sinπx− 0| 6 |x− 0|.

Thus T is quasi-nonexpansive. By taking {xn} ⊂ ( 1
2 , 1] and xn → 1

2(n→∞), we have

|(I− T)xn| = |xn[1 − sinπxn]|→ 0(n→∞).

But T 1
2 = 1

10 6=
1
2 , i.e., (I− T) 1

2 6= 0, so I− T is not demiclosed at 0.

Remark 2.12. Notice that a demicontractive mapping could enjoy the demiclosedness property at the
origin, for an example, let C be the unit ball of H = `2 and let T : C → H be defined as in Example
2.5. Then T is not quasi-nonexpansive but µ-demicontactive, where µ := k2−1

(k+1)2 . However, I − T is
obviously demiclosed at the origin. For, whenever {xn} is any sequence in C such that xn ⇀ x ∈ C and
‖xn − Txn‖ → 0, we readily see that x = 0 ∈ F(T).
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3. Main results

Throughout this section, we assume that H1,H2,H3 are three real Hilbert spaces. Put H∗ = H1 ×H2.
Define the inner product of H∗ as follows:

〈(x1,y1), (x2,y2)〉 = 〈x1, x2〉+ 〈y1,y2〉, ∀ (x1,y1), (x2,y2) ∈ H∗.

It is easy to see that H∗ is also a real Hilbert space and

‖(x,y)‖ = (‖x‖2 + ‖y‖2)
1
2 , ∀ (x,y) ∈ H∗.

Lemma 3.1. Given two bounded linear operators A : H1 → H3,B : H2 → H3, let U : H1 → H1 and T : H2 → H2
be µ-demicontractive and ν-demicontractive, respectively. Assume that the solution set Ω of (1.4) is nonempty, i.e.,

Ω := {(x,y)|x ∈ F(U), y ∈ F(T) such that Ax = By} 6= ∅.

Then Ω is a nonempty closed convex set.

Proof. By Lemma 2.8 we have F(T) and F(U) are both closed convex subsets, and since A and B are both
linear, it is easy to see that Ω is a closed convex subset in H∗.

Let PΩ be a metric projection from H∗ onto Ω. We denote the origins of H1 and H2 by θ1 and θ2,
respectively.

Theorem 3.2. Let the mappings A,B,U, T be the same as in Lemma 3.1. Assume that U − I and T − I are
demiclosed at the orgins and the solution set Ω of (1.4) is nonempty. Let γk ∈ (ε, 2

λA+λB
− ε), λA and λB be the

spectral radius of A∗A and B∗B respectively and ε is small enough. Suppose {tk} is a sequence in (0,1) satisfying
limk→∞ tk = 0 and

∑∞
k=0 tk = ∞. Then the sequence {(xk,yk)} generalized by (1.6) strongly converges to a

solution PΩ(θ1, θ2) of (1.4), provided that {αk} ⊂ (µ + δ, 1 − δ) and {βk} ⊂ (ν + σ, 1 − σ) for small enough
δ,σ > 0.

Proof. Set (x∗,y∗) = PΩ(θ1, θ2). By (2.3) we have

〈(θ1, θ2) − (x∗,y∗), (x,y) − (x∗,y∗)〉 6 0, ∀ (x,y) ∈ Ω,

i.e.,
〈(x∗,y∗), (x− x∗,y− y∗)〉 = 〈x∗, x− x∗〉+ 〈y∗,y− y∗〉 > 0, ∀ (x,y) ∈ Ω. (3.1)

Since (x∗,y∗) ∈ Ω, we have x∗ ∈ F(U), y∗ ∈ F(T) such that Ax∗ = By∗. It follows from the definition of
λA that

‖A∗(Axk −Byk)‖2 = 〈A∗(Axk −Byk),A∗(Axk −Byk)〉
6 〈Axk −Byk,AA∗(Axk −Byk)〉
6 λA‖Axk −Byk‖2.

Similarly, we have

‖B∗(Axk −Byk)‖2 = 〈B∗(Axk −Byk),B∗(Axk −Byk)〉
6 〈Axk −Byk,BB∗(Axk −Byk)〉
6 λB‖Axk −Byk‖2.

Then by (1.6) we obtain

‖uk − x∗‖2 = ‖xk − γkA∗(Axk −Byk) − x∗‖2

= ‖xk − x∗‖2 − 2γk〈xk − x∗,A∗(Axk −Byk)〉+ γ2
k‖A∗(Axk −Byk)‖2

= ‖xk − x∗‖2 − 2γk〈Axk −Ax∗,Axk −Byk〉+ γ2
k‖A∗(Axk −Byk)‖2

6 ‖xk − x∗‖2 − 2γk〈Axk −Ax∗,Axk −Byk〉+ γ2
kλA‖Axk −Byk‖2.
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Similarly, we have

‖vk − y∗‖2 = ‖yk + γkB∗(Axk −Byk) − y∗‖2

= ‖yk − y∗‖2 + 2γk〈yk − y∗,B∗(Axk −Byk)〉+ γ2
k‖B∗(Axk −Byk)‖2

= ‖yk − y∗‖2 + 2γk〈Byk −By∗,Axk −Byk〉+ γ2
k‖B∗(Axk −Byk)‖2

6 ‖yk − y∗‖2 + 2γk〈Byk −By∗,Axk −Byk〉+ γ2
kλB‖Axk −Byk‖2.

It follows from the above two inequalities and Ax∗ = By∗ that

‖uk − x∗‖2 + ‖vk − y∗‖2 = ‖xk − x∗‖2 + ‖yk − y∗‖2 − 2γk〈Axk −Ax∗ −Byk +By∗,Axk −Byk〉
+ γ2

k(λA + λB)‖Axk −Byk‖2

6 ‖xk − x∗‖2 + ‖yk − y∗‖2 − γk[2 − γk(λA + λB)]‖Axk −Byk‖2 (3.2)

6 ‖xk − x∗‖2 + ‖yk − y∗‖2. (3.3)

By (1.6), (2.1), (2.2) and the condition on {αk}, we have

‖xk+1 − x
∗‖2 = ‖αk(wk − x∗) + (1 −αk)(U(wk) − x

∗)‖
= α2

k‖wk − x∗‖2 + (1 −αk)
2‖U(wk) − x∗‖2 + 2αk(1 −αk)〈U(wk) − x∗,wk − x∗〉

6 α2
k‖wk − x∗‖2 + (1 −αk)

2(‖wk − x∗‖2 + µ‖U(wk) −wk‖2)

+ 2αk(1 −αk)〈U(wk) −wk,wk − x∗〉+ 2αk(1 −αk)〈wk − x∗,wk − x∗〉
6 α2

k‖wk − x∗‖2 + (1 −αk)
2(‖wk − x∗‖2 + µ‖U(wk) −wk‖2)

+αk(1 −αk)(µ− 1)‖U(wk) −wk‖2 + 2αk(1 −αk)‖wk − x∗‖2

= ‖wk − x∗‖2 + (1 −αk)(µ−αk)‖U(wk) −wk‖2 (3.4)

6 ‖wk − x∗‖2 (3.5)

= ‖(1 − tk)(uk − x
∗) + tk(−x

∗)‖2

6 (1 − tk)‖uk − x∗‖2 + tk‖x∗‖2. (3.6)

Similarly, we have

‖yk+1 − y
∗‖2 6 ‖pk − y∗‖2 + (1 −βk)(ν−βk)‖T(pk) − pk‖2 (3.7)

6 ‖pk − y∗‖2 (3.8)

6 (1 − tk)‖vk − y∗‖2 + tk‖y∗‖2. (3.9)

It follows from (3.3), (3.6) and (3.9) that

‖xk+1 − x
∗‖2 + ‖yk+1 − y

∗‖2 6 (1 − tk)(‖uk − x∗‖2 + ‖vk − y∗‖2) + tk(‖x∗‖2 + ‖y∗‖2)

6 (1 − tk)(‖xk − x∗‖2 + ‖yk − y∗‖2) + tk(‖x∗‖2 + ‖y∗‖2).

Now, by setting ρk(x∗,y∗) = ‖xk − x∗‖2 + ‖yk − y∗‖2, from the above inequality we obtain

ρk+1(x
∗,y∗) 6 (1 − tk)ρk(x

∗,y∗) + tk(‖x∗‖2 + ‖y∗‖2)

6 max{ρk(x∗,y∗), ‖x∗‖2 + ‖y∗‖2}.

By induction, we have
ρk+1(x

∗,y∗) 6 max{ρ0(x
∗,y∗), ‖x∗‖2 + ‖y∗‖2},
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which implies that {ρk(x∗,y∗)} is bounded. Hence {xk}, {yk}, {uk}, {vk}, {wk} and {pk} are all bounded. By
(3.2), (3.4), (3.6), (3.7) and (3.9) we have

ρk+1(x
∗,y∗) 6 ‖wk − x∗‖2 + (1 −αk)(µ−αk)‖U(wk) −wk‖2

+ ‖pk − y∗‖2 + (1 −βk)(ν−βk)‖T(pk) − pk‖2

6 (1 − tk)(‖uk − x∗‖2 + ‖vk − y∗‖2) + tk(‖x∗‖2 + ‖y∗‖2) (3.10)

+ (1 −αk)(µ−αk)‖U(wk) −wk‖2 + (1 −βk)(ν−βk)‖T(pk) − pk‖2

6 (1 − tk)ρk(x
∗,y∗) − (1 − tk)γk[2 − γk(λA + λB)]‖Axk −Byk‖2 + tk(‖x∗‖2 + ‖y∗‖2)

+ (1 −αk)(µ−αk)‖U(wk) −wk‖2 + (1 −βk)(ν−βk)‖T(pk) − pk‖2.

By setting Γk = ρk(x
∗,y∗), from (3.10) we have

(1 − tk)γk[2 − γk(λA + λB)]‖Axk −Byk‖2 + (1 −αk)(−µ+αk)‖U(wk) −wk‖2

+ (1 −βk)(−ν+βk)‖T(pk) − pk‖2 6 (1 − tk)Γk − Γk+1 + tk(‖x∗‖2 + ‖y∗‖2).
(3.11)

Next we will divide the proof into two cases to establish strong convergence.
Case I. Suppose that there exists n0 ∈N such that Γk+1 6 Γk for all n > n0. In this case, limk→∞ Γk exists
and then limk→∞(Γk+1 − Γk) = 0. Hence from (3.11) with assumptions on {αk}, {βk}, {tk} and {γk} we have

lim
k→∞ ‖U(wk) −wk‖ = lim

k→∞ ‖T(pk) − pk‖ = 0, (3.12)

lim
k→∞ ‖Axk −Byk‖ = 0. (3.13)

From (3.13) we have

‖uk − xk‖ = γk‖A∗(Axk −Byk)‖ 6 γk
√
λA‖Axk −Byk‖ → 0. (3.14)

Then from (3.12) and (3.14) we obtain

‖xk+1 − xk‖ 6 ‖xk+1 −wk‖+ ‖wk − uk‖+ ‖uk − xk‖
6 (1 −αk)‖U(wk) −wk‖+ tk‖uk‖+ ‖uk − xk‖ → 0.

(3.15)

It follows from (3.12) and (3.15) that

‖xk −wk‖ 6 ‖xk+1 − xk‖+ ‖xk+1 −wk‖
6 ‖xk+1 − xk‖+ (1 −αk)‖U(wk) −wk‖ → 0.

(3.16)

Similarly, we have

lim
k→∞ ‖vk − yk‖ = lim

k→∞ ‖yk+1 − yk‖ = lim
k→∞ ‖yk − pk‖ = 0. (3.17)

Since {xk} and {yk} are both bounded, for any x̂ ∈ ωw(xk) and ŷ ∈ ωw(yk), there exists a subsequence
of {(xk,yk)} (without loss of generality still denoted by {(xk,yk)}), such that xk ⇀ x̂ and yk ⇀ ŷ. From
(3.16) and (3.17) we obtain wk ⇀ x̂ and pk ⇀ ŷ. Then since U − I and T − I are demiclosed at the
origins, and by (3.12) we have Ux̂ = x̂ and Tŷ = ŷ, i.e., x̂ ∈ F(U) and ŷ ∈ F(T). Furthermore Ax̂− Bŷ ∈
ωw(Axk −Byk) and weakly lower semicontinuity of the norm imply

‖Ax̂−Bŷ‖ 6 lim inf
k→∞ ‖Axk −Byk‖ = 0,

hence (x̂, ŷ) ∈ Ω.
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Next we prove that {(xk,yk)} converges strongly to (x∗,y∗). By (1.6) we have

‖wk − x∗‖2 = ‖(1 − tk)(uk − x
∗) − tkx

∗‖2

= (1 − tk)
2‖uk − x∗‖2 + t2

k‖x∗‖2 − 2tk(1 − tk)〈uk − x∗, x∗〉 (3.18)

6 (1 − tk)‖uk − x∗‖2 + t2
k‖x∗‖2 − 2tk(1 − tk)〈uk − x∗, x∗〉.

Similarly, we have

‖pk − y∗‖2 6 (1 − tk)‖vk − y∗‖2 + t2
k‖y∗‖2 − 2tk(1 − tk)〈vk − y∗,y∗〉. (3.19)

It follows from (3.3), (3.5), (3.8), (3.18) and (3.19) that

‖xk+1 − x
∗‖2 + ‖yk+1 − y

∗‖2 6 ‖wk − x∗‖2 + ‖pk − y∗‖2

6 (1 − tk)(‖uk − x∗‖2 + ‖vk − y∗‖2)

− 2tk(1 − tk)(〈uk − x∗, x∗〉+ 〈vk − y∗,y∗〉) + t2
k(‖x∗‖2 + ‖y∗‖2)

6 (1 − tk)(‖xk − x∗‖2 + ‖yk − y∗‖2) + tk[2(1 − tk)(〈uk − x∗,−x∗〉
+ 〈vk − y∗,−y∗〉) + tk(‖x∗‖2 + ‖y∗‖2)].

(3.20)

Since {uk} is bounded, we extract a subsequence {uki} ⊂ {uk} that converges weakly to p such that

lim sup
k→∞ 〈uk − x∗,−x∗〉 = lim

i→∞ 〈uki − x∗,−x∗〉 = 〈p− x∗,−x∗〉.
By (3.14) we have p ∈ ωw(xk). Similarly, we choose a subsequence {vkj} ⊂ {vk} that converges weakly to
q such that

lim sup
k→∞ 〈vk − y∗,−y∗〉 = lim

j→∞ 〈vkj − y∗,−y∗〉 = 〈q− y∗,−y∗〉.
By (3.17) we have q ∈ ωw(yk). From the above proof, we have (p,q) ∈ Ω. Therefore, from the above two
equalities and (3.1) we have

lim sup
k→∞ (〈uk − x∗,−x∗〉+ 〈vk − y∗,−y∗〉) 6 lim sup

k→∞ 〈uk − x∗,−x∗〉+ lim sup
k→∞ 〈vk − y∗,−y∗〉

= lim
i→∞ 〈uki − x∗,−x∗〉+ lim

j→∞ 〈vkj − y∗,−y∗〉
= 〈p− x∗,−x∗〉+ 〈q− y∗,−y∗〉 6 0.

(3.21)

Let λk = tk, δk = 2(1 − tk)(〈uk − x∗, x∗〉+ 〈vk − y∗,y∗〉) + tk(‖x∗‖2 + ‖y∗‖2). From Lemma 2.7, (3.20),
(3.21) and the assumptions on {tk}, we have {(xk,yk)} converges strongly to (x∗,y∗).

Case II. Suppose that there exists a subsequence {Γki} ⊂ {Γk} such that Γki < Γki+1, for all i ∈ N. In this
case, let τ : N→N be a mapping for all n > n0 (for some n0 large enough) by

τ(n) = max{k 6 n : Γk < Γk+1}.

Then we have from Lemma 2.9 that Γτ(n) 6 Γτ(n)+1 and clearly, {τ(n)} is a nondecreasing sequence such
that τ(n)→∞ as n→∞. From (3.11) we have

(1 − tτ(n))γτ(n)[2 − γτ(n)(λA + λB)]‖Axτ(n) −Byτ(n)‖2

+ (1 −ατ(n))(−µ+ατ(n))‖U(wτ(n)) −wτ(n)‖2

+ (1 −βτ(n))(−ν+βτ(n))‖T(pτ(n)) − pτ(n)‖2

6 (1 − tτ(n))Γτ(n) − Γτ(n)+1 + tτ(n)(‖x∗‖2 + ‖y∗‖2)

6 tτ(n)(‖x∗‖2 + ‖y∗‖2)→ 0.
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Hence

lim
n→∞ ‖U(wτ(n)) −wτ(n)‖ = lim

n→∞ ‖T(pτ(n)) − pτ(n)‖ = lim
n→∞ ‖Axτ(n) −Byτ(n)‖ = 0.

As in the proof of Case I, for any x ∈ ωw(xτ(n)) and y ∈ ωw(yτ(n)), we have x ∈ ωw(wτ(n)) and
y ∈ ωw(pτ(n)). Furthermore, we have (x,y) ∈ Ω. Similarly we also have

lim sup
n→∞ (〈uτ(n) − x∗,−x∗〉+ 〈vτ(n) − y∗,−y∗〉) 6 0. (3.22)

Now being similar to the proof of (3.20) and Γτ(n) 6 Γτ(n)+1, we obtain

0 6 Γτ(n)+1 − Γτ(n)

6 tτ(n)[2(1 − tτ(n))(〈uτ(n) − x∗,−x∗〉
+ 〈vτ(n) − y∗,−y∗〉) + tτ(n)(‖x∗‖2 + ‖y∗‖2)] − tτ(n)Γτ(n),

which implies that

Γτ(n) 6 2(1 − tτ(n))(〈uτ(n) − x∗,−x∗〉+ 〈vτ(n) − y∗,−y∗〉) + tτ(n)(‖x∗‖2 + ‖y∗‖2).

Therefore, from limn→∞ tτ(n) = 0, (3.22) and the above inequality we have

0 6 lim inf
n→∞ Γτ(n) 6 lim sup

n→∞ Γτ(n) 6 0.

Then we obtain
lim
n→∞ Γτ(n) = lim

n→∞ Γτ(n)+1 = 0.

By using Lemma 2.9, we obtain that

Γn 6 Γτ(n)+1 → 0(n→∞).

This completes the proof.

Remark 3.3. Theorem 3.2 extends and improves Theorem 2.1 in [18] from the following aspects:

(i) The result from the weak convergence to the strong convergence.
(ii) The mappings U and T are extended from quasi-nonexpansive mappings to demicontractive map-

pings.

4. Applications

In this section, we turn our attention to provide some applications in some convex and nonlinear
analysis problems.

(a) Split feasibility problem

By taking U = PC and T = PQ, we have the following simultaneous iterative algorithm for the SEP (1.3):

∀ x0 ∈ H1, y0 ∈ H2,
uk = xk − γkA

∗(Axk −Byk),
wk = (1 − tk)uk,
xk+1 = αkwk + (1 −αk)PC(wk),
vk = yk + γkB

∗(Axk −Byk),
pk = (1 − tk)vk,
yk+1 = βkpk + (1 −βk)PQ(pk).

(4.1)
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Theorem 4.1. Let the mappings A,B, {γk}, {tk}, {αk} and {βk} be the same as in Theorem 3.2. Assume that the
solution set Ω of (1.3) is nonempty. Then the sequence {(xk,yk)} generalized by (4.1) strongly converges to a
solution PΩ(θ1, θ2) of (1.3).

(b) Null point problem

Given a maximal monotone operatorM : H1 → 2H1 , it is well-known that its associated resolvent mapping,
JMξ := (I + ξM)−1, is firmly nonexpansive, and x ∈ M−1(0) ⇔ 0 ∈ M(x) ⇔ x = JMξ (x). By taking
U = JMξ , T = JNη , where N : H2 → H2 is another monotone operator, the null point problem is to

find x∗ ∈M−1(0),y∗ ∈ N−1(0) such that Ax∗ = By∗, (4.2)

and the algorithm takes the following equivalent form:

∀ x0 ∈ H1, y0 ∈ H2,
uk = xk − γkA

∗(Axk −Byk),
wk = (1 − tk)uk,
xk+1 = αkwk + (1 −αk)J

M
ξ (wk),

vk = yk + γkB
∗(Axk −Byk),

pk = (1 − tk)vk,
yk+1 = βkpk + (1 −βk)J

N
η (pk).

(4.3)

Theorem 4.2. Let the mappings A,B, {γk}, {tk}, {αk} and {βk} be the same as in Theorem 3.2. Assume that
M : H1 → 2H1 and N : H2 → H2 are two maximal monotone operators, and the solution set Ω of (4.2) is
nonempty. Then the sequence {(xk,yk)} generalized by (4.3) strongly converges to a solution PΩ(θ1, θ2) of (4.2).

(c) Equilibrium problem

We consider the following problem:

Find x∗ ∈ C,y∗ ∈ Q such that F(x∗,u) > 0, H(y∗, v) > 0, and Ax∗ = By∗, ∀ u ∈ C, v ∈ Q, (4.4)

with C,Q closed convex sets and F,H belong in the class of bifunctions G verifying the following usual
conditions:

(A1) G(x, x) = 0, for all x ∈ D;
(A2) G is monotone, that is, G(x,y) +G(y, x) 6 0, for all x,y ∈ D;
(A3) for each x,y, z ∈ D, lim supt→0G(tz+ (1 − t)x,y) 6 G(x,y);
(A4) for each x ∈ D, the function y 7→ G(x,y) is convex and lower semicontinuous.

It is well-known; see, for example, by Lemma 5 in [8], that the associated resolvent operator

SGλ = {z ∈ D : G(z,y) +
1
λ
〈y− z, z− x〉, ∀ y ∈ D},

is firmly nonexpansive and its fixed-points are exactly the equilibria of G, that is G(y∗, v) > 0, ∀ v ∈ D.
By taking U = SGµ , T = SHν , we have the following iterative algorithm for solving the problem (4.4):

∀ x0 ∈ H1, y0 ∈ H2,
uk = xk − γkA

∗(Axk −Byk),
wk = (1 − tk)uk,
xk+1 = αkwk + (1 −αk)S

G
µ (wk),

vk = yk + γkB
∗(Axk −Byk),

pk = (1 − tk)vk,
yk+1 = βkpk + (1 −βk)S

H
ν (pk).

(4.5)
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Theorem 4.3. Let the mappings A,B, {γk}, {tk}, {αk} and {βk} be the same as in Theorem 3.2. Let C ⊂ H1,Q ⊂ H2
be two nonempty closed convex sets. Assume that F : C×C→ R andH : Q×Q→ R are two bifunctions satisfying
(A1)-(A4), and the solution set Ω of (4.4) is nonempty. Then the sequence {(xk,yk)} generalized by (4.5) strongly
converges to a solution PΩ(θ1, θ2) of (4.4).

Remark 4.4. Since PC and PQ in Theorem 4.1, JMξ and JNη in Theorem 4.2, and SGµ and SHν in Theorem 4.3
are all firmly nonexpansive, then they are nonexpansive, too. From Lemma 2.10, they are demiclosed at
the origins. Thus from Theorem 3.2 we have the results of Theorems 4.1, 4.2 and 4.3.
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