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Abstract
In this paper, polynomial least square method (PLSM) is applied to find approximate solution for nonlinear oscillator

differential equations. We illustrate that this method is very convenient and does not require linearization or small parameters.
Comparisons are made between the results of PLSM and other methods in order to prove the accuracy of the PLSM method.
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1. Introduction

The evaluation of oscillations is essential in every physical system in which they occur. These os-
cillations are modeled by nonlinear oscillator differential equations and these equations have a great
sensitivity to initial conditions. The study of nonlinear oscillator differential equations presents a large
interest due to their large number of applications in diverse fields of engineering [17]. For these reasons
the study of solutions of such equations is essential. Since in most of the cases the exact solutions can-
not be found, approximate solutions must be computed. In order to find approximate solutions of these
equations, many approximate analytical and numerical methods were proposed such as:

• homotopy perturbation method [12];

• harmonic balance method [2, 3, 21];

• adomian decomposition method [9];

• variational formulation method [13, 16];

• variational iteration methods [8, 14, 18];

• pseudo-spectral method [20];

• Rayleigh-Ritz method [11];

• parameter-expansion method [4, 22];
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• energy-balance method [5, 7, 14];

• amplitude-frequency formulation [4, 6];

• homotopy analysis method [19];

• max-min approach [4];

• optimal homotopy asymptotic method [10];

This paper considers the following general nonlinear oscillator differential equation:

u(2)(t) + f(u(1)(t),u(t), t) = 0, (1.1)

subject to initial conditions:
u(0) = α, u ′(0) = β. (1.2)

Here, f is a nonlinear continuous function, t ∈ R, α,β ∈ R. We applied the polynomial least square
method (PLSM) to find approximate solutions for this second order nonlinear oscillator.

2. The polynomial least square method

We present the application of PLSM to the general problem (1.1)-(1.2).
For the problem (1.1)-(1.2) we consider the operator:

D(u) = u(2)(t) + f(u(1)(t),u(t), t).

If uapp is an approximate solution of the equation (1.1), the error obtained by replacing the exact
solution u with the approximation uapp is given by the remainder:

R(t,uapp) = D(uapp(t)), t ∈ [0,b].

We will find approximate polynomial solutions uapp of (1.1)-(1.2) on the [0,b] interval, solutions which
satisfy the following conditions:

|R(t,uapp)| < ε, (2.1)
uapp(0) = α, u ′

app(0) = β. (2.2)

Definition 2.1. We call an ε-approximate polynomial solution of the problem (1.1)-(1.2) an approximate
polynomial solution uapp satisfying the relations (2.1)-(2.2).

Definition 2.2. We call a weak δ-approximate polynomial solution of the problem (1.1)-(1.2) an approximate
polynomial solution uapp satisfying the relation:

b∫
0

|R(t,uapp)|dt 6 δ

together with the initial conditions (2.2).

Definition 2.3. We consider the sequence of polynomials Pm(t) = a0 + a1t + ... + amtm, ai ∈ R, i =
0, 1, ...,m satisfying the conditions:

Pm(0) = α, P ′
m(0) = β.

We call the sequence of polynomials Pm(t) convergent to the solution of the problem (1.1)-(1.2) if

lim
m→∞D(Pm(t)) = 0.

We will find a weak ε-polynomial solution of the type:

ũ(t) =

m∑
k=0

ckt
k, (2.3)

where the constants c0, c1, ..., cm are calculated using the following steps:
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• By substituting the approximate solution (2.3) in the equation (1.1) we obtain the following expres-
sion:

R(t, c0, c1, ..., cm) = R(t, ũ) = ũ(2)(t) + f(ũ(1)(t), ũ(t), t). (2.4)

If we could find the constants c0
0, c0

1, ..., c0
m such that R(t, c0

0, c0
1, ..., c0

m) = 0 for any t ∈ [0,b] and the
equivalents of (1.2):

ũ(0) = α, ũ ′(0) = β (2.5)

are also satisfied, then by substituting c0
0, c0

1, ..., c0
m in (2.3) we obtain the exact solution of (1.1)-(1.2).

In general, this situation is rarely encountered in polynomial approximation methods.

• Next we attach to the problem (1.1)-(1.2) the following real functional:

J(c2, c3, ..., cm) =

b∫
0

R2(t, c0, c1, ..., cm)dt, (2.6)

where c0, c1 are computed as functions of c2, c3, ..., cm by using the initial conditions (2.5).

• We compute the values of c0
2, c0

3, ..., c0
m as the values which give the minimum of the functional (2.6)

and the values of c0
0, c0

1 again as functions of c0
2, c0

3, ..., c0
m by using the initial conditions.

• Using the constants c0
0, c0

1, ..., c0
m thus determined, we consider the polynomial:

Tm(t) =

m∑
k=0

c0
k x

k. (2.7)

The following convergence theorem holds.

Theorem 2.4. If the sequence of polynomials Pm(t) converges to the solution of the problem (1.1)-(1.2), then the
sequence of polynomials Tm(t) from (2.7) satisfies the property:

lim
m→∞

b∫
0

R2(t, Tm)dt = 0.

Moreover, for all ε > 0, there exists m0 ∈ N such that for all m ∈ N, m > m0, it follows that Tm(t) is a weak
ε-approximate polynomial solution of the problem (1.1)-(1.2).

Proof. Based on the way the coefficients of polynomial Tm(t) are computed and taking into account the
relations (2.4)-(2.7), the following inequality holds:

0 6

b∫
0

R2(t, Tm(t))dt 6

b∫
0

R2(t,Pm(t))dt, ∀m ∈N.

It follows that

0 6 lim
m→∞

b∫
0

R2(t, Tm(t))dt 6 lim
m→∞

b∫
0

R2(t,Pm(t))dt = 0.

We obtain

lim
m→∞

b∫
0

R2(t, Tm(t))dt = 0.

From this limit we obtain that for all ε > 0, there exists m0 ∈ N such that for all m ∈ N, m > m0, it
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follows that Tm(t) is a weak ε-approximate polynomial solution of the problem (1.1)-(1.2) q.e.d.

Remark 2.5. Any ε-approximate polynomial solution of the problem (1.1)-(1.2) is also a weak ε2 · b-
approximate polynomial solution, but the opposite is not always true. It follows that the set of weak
approximate solutions of the problem (1.1)-(1.2) also contains the approximate solutions of the problem.

Taking into account the above remark, in order to find ε-approximate polynomial solutions of the
problem (1.1)-(1.2) by PLSM we will first determine weak approximate polynomial solutions, ũapp. If
|R(t, ũapp)| < ε, then ũapp is also an ε-approximate polynomial solution of the problem.

3. Applications

3.1. Application 1: Van der Pol oscillator
The first application is the Van der Pol oscillator [1]:

u ′′(t) + u ′(t) + u(t) + u2(t) · u ′(t) = 2 · cos(t) − cos3(t), (3.1)

with the initial conditions u(0) = 0, u ′(0) = 1.
The exact solution of this equation is u(t) = sin(t). Using the polynomial least square method we

performed the following 7-th degree approximate polynomial solution of equation (3.1):

P1(t) = t− 3.18483 · 10−7 · t2 − 0.166662 · t3 − 0.0000216909 · t4 + 0.0083825 · t5 − 0.0000549143 · t6

− 0.000172381 · t7.

Table 1 presents the comparison between the absolute errors (as the difference in absolute value be-
tween the approximate solution and the exact solution) corresponding to the approximate solution ob-
tained using the homotopy perturbation method (HPM), to the approximate solution obtained by varia-
tional iteration method (VIM) [1] and to our approximate solution obtained by PLSM.

Table 1: Comparison of absolute errors of the approximate solutions for Application 3.1.

t Exact sol. HPM error VIM error PLSM sol. PLSM error

0 0 0 0 0 0

0.1 9.983 10−2 0.550 10−9 0.237 10−7 9.983 10−2 0.454 10−9

0.2 1.986 10−1 0.704 10−7 0.172 10−5 1.986 10−1 0.788 10−9

0.3 2.955 10−1 0.116 10−5 0.191 10−4 2.955 10−1 0.114 10−8

0.4 3.894 10−1 0.824 10−5 0.104 10−3 3.894 10−1 0.351 10−9

0.5 4.794 10−1 0.371 10−4 0.387 10−3 4.794 10−1 0.145 10−8

0.6 5.646 10−1 0.125 10−3 0.112 10−2 5.646 10−1 0.501 10−9

0.7 6.442 10−1 0.343 10−3 0.271 10−2 6.442 10−1 0.113 10−8

0.8 7.173 10−1 0.812 10−3 0.581 10−2 7.173 10−1 0.951 10−9

0.9 7.833 10−1 0.171 10−2 0.113 10−1 7.833 10−1 0.411 10−9

1 8.414 10−1 0.328 10−2 0.202 10−1 8.414 10−1 0.277 10−10

It is easy to see that the approximate solution given by PLSM is much closer to the exact solution than
the previous ones: the approximate solution given by HPM, and the approximate solution given by VIM
[1].
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3.2. Application 2: nonlinear oscillator
We consider the nonlinear oscillator differential equation [1]:

u ′′(t) − u(t) + u2(t) + (u ′(t))2 − 1 = 0

with the initial conditions u(0) = 2, u ′(0) = 0.
The exact solution of the above equation is u(t) = 1+ cos(t). Using the steps described in the previous

section we perform the following 7-th degree approximate polynomial solution by PLSM:

P2(t) = 2 − 0.500001 · t2 + 9.12188 · 10−6 · t3 + 0.04162 · t4 + 0.000114194 · t5 − 0.00153451 · t6

+ 0.0000941646 · t7.

Table 2 presents the comparison between the absolute errors corresponding to the approximate solu-
tion obtain by HPM, to the approximate solution given by VIM [1] and our approximate solution obtained
by PLSM.

Table 2: Comparison of absolute errors of the approximate solutions for Application 3.2.

t Exact sol. HPM error VIM error PLSM sol. PLSM error

0 2 0 0 2 0

0.1 1.995 0.833 10−5 0.833 10−6 1.995 0.776 10−9

0.2 1.980 0.133 10−3 0.133 10−3 1.980 0.168 10−8

0.3 1.955 0.676 10−3 0.675 10−3 1.955 0.217 10−8

0.4 1.921 0.213 10−2 0.213 10−2 1.921 0.691 10−9

0.5 1.877 0.523 10−2 0.521 10−2 1.877 0.251 10−8

0.6 1.825 0.109 10−1 0.108 10−1 1.825 0.601 10−9

0.7 1.764 0.202 10−1 0.200 10−1 1.764 0.221 10−8

0.8 1.696 0.345 10−1 0.341 10−1 1.696 0.167 10−8

0.9 1.621 0.554 10−1 0.547 10−1 1.621 0.646 10−9

1 1.540 0.847 10−1 0.834 10−1 1.540 0.205 10−9

3.3. Application 3: unforced Duffing oscillator
Consider the unforced Duffing oscillator differential equation [15]:

u ′′(t) + (t) −
1
6
· u3(t) = 0

with the initial conditions u(0) = 0, u ′(0) = 1.6376.
The 7-th degree approximate polynomial solution by PLSM is:

P3(t) = 1.6376 · t− 0.0000944879 · t2 − 0.271593 · t3 − 0.00677573 · t4 + 0.0665547 · t5 − 0.0198777 · t6

+ 0.000794326 · t7.

The comparison (for Application 3.3) between the absolute errors (as the difference in absolute value
between the approximate solution and the numerical solution) corresponding to the approximate solution
obtained using the Haar wavelet method (HWM) from [15], and to our approximate solution obtained by
PLSM, is given in Table 3.
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Table 3: Comparison of absolute errors of the approximate solutions for Application 3.3.

t Numerical sol. HWM error PLSM sol. PLSM error

0.0156 0.0255 0.18 10−5 0.0255 0146 10−7

0.1094 0.1787 0.6 10−5 0.1787 0.134 10−6

0.2344 0.3803 0.9 10−5 0.3803 0.264 10−6

0.3594 0.5761 0.3 10−4 0.5761 0.464 10−7

0.4844 0.7635 0.69 10−4 0.7635 0.347 10−6

0.6094 0.9401 0.131 10−3 0.9401 0.5 10−7

0.7344 1.1042 0.23 10−3 1.1042 0.284 10−6

0.8594 1.2546 0.32 10−3 1.2546 0.494 10−7

0.9844 1.3906 0.4 10−3 1.3906 0.196 10−7

3.4. Application 4: forced Duffing oscillator
Consider the forced Duffing oscillator differential equation [15]:

u ′′(t) + u(t) −
1
6
· u3(t) = 2 · sin(t)

with the initial conditions u(0) = 0, u ′(0) = −2.7676.
The 7-th degree approximate polynomial solution by PLSM is:

P4(t) = −2.7676 · t+ 0.000608073 · t2 + 0.785244 · t3 + 0.0505135 · t4 − 0.363462 · t5 + 0.172764 · t6

− 0.0250286 · t7.

The comparison (for Application 3.4) between the absolute errors (as the difference in absolute value
between the approximate solution and the numerical solution) corresponding to the approximate solution
obtained using the Haar wavelet method (HWM) from [15], and to our approximate solution obtained by
PLSM, is given in Table 4.

Table 4: Comparison of absolute errors of the approximate solutions for Application 3.4.

t Numerical sol. HWM error PLSM sol. PLSM error

0.0156 -0.0431 0.1 10−5 -0.0431 0.126 10−6

0.1094 -0.3017 0.2 10−4 -0.3017 0.51 10−6

0.2344 -0.6386 0.1 10−3 -0.6386 0.218 10−5

0.3594 -0.9591 0.3 10−3 -0.9591 0.33 10−6

0.4844 -1.2560 0.4 10−3 -1.2560 0.199 10−5

0.6094 -1.5241 0.6 10−3 -1.5241 0.256 10−6

0.7344 -1.7599 0.7 10−3 -1.7599 0.212 10−5

0.8594 -1.9615 0.9 10−3 -1.9615 0.142 10−6

0.9844 -2.1285 0.15 10−2 -2.1285 0.396 10−6
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3.5. Application 5: unforced Duffing-Van der Pol oscillator
Consider the unforced Duffing-Van der Pol oscillator [15]:

u ′′(t) − 0.1 · (1 − u2(t)) · u ′(t) + u(t) + 0.01 · u3(t) = 0

with u(0) = 2, u ′(0) = 0.
The 7-th degree approximate polynomial solution by PLSM is:

P5(t) = 2 − 1.03995 · t2 + 0.103266 · t3 + 0.0932818 · t4 − 0.0653592 · t5 + 0.0207549 · t6 − 0.00145624 · t7.

The comparison (for Application 3.5) between the absolute errors (as the difference in absolute value
between the approximate solution and the numerical solution) corresponding to the approximate solution
obtained using the Haar Wavelet Method (HWM) from [15], and to our approximate solution obtained by
PLSM, is given in Table 5.

Table 5: Comparison of absolute errors of the approximate solutions for Application 3.5.

t Numerical sol. HWM error PLSM sol. PLSM error

0.0156 1.9997 0.1 10−5 1.9997 0.167 10−7

0.1094 1.9877 0.1 10−2 1.9877 0.667 10−7

0.2344 1.9444 0.24 10−2 1.9444 0.119 10−6

0.3594 1.8716 0.39 10−2 1.8716 0.101 10−8

0.4844 1.7713 0.6 10−2 1.7713 0.148 10−6

0.6094 1.6455 0.91 10−2 1.6455 0.135 10−7

0.7344 1.4962 0.143 10−1 1.4962 0.155 10−6

0.8594 1.3255 0.226 10−1 1.3255 0.119 10−8

0.9844 1.1355 0.356 10−1 1.1355 0.698 10−8

3.6. Application 6: forced Duffing-Van der Pol oscillator
Consider the forced Duffing-Van der Pol oscillator [15]:

εu ′′(t) + (δ+β · u2(t)) · u ′(t) − µ · u(t) +α · u3(t) = 0.5 · cos(0.79 · t).

The choice of ε = 1, δ = −0.1, β = 0.1, µ = −0.5, α = 0.5 with the initial conditions u(0) = 1, u ′(0) = 0
leads to the 7-th degree approximate polynomial solution by PLSM:

P6(t) = 1 − 0.249998 · t2 − 0.0000247707 · t3 + 0.028724 · t4 − 0.00115228 · t5 − 0.00539765 · t6

+ 0.00137076 · t7.

Table 6 presents the HW solution, PLSM solution and the errors corresponding to our approximate
solution given by PLSM.

3.7. Application 7: unforced Van der Pol oscillator
Consider the unforced Van der Pol oscillator [15]:

u ′′(t) − 0.05 · (1 − u2(t)) · u ′(t) + u(t) = 0

with u(0) = 0, u ′(0) = 0.5.
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The 7-th degree approximate polynomial solution computed with PLSM is:

P7(t) = 0.5 · t+ 0.0125002 · t2 − 0.0831289 · t3 − 0.00257833 · t4 + 0.00403136 · t5 + 0.000400308 · t6

− 0.000173925 · t7.

Table 7 presents HW solution, PLSM solution and the absolute errors corresponding to the approxi-
mate solution given by PLSM.

Table 6: Comparison of absolute errors of the approximate solutions for Application 3.6.

t Numerical solution HWM solution PLSM solution PLSM error

0.0156 0.999939 0.999939 0.999939 0.123 10−6

0.1094 0.997012 0.997014 0.997012 0.126 10−6

0.2031 0.989735 0.989735 0.989736 0.112 10−6

0.2969 0.978179 0.978191 0.978179 0.101 10−6

0.3906 0.962498 0.962516 0.962498 0.106 10−6

0.5156 0.935436 0.935526 0.935436 0.111 10−6

0.6094 0.910784 0.911024 0.910784 0.882 10−7

0.7031 0.882691 0.883181 0.882691 0.471 10−7

0.7969 0.851338 0.852307 0.851338 0.278 10−7

0.8906 0.817033 0.818731 0.817033 0.285 10−7

0.9844 0.779942 0.782791 0.779942 0.102 10−7

Table 7: Comparison of absolute errors of the approximate solutions for Application 3.7.

t Numerical solution HWM solution PLSM solution PLSM error

0 0 0 0 0

0.1 0.0500417 0.05004 0.0500417 0.117 10−7

0.2 0.0998322 0.09983 0.0998322 0.141 10−7

0.3 0.14887 0.14886 0.14887 0.245 10−7

0.4 0.196656 0.19665 0.196656 0.139 10−7

0.5 0.242704 0.24270 0.242704 0.108 10−7

0.6 0.286537 0.28653 0.286537 0.883 10−8

0.7 0.327703 0.32770 0.327703 0.580 10−8

0.8 0.365772 0.36577 0.365772 0.669 10−9

0.9 0.400343 0.40034 0.400343 0.419 10−8

1 0.431051 0.43105 0.431051 0.703 10−8
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4. Conclusions

In this work the polynomial least squares method (PLSM) was successfully used to obtain analyt-
ical approximate polynomial solutions for second order nonlinear oscillators. The results obtained by
using PLSM were compared to results obtained by using the homotopy perturbation method (HPM),
the variational iteration method (VIM) or the Haar wavelet method (HWM). The calculations illustrate
the accuracy of the presented method and show that PLSM is a straightforward and efficient method to
compute approximate solutions for nonlinear oscillator differential equations.

References

[1] A. Barari, M. Omidvar, A. R. Ghotbi, D. D. Ganji, Application of homotopy perturbation method and variational iteration
method to nonlinear oscillator differential equations, Acta Appl. Math., 104 (2008), 161–171. 3.1, 3.1, 3.1, 3.2

[2] A. Beléndez, E. Gimeno, T. Beléndez, A. Hernández, Rational harmonic balance based method for conservative nonlinear
oscillators: application to the Duffing equation, Mech. Res. Comm., 36 (2009), 728–734 1

[3] A. Beléndez, A. Hernandez, T. Beléndez, M. L. Alvarez, S. Gallego, M. Ortuño, C. Neipp, Application of the
harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire, J. Sound Vib., 302 (2007),
1018–1029. 1
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