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Abstract
In this paper we establish best proximity point results for monotone multivalued mappings in partially ordered metric

spaces. We consider three notions of monotonicity of multivalued mappings. The main theorem is obtained by utilizing
property UC and MT-functions. There is no requirement of continuity on the multivalued function which is illustrated with two
supporting examples of the results established in this paper. There are two corollaries. Some existing results are extended to the
domain of partially ordered metric spaces through one of the corollaries. c©2017 all rights reserved.
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1. Introduction and preliminaries

Best proximity points are concepts related to non-self mappings. They are generalizations of fixed
points in that they reduce to fixed points whenever the domain and codomain have non-null intersection.
They are intended to find minimum distances between two sets.

Definition 1.1. Let A and B be two subsets of a metric space (X,d), T : A→ B be a mapping, then a point
z ∈ A is called a best proximity point if d(z, Tz) = d(A,B), where d(A, B) = inf{d(x, y) : x ∈ A,y ∈ B}.

Essentially, the best proximity point problem is a global optimality problem where we seek to mini-
mize d(z, Tz) over z ∈ A with the constraint that the minimum distance is achieved with value d(A,B).
Technically, we can also treat the problem as an approximate fixed point problem, that is, we can solve the
problem by finding an optimal approximate solution of the fixed point equation x = Tx while there being
no exact solution in the case where A ∩ B = φ. We adopt the above mentioned approach in the paper.
It may be pointed out that these results being optimality results are very different from approximation
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results. As an instance, the famous Ky Fan’s approximation theorem [17] is not an optimality result. Best
proximity points were introduced in [21]. The literature in this subject has developed rapidly. Some of
the recent works are noted here [4, 7–9, 12, 13, 19, 20].

Our results are derived in the general context where the domain and co-domain are subsets of a
metric space. There is no requirement of continuity on the function. In fact we illustrate our result
with discontinuous functions. We assume the existence of partial order in metric spaces. Partial order in
metric fixed point problems was initiated by Turinici [28] in uniform spaces which was followed by a large
number of papers like [3, 5, 6, 11]. The existence of best proximity point in partially ordered metric spaces
was first studied in [1]. The best proximity point result in such spaces appeared in [2, 18, 25, 26]. Further
we use MT-function in our result which was introduced in [22] and was used in works like [8, 10, 14, 15].
Also we use property UC of the space which was introduced in [27] and was utilized in a good number
of papers on best proximity point problems [2, 8].

Definition 1.2 (Cyclic mapping [16]). Let A, B be two nonempty subsets of a metric space (X,d). A
mapping T : A∪B→ A∪B is said to be a cyclic mapping if Tx ∈ B, for all x ∈ A and Ty ∈ A, for all y ∈ B.

The following are the concepts from set-valued analysis which we use in this paper. Let (X,d) be a
metric space. Then

CB(X) = {A : A is a non-empty closed and bounded subset of X}.

We use Hausdorff metric in our paper which is a metric defined on CB(X) as follows:

Definition 1.3 (Hausdorff distance [23]). Let (X,d) be a metric space. Then the Hausdorff metric H
introduced by d is defined as follows.

For A,B ∈ CB(X), H(A,B) = max {supx∈A d(x, B), supy∈B d(y,A)}, where, for any C ∈ CB(X), x ∈ X,
d(x,C) = inf{d(x,y) : y ∈ C}.

We call a mapping T : X → CB(X) continuous if it continuous as a mapping from the metric space
(X,d) to (CB(X),H).

If (X,d) is a complete metric space, then (CB(X),H) is also complete [23].

Definition 1.4 (Multivalued cyclic mapping [24]). Let A, B be two nonempty subsets of a metric space
(X,d). A multivalued mapping T : A ∪ B → CB(A) ∪ CB(B) is said to be a multivalued cyclic mapping if
Tx ∈ CB(B), for all x ∈ A and Ty ∈ CB(A), for all y ∈ B.

In the following three definitions we note the monotone property of multivalued mappings in three
different ways.

Definition 1.5 (Multivalued monotone increasing mapping). A multivalued mapping T : X → 2X where
(X,�) is a partially ordered set, is said to be monotone increasing if x � y and y ∈ Tx implies that a � b
whenever a ∈ Tx and b ∈ Ty.

Definition 1.6 (Multivalued approximately monotone increasing mapping). A multivalued mapping T :
X → 2X where (X,�) is a partially ordered set, is said to be a approximately monotone increasing if x � y
and y ∈ Tx implies that y � z whenever z ∈ Ty.

Definition 1.7 (Multivalued partly monotone increasing mapping). Let (X,d,�) be a metric space with a
partial order. Let S be a subset of X. A multivalued mapping T : S → 2X is said to be partly monotone
increasing if x,y ∈ S with x � y and y ∈ Tx implies that there exists z ∈ Ty such that y � z and
d(y, z) 6 H(Tx, Ty).

It is apparent that in a metric space with a partial order (X,d,�), Definition 1.5 implies Definition
1.6 and Definition 1.6 in turn implies Definition 1.7, that is, Definition 1.5 to Definition 1.7 are gradually
weaker definitions.
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When T is a single-valued mapping, that is, in the case, when T : X→ X, all the above Definitions 1.5-
1.7 reduce to the usual definition of monotone increasing operator with the metric inequality in Definition
1.7 being trivial.

Definition 1.8 (Property UC [27]). Let A and B be two nonempty subsets of a metric space (X,d). Then
(A,B) is said to satisfy the property UC if the following holds:

If {xn} and {x ′n} are sequences in A and {yn} is a sequence in B such that lim
n→∞d(xn,yn) = d(A,B) and

lim
n→∞d(x ′n,yn) = d(A,B), then lim

n→∞d(xn, x ′n) = 0.

Definition 1.9 (MT-function [22]). A function φ : [0, ∞) → [0, 1) is said to be an MT-function (or R-
function) if it satisfies Mizoguchi-Takahashi’s condition, that is, lim sup

s→t+
φ(s) < 1 for all t ∈ [0,∞).

Lemma 1.10 ([14]). Let φ : [0,∞) → [0, 1) be an MT-function (or R-function). Then for any non-increasing
sequence {tn} in [0,∞),

0 6 sup
n∈N

φ(tn) < 1.

Lemma 1.11 ([27]). Let A and B be subsets of a metric space (X,d). Assume that (A,B) has the property UC. Let
{xn} and {yn} be sequences in A and B, respectively, such that the following holds:

lim
n→∞ sup

m>n
d(xm, yn) = d(A,B).

Then {xm} is a Cauchy sequence.

2. Main results

Theorem 2.1. Let (X,d,�) be a partially ordered complete metric space, and A and B be two nonempty closed
subsets of X such that (A,B) and (B,A) satisfy the property UC. Let T : A ∪ B → CB(A) ∪ CB(B) be a multi-
valued cyclic mapping such that

(i) T is partly monotone increasing on A∪B;

(ii) there exists x0 ∈ A such that x0 � x1 and x1 ∈ Tx0 for some x1 ∈ B;

(iii)
H(Tx, Ty) 6 φ(d(x,y))d(x,y) + (1 −φ(d(x,y)))d(A,B), (2.1)

where x ∈ A and y ∈ B, either x � y or y � x and φ is an MT-function;

(iv) for any monotone increasing sequence {xn} in X such that {xn}→ x, the relation xn � x holds for all n.

Then T has a best proximity point in A.

Proof. From the assumption (ii) of the theorem there exist x0 ∈ A and x1 ∈ B such that x1 ∈ Tx0 and
x0 � x1. By the partly increasing property of T , there exists x2 ∈ Tx1 ⊂ A such that x1 � x2 and
d(x1, x2) 6 H(Tx0, Tx1). Then, by (2.1), we have

d(x1, x2) 6 H(Tx0, Tx1) 6 φ(d(x0, x1))d(x0, x1) + (1 −φ(d(x0, x1)))d(A,B).

Again, by the partly increasing property of T , there exists x3 ∈ Tx2 ⊂ B such that x2 � x3 and d(x2, x3) 6
H(Tx1, Tx2). Then,

d(x2, x3) 6 H(Tx1, Tx2) 6 φ(d(x1, x2))d(x1, x2) + (1 −φ(d(x1, x2)))d(A,B).
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Proceeding in this way, generally, we have, for all n > 1, xn � xn+1,

xn+1 ∈ Txn with x2n ∈ A, x2n+1 ∈ B,

such that

d(xn, xn+1) 6 H(Txn−1, Txn) 6 φ(d(xn−1, xn))d(xn−1, xn) + (1 −φ(d(xn−1, xn)))d(A,B), (2.2)

that is, for all n > 1,

d(xn, xn+1) − d(A,B) 6 φ(d(xn−1, xn))[d(xn−1, xn) − d(A,B)]. (2.3)

Since φ(t) < 1 for all t ∈ [0,∞), it follows that for all n > 1,

d(xn, xn+1) − d(A,B) < d(xn−1, xn) − d(A,B),

that is, for all n > 1,
d(xn, xn+1) < d(xn−1, xn), (2.4)

that is, {d(xn, xn+1)} is a strictly decreasing sequence of positive real numbers. Hence lim
n→∞d(xn, xn+1)

exists. Also, since φ is an MT-function and {d(xn, xn+1)} is a strictly decreasing sequence in [0,∞), by
Lemma 1.10, we get

0 6 sup
n∈N

φ(d(xn, xn+1)) < 1.

Let λ = sup
n∈N

φ(d(xn, xn+1)), where λ ∈ [0, 1). Then

0 6 φ(d(xn, xn+1)) 6 λ < 1 for all n ∈ N.

By repeated applications of (2.3), we get

d(xn, xn+1) − d(A,B) 6 φ(d(xn−1, xn))[d(xn−1, xn) − d(A,B)]
6 λ[d(xn−1, xn) − d(A,B)]

6 λ2[d(xn−2, xn−1) − d(A,B)]
...
6 λn[d(x0, x1) − d(A,B)].

Taking limit n→∞ in the above inequality, we get

lim
n→∞d(xn, xn+1) = d(A,B). (2.5)

Then, from (2.5), we have
lim
n→∞d(x2n, x2n+1) = d(A,B) (2.6)

and
lim
n→∞d(x2n+2, x2n+1) = d(A,B). (2.7)

Since x2n and x2n+2 are two sequences in A, and x2n+1 is sequence in Bwhere (A,B) satisfies the property
UC, from (2.6) and (2.7), we conclude that

lim
n→∞d(x2n, x2n+2) = 0. (2.8)

Since the pair (B,A) also satisfies the property UC, using (2.5) and by a similar argument, we have

lim
n→∞d(x2n−1, x2n+1) = 0. (2.9)
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Next we prove that {x2n} is a Cauchy sequence in A. For that purpose we first establish that

lim
n→∞, m>n

d(x2m, x2n+1) = d(A,B), (2.10)

which is the same as establishing that for given ε > 0 we can find a positive integer N such that for all
m > n > N,

d(x2m, x2n+1) 6 d(A,B) + ε. (2.11)

If (2.11) is not valid, then, particularly in view of (2.6), there exist ε > 0 and a natural number k0 such
that for each k > k0 there exist m(k) > n(k) > k for which

d(x2m(k), x2n(k)+1) > d(A,B) + ε (2.12)

and additionally
d(x2m(k)−2, x2n(k)+1) 6 d(A,B) + ε.

Then, by (2.11) and (2.12), for all k > 1,

d(A,B) + ε < d(x2m(k), x2n(k)+1)

6 d(x2m(k), x2m(k)−2) + d(x2m(k)−2, x2n(k)+1)

6 d(x2m(k), x2m(k)−2) + d(A,B) + ε.

Taking k→∞, and using (2.8), we obtain

lim
k→∞d(x2m(k), x2n(k)+1) = d(A,B) + ε. (2.13)

Then, for all k > 1,

d(x2m(k), x2n(k)+1) 6 d(x2m(k), x2m(k)+2) + d(x2m(k)+2, x2n(k)+3) + d(x2n(k)+3, x2n(k)+1)

< d(x2m(k), x2m(k)+2) + d(x2m(k)+1, x2n(k)+2)

+ d(x2n(k)+3, x2n(k)+1) (by (2.4))

6 d(x2m(k), x2m(k)+2) + d(x2n(k)+3, x2n(k)+1)

+H(Tx2m(k), Tx2n(k)+1) (by the first inequality of (2.2))

6 d(x2m(k), x2m(k)+2) + d(x2n(k)+3, x2n(k)+1)

+φ(d(x2m(k), x2n(k)+1))d(x2m(k), x2n(k)+1)

+ (1 −φ(d(x2m(k), x2n(k)+1)))d(A,B) (by (2.1))

= d(x2m(k), x2m(k)+2) + d(x2n(k)+3, x2n(k)+1) + d(A,B)

+φ(d(x2m(k), x2n(k)+1)[d(x2m(k), x2n(k)+1) − d(A,B)].

(2.14)

By (2.12) and (2.13), since φ is an MT-function (Definition 1.9), it follows that

δ = lim
k→∞ supφ(d(x2m(k), x2n(k)+1)) 6 lim

s→(d(A,B)+ε)+
sup φ(s) < 1. (2.15)

Taking limsup as k→∞ in (2.14), using (2.8), (2.9), and (2.12), we have

d(A,B) + ε 6 d(A,B) + δε,

which is a contradiction since δ < 1 by (2.15). This establishes (2.11) and hence (2.10). Then by Lemma
1.11, {x2m} is a Cauchy sequence in A. The set A being closed in the complete metric space X, there exists
x ∈ A such that

x2n → x as n→∞. (2.16)
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Since x ∈ A and x2n−1 ∈ B, we have

d(A,B) 6 d(x, x2n−1) 6 d(x, x2n) + d(x2n, x2n−1).

Taking limit n→∞ in the above inequality and using (2.6) and (2.16), we have

lim
n→∞d(x, x2n−1) = d(A,B). (2.17)

Now, by construction, x2n � x2n+2 � x2n+4 � · · · .
Therefore, by condition (iv) of our theorem, x2n � x for all n.
Again, x2n−1 � x2n and x2n � x. Therefore, x2n−1 � x for all n.
Using (2.1), we have

d(A,B) 6 d(x, Tx)
6 d(x, x2n) + d(x2n, Tx)
6 d(x, x2n) +H(Tx2n−1, Tx) (since x2n ∈ Tx2n−1)

6 d(x, x2n) +φ(d(x, x2n−1))d(x, x2n−1) + (1 −φ(d(x, x2n−1)))d(A,B)
6 d(x, x2n) +φ(d(x, x2n−1))(d(x, x2n−1) − d(A,B)) + d(A,B).

Taking limit n→∞ in the above inequality and using (2.16) and (2.17), we have

d(A,B) 6 d(x, Tx) 6 d(A,B),

which implies that d(x, Tx) = d(A,B), that is, x is a best proximity point of T in A.

Corollary 2.2. Let (X,d,�) be a partially ordered complete metric space and A and B be two nonempty closed
subsets of X such that (A,B) and (B,A) satisfy the property UC. Let T : A ∪ B → CB(A) ∪ CB(B) be a multi-
valued cyclic mapping. Let T satisfy the following assumptions:

(i) T is approximately monotone increasing;

(ii) there exists x0 ∈ A and x1 ∈ B such that x0 � x1 and x1 ∈ Tx0;

(iii) the inequality (2.1) is satisfied for x ∈ A and y ∈ B, either x � y or y � x and φ is a MT -function;

(iv) for any monotone increasing sequence {xn} ⊂ X with {xn}→ x as n→∞, it proves that xn � x.

Then T has a best proximity point in A.

Proof. Since an approximately monotone increasing mapping is also a partly monotone increasing map-
ping, the proof follows by an application of Theorem 2.1.

Example 2.3. Let d(X,d) be a metric with X = R2 and

d((x1,y1), (x2,y2)) = |x1 − x2|+ |y1 − y2| for all (x1, x2), (y1,y2) ∈ R2.

Let A = (−∞,−1]× R and B = [1,∞)× R.
Here d(A,B) = 2 and (A,B) and (B,A) satisfy the property UC.
We define a partial order on X as (x1,y1) � (x2,y2) iff either x1 = x2 and y1 = y2 or y1 > y2 and x1

and x2 are rational numbers.
Define the cyclic mapping T : A∪B→ CB(A)∪CB(B) by

T(x,y) =


{(p, y2 ) : 1 6 p 6 1−x

2 }, if (x,y) ∈ A and y is rational,
{(p, y2 ) :

−1−x
2 6 p 6 −1}, if (x,y) ∈ B and y is rational,

{(
√

2,p) : 1 6 p 6 2}, if (x,y) ∈ A and x is irrational,
{(−
√

2,p) : 1 6 p 6 2}, if (x,y) ∈ B and x is irrational.
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T is a partly monotone increasing mapping which follows by the following observation.
Let p = (x,y) ∈ A. Let q ∈ Tp such that p � q. Then x is rational and q = (z, y2 ) where z is a rational

number with 1 6 z 6 1−x
2 .

Then it is possible to find a rational number ω such that −z−1
2 6 ω 6 −1. Then r = (ω, y4 ) ∈ Tq such

that q � r. The case where p = (x,y) ∈ B is similar.
Further with any p0 = (x0,y0) ∈ A with x0 rational, we can find r0 = (x1,y1) ∈ Tp0 with x1 = 1+x0

2
and y1 = y0

2 such that p0 � r0.
Also the inequality (2.1) is satisfied for any p ∈ A and q ∈ B with either p � q or q � p with

φ(t) =

{
kt, if 0 6 k 6 1,
1
2 , if t > 1, where 0 < k < 1.

Then by an application of Theorem 2.1, there exists a best proximity point of T in A.

Remark 2.4. In the above example, the inequality is not satisfied for arbitrary choices of x ∈ A and y ∈ B.
Further, the inequality is also not satisfied for arbitrary choices of p and q with the following q ∈ Tp. We
also see that the multivalued function T is discontinuous.

Corollary 2.5. Let (X,d) be a complete metric space and (A,B) be a pair of nonempty closed subsets of X. Let
T : A∪B→ A∪B be a cyclic mapping such that

(i) T is monotone increasing (Definition 1.5);

(ii) there exists x0 ∈ A such that x0 � x1 for some x1 ∈ B;

(iii) when x ∈ A and y ∈ B, either x � y or y � x and φ is a MT-function

d(Tx, Ty) 6 φ(d(x,y))d(x,y) + (1 −φ(d(x,y)))d(A,B).

Also for any monotone increasing sequence {xn}→ x, xn � x for all x.

Then T has a best proximity point in A.

Remark 2.6. Corollary 2.5 is a generalization of [15] and [16] in partially ordered metric spaces.

Example 2.7. Let d(X,d) be a metric with X = R2 and

d((x1,y1), (x2,y2)) = |x1 − x2|+ |y1 − y2| for all (x1, x2), (y1,y2) ∈ R2.

Let A = (−∞,−1]× R and B = [1,∞)× R.
Here d(A,B) = 2 and (A,B) and (B,A) satisfy the property UC.
We define a partial order on X as (x1,y1) � (x2,y2) iff either x1 = x2, y1 = y2 or −1 −

|x1−1|
2 6 x2 6

1 +
|x1−1|

2 , |y1| > |y2|.
Define the cyclic mapping T : A∪B→ C(A)∪C(B) by

T(x,y) =
{

{(p, y2 ) : 1 6 p 6 1−x
2 }, if (x,y) ∈ A,

{(p, y2 ) :
−1−x

2 6 p 6 −1}, if (x,y) ∈ B.

Let

φ(t) =

{
kt, if 0 6 k 6 1,
1
2 , if t > 1, where 0 < k < 1.

Then T is approximately monotone increasing and Corollary 2.2 is applicable to this example.

Remark 2.8. T is not monotone increasing (Definition 1.5). Therefore Corollary 2.5 is not applicable.
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