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Abstract

In this paper, we investigate the controllability of nonlinear fractional damped dynamical system, which involved fractional
Caputo derivatives of any different orders. In the process of proof, we mainly use the Schaefer’s fixed-point theorem and
Mittag-Leffler matrix function. At last, we give an example to illustrate our main result. (©2017 All rights reserved.

Keywords: Controllability, Mittag-Leffler matrix, Schaefer’s fixed-point theorem, Gramian matrix.
2010 MSC: 47H10, 54H25.

1. Introduction

In this article, we study the controllability result for following system:
CDox(t) = ASDPBx(t) + Bu(t) + (£, x(t), u(t), “Dx(t), DPx(1)), @)
x(0) =%, x'(0)=x1,--,xP)(0) =xp, '

wherep—1<a<p,q—1<pf<q,q<p—1, Aisann xn matrix and B is an n x m matrix, x € R™,
u € L*®(J,R™), t € [0, T] and the nonlinear function f being continuous. In order to solve the problem, we
will use Mittag-Leffler matrix function, Gramian matrix and the theorem of Schaefer’s fixed-point.

Fractional differential equation has increasingly attracted the attention of many researchers during the
last three decades, see [2-4, 6, 7, 14, 18, 20-24, 26, 27, 30, 32]. The various types of fractional differential
equation, playing significant roles and tools, are used for solving some mathematical issues of general
physical phenomena in physics and engineering. Especially, the field of control theory sparked the interest
of many scholars which can be seen from the literatures [10, 19, 25]. In recent years, several authors [8, 11-
13, 15, 17] have made a detailed research about controllability results of linear and proposed many new
ideas about the low-order fractional equation.
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Yonggang and Xiu'e [31] introduced a fractional oscillator satisfied the following differential equation:

d?x(t)
dt?

where the elastic restoring force w%feoDi[x(t)} of arbitrary order ¢ with 0 < ¢ < 1. x(t) is an unknown
function that in the equilibrium position, t is a time variable, wy is the proper frequency, A is the strength
of pulses, 5(t) is the Dirac 6 function.

Achar et al. [1] studied the response of several specific forcing functions and analyzed resonance
characteristic of the fractional oscillator model. Tofighi [29] have defined and obtained the expression of
the fractional oscillator system. Al-rabth et al. [5] took advantage of the differential transform technique
and efficient algorithm to solve a fractional oscillator equation.

Balachandran et al. [9] studied the controllability result for the type of fractional damped system
represented by the following equation:

Dox(t) = ADPx(t) + Bu(t) + f(t, x(t)),
x(0) =xo, x'(0) =xg,

+ w%feoDi [X(t)] = Aé(t)/

where 0 < 3 <1< a <2, Aand B aren xn and n x m matrices respectively, and f : ] x R™ — R™" is a
continuous function.

Motivated by the work mentioned above, in this article we study the nonlinear fractional damped
dynamical system of (1.1). To the best of our knowledge, the controllability of nonlinear fractional damped
dynamical system of order p —1 < o« < p (p € N) have not been discussed.

This paper is arranged as follows. In Section 1, we illustrate the background and motivation of writing
this article. In Section 2, we make preparation of basic knowledge for the main result, and controllability
of linear system is proved. In Section 3, the main result of this article is obtained. Finally, an example is
provided to illustrate the main result in Section 4.

2. Preliminaries

2.1. Definitions and preliminary facts
In this section, we introduce some necessary definitions which are used throughout this paper.

Definition 2.1 ([18]). The Caputo fractional derivative of order x € Rwithn—1 < a <n,n € N, for a
suitable function f is defined as

(“Dos ) (1) = r(nl_(x) J;(t — )M (5)ds,
where (™) (s)=é%f. In particular, if 1 < a < 2 then
(D) (1) = — Jt(t—s)l_“f”(s)ds.
M2—a) Jo

For the brevity, the Caputo fractional derivative Dy is taken as “D ™.

Definition 2.2 ([27]). The Mittag-leffler matrix function for an arbitrary square matrix A is

Ecx’ﬁ(A) :Zm, CX,B >0,

Ex1(A) =Ex(A), withp =1
Lemma 2.3 ([16]). The Mittag-leffler matrix function derivative of order p (p € N) is defined as

d

()" Eap AP =t P Eqp o p(ALP), (pEN).
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In order to find the solution of system (1.1), take Laplace transform and inverse Laplace transform on
both sides of the following formula, we get the solution of the system (1.1)

x(t) :J:(t— $)* TEqpa(A(t—5)* P)Bu(s)ds

t
—i—J (t— s)“*lEa,B,cx(A(t — )% B)f()ds
0

q—1
— Z X O PTREL g o pr1rk(AtYP)
k=0

p—1
+ ) X0t Eap (AP,
k=0

2.2. Linear system
Consider the liner fractional dynamical system represented by fractional differential equation of the
form

{ D% (t) = ADPx(t) + Bu(t), te[0,T], 21

x(0) =xp, x'(0)=x1, ---, xPI0)=x,,

wherep—1<a<p,q—1<p <qgand q<p—1, Aisann x n matrix and B is an n x m matrix, x € R™,
u e L2(J,Rm).

Definition 2.4. The system (2.1) is said to be controllable on ], if for every xq,x1,...,%p,y € R™, if there
exists a control u(t) such that the solution x(t) of such system satisfies the conditions x(0) = xo, x’(0) =
X1, "y, X(P)(O) — Xpl X(T) =Y.

Define the controllability Grammian matrix W as
T
W :J (T— )2 @ VE_ g (AT —s)* #)BB*
0

X Eq—p,a (A" (T — $)* B)ds.

Theorem 2.5. The linear system (2.1) is controllable on ], iff the n x n Grammian matrix

-
w :J (T—s)2*VE, 5 +(A(T—5)* F)BB*
0
X BEx—p,a(A™(T— $)*P)ds,
is invertible.

Proof. Suppose W is invertible, then given xo, X, ...,Xp and y can choose the input function u(t) as

w(t) =(T—t)* 'B*Eq_p,o(A*(T—s)* Fyw!

q—1 p—1
Y+ ) oMf-) (M),
k=0 k=0

where
q—1 q—1
Z (1)} = Z X0 PHRE (g (e prisi) (ALYTP),
k=0 k=0
p—1

p—1
Z D(H)y = Z XM (O)1RE (g, (11 (AP,
k=0 k=0
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The corresponding solution of the system (2.1) at t = T can be written as
T

x(T) = JO (T—s)* TEq_p,alA(T—8)* P)B(T —s5)* !B

q—1
X B palATT=s)P)W 1y + Y oM}
k=0

p—1 q—1 p—1
— Y oMi]ds—Y oM+ Y oM}
k=0 k=0 k=0
=y,

so that the system (2.1) is controllable on ].
On the other hand, suppose that the the system (2.1) is controllable, but for the sake of a contradiction,
assume that the matrix W is not invertible. If W is not invertible, then there exists a vector z # 0 such that

;
Z*WZZJ 25(T — )2 VEq_p o(A(T—5)% B)BB"
0

X Eop,a(A*(T—5)*P)zds
=0,
hence

25(T—s) Ve, g ((A(T—s)*P)B=0, te].

Consider the initial points xg = x; = --- = x, = 0 and the final point y = z, so the system (2.1) is
controllable and there exists a control u(t) on | that steers the response from Otoy =zatt=T,

)
y=z= | TSP D (AT 5% P)Buls)ds,

0
then
-
2z = J (T — )2 VEq_ g o (A(T — ) B)Bus)ds
0
# 0,
which is a contradiction. Thus the matrix W is invertible. O

Lemma 2.6 (Schaefer’s Theorem [28]). Let S be a normed space, T a continuous mapping of S into S, which is
compact on each bounded subset of X. Then, either

(i) the equation x = AT(x) has a solution for A =1, or
(ii) the set of all such solutions x for 0 < A < 1 is unbounded.
We assume the following hypotheses.

(E1) For each t € J, the function f(t,-,-,-,-) : ] x R™ x R™ x R™ x R™ — R™ is continuous, the function
f(-,x(-),u(-),y(-),z(-)) : ] = R™ is strongly measurable for each x,y,z € R™, u € R™.

(E2)
1 (t, x(1), w(v), D*x(t), D x(1)) | <M,

wheret € J,x € R™, ue R™, M € R.



J. P. Liu, S. L. Liu, H. L. Li, J. Nonlinear Sci. Appl., 10 (2017), 325-337 329

(E3) Let

q—1 p—1
L=) O)f—) O} A=y+L
k=0 k=0

ny =supl(t—s)* "Ex_palAlt—s)*P);
ny =supl(t—s)* P 1 Eq_paplAlt—5)* P
q—1

= (p)
ns :supl[zq)(t)]f—i—Z@(t)ﬂ ;
k=0 k=0

ng =sup|(t— s)Px L,

3. Nonlinear system

Consider the nonlinear fractional dynamical system represented by the fractional differential equation
of the form
Dx(t) = ADPx(t) + Bu(t) + (£, x(t), u(t), D x(t), DPx(1)), 3.1)
x(0) =xg, x'(0) =xq,---,x(P)(0) = Xp, '
wherep—1<a<p,q—1<pB<q,q<p—1, Aisann x n matrix and B is an n X m matrix, x € R™,
u € L*(J,R™), t € [0, T] and the nonlinear function f being continuous, the solution of (3.1) is given by

x(t) :E(t— $)* TEnp oAt —5)* P)Bu(s)ds

¢ o a—1 o x—PB
—i—J (t—s) Eo—p,a(A(t—s) )
0

x f(s,x(s),u(s), D%(s), CDﬁx(s))ds
q—1 p—1

) OWF+ ) O}
k=0 k=0

Theorem 3.1. Assume that hypotheses (E1)-(E3) hold and the linear system (2.1) is controllable on |, then the
nonlinear system (3.1) is controllable on J.

Proof. We give the space X = {x : x(P), CD%x, DPyx ¢ C(J,R™) and u(t) € L*°(J,R™)} be a Banach space
endowed with the norm ||x||x = maxej{||x]|, [|D*x]|, | D BXH, |[u]]}. Using the hypothesis, for an arbitrary
x(+), the control

u(t) = (T—t)* 'B*Eap,a(A*(T- 1) PIW 1y,

where
q—1 p—1
v=y+y oMf-) oM}
k=0 k=0

K
- J (T— ) TEq_p (AT — )% P)
0

x f(s,x(s),u(s), D%(s), CDBX(S)) ds.

Now we shall show that the nonlinear operator F: X — X

(Fx)(t) :K(t— $) TEnp oAt —5)* P)Bu(s)ds
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¢ a1 o x—PB
+ J (t—8)* TEo_palAlt—s)% B
0

x f(s,x(s),u(s), D%(s), CDﬁx(s))ds
q—1 p—1

- O(t)f+) O(t)f,
k=0 k=0

has a fixed point. This fixed point is a solution of (3.1). Substituting the control u(t) in the above, we can
get

(Fx)(t) :Jot(t — )% o pa(Alt— ) P)(T —5)*!

X BB*Eq_p,a(A*(T—s)* PYW1 7 ds

‘ _ a1 o o—B
+J(t )% B o g alA(t—s)*B)
0

x f(s,x(s),u(s), D% (s), CDBx(s))ds
q—1 p—1

=) OWF+ ) Ok
k=0 k=0

Clearly, (Fx)(T) =y, this means that the system (3.1) was steered from the x( to y by the control u, if we
can obtain a fixed point of the nonlinear operator F. The first step is to obtain a priori bound of the set

((F)={xeX:x=AFx,A € [0,1]}.

Let x € ((F), then x = AFx for some 0 < A < 1. So for each t € ], we have

x(t) ﬂﬂ(t—s)“EM,a(A(t—s)“f’)(T—s)“l

X BB*Eq—p,a(A*(T—5)* P)W1 ¢ ds
t

A (49" B palAlt= 5 P)
0

x f(s,x(s),u(s), D%(s), CDGX(S))dS

q—1 p—1
—A) OUF+A)Y DB,
k=0 k=0

then
t T
()l <J mBB*nlw—l[wj nMdE]ds
0 0
t
+J niMds+L
0
<ni|B|IB* W T |
+TPM 4+ TM +L,
and

()| < (T =1)* B Eap,o(AS(T— 1) F)
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q—1 p—1
x W1 [y +Y oMmi-Y oms
k=0 k=0

]
—J (T— )% ool A(T— 5)*B)
0

X f(s,x(s),u(s), D%(s), CDﬁx(s))ds} I
<maBE WA )+ Tram).

Due to Lemma 2.3, we have

t
<Py < JO (t— )" P 1Eqp o p(Alt—s)* P)BB*

X Eaep,oa (A" (T—s)* PYW 1 5/ ds
t

T R A
0

X f(s,x(s),u(s), CD(Xx(s), CDﬁx(s))ds

! ! (p)
~[ Y owk+ Y ow] "
k=0 k=0

So
I ()] < nal|BIIB*[na W Y] A || + T M)T
+ 1 TM 4+ nj
= M.
We can get
D0 < s ol || meMots]
S =y O

Hence, “D“x(t) is bounded. In the same way, CDBx(t) is bounded too. And because
o B
1[I x ZTSF{IIX!I,IICD X[ (1D, ull},

so ((F) is bounded. Next we prove that F is completely continuous operator.
Let B, = {x € X;||x|| < p}, then we first show that F maps B, into equicontinuous family. Let
xX€Bp, t,be], O<ti<ta<T,

[[(Fx) (t2) — (Fx) ()| < || J (- ) EapalAlta— ) P)(T—s)*!

t
X BB*Eq_p,a(A*(T—38)* PYW 1 ¢ ds|
t
+HJ ([t —5)* " Ea_p alAlt—5)%#)
0
—(t1—8)* "Ea_p,a(Alt1 —8)*P)]
X (T—s)* 1BB*Eq_p,o (A" (T —s)* BYW L 7 ds||

+ HJ (=) o pa(Altz—s)*P)

t

X f(s,x(s),u(s), D%(s), CDBx(s))dsH



J. P. Liu, S. L. Liu, H. L. Li, J. Nonlinear Sci. Appl., 10 (2017), 325-337 332

ty
y JO (o — )% 1 Eq_palAlt—5)%P)
- (tl - S)oc_lEcxf(i,cx(A(tl - S)(X_B)]
xf(s x(s) u(s), CD(Xx( ), CDBX(S))dS”

+\|Z<th Z@tml
+HZ@D t2)¥ ZCD t)5 |-

So,
[(Fu) (t2) — (Fu) (t1)]] < [UT —t2)* ' B*Eqp,a(A*(T —t2)*P)
— (T—t1)* "B Eap,a(A*(T—t) FIW L 7 |.

and

1D (Fx) (1) — D™ (Fx) (1) | = HI“(ll—oc)Joz(tz % (Fx) P (s)ds

151
~ e ), s PP s)as|

<m_cx(nj t2 — )7 (Fx) P)(5)ds|
t1
1]l =57 = (=9 P Y (s)as ).

Clearly when t, — ty,
I(Fx)(t2) — (Fx)(ta)[| — O,
| D () (t2) = D () (1) = 0,
1°D° (Fx)(t2) = D" (Pa) (1) = 0,
[(Fu)(t2) — (Fu)(t1)[| — O.
So F maps B, into an equicontinuous family of functions. Then the family FB, is uniformly bounded.

Next we show that F is a compact operator. Obviously, the closure of FB, is compact. Let 0 <t < T, t
be fixed and T a real number satisfying 0 < T < t. For x € B,, we define

(Fe) (1) =L (t— ) EapalAlt—s)%8)

X (T—s)* '"BB*Eq_p,o(A*(T—35)*F)
q—1 p—1
wlly+ Y oMmi-3 oMk
k=0 k=0

)
—J (T )% Ea_p o (A(T—5)*F)
0

X (&, x(2),u(&), Dx(&), DPx(&))dE] ds

q—1 p—1 t—T

I JChE @(t)£‘+J (t—s)* !

k=0 k=0 0
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X Eap,u(Alt—5)*F)
x f(s,x(s),u(s), D% (s), CDﬁx(s)) ds.
By using the previous method, we can get the bounded and equicontinuous property of F.. Hence,
S<(t) = {(Fxx)(t), x € By},

is relatively compact in X for every 0 < T < t and for every x € By,
t

[(Fx) (1) — (Fex) (1) ]| < IIJ (t—8)" "Ea p,alAlt—s)* P)(T—s)*"

t—7

X BB*Eq_p,a(A*(T—3s)* PYW 1 ¢ ds

t
+|J (t— )% Ea_palAlt—s)*B)

t—t
x f(s,x(s),u(s), D% (s), CDBX(S))dSH
< g BIIB*HW I 7 | + T,

then
t

1(Fx) P (1) — (Fex) P (1) < J (t—8)* P g pa—plAlt—s)*P)

t—t
X BB*Eq_p,a(A%(T—s)* Pyw!
T

<o ] T B galAT - P)
0

x (2, x(£),u(2), D x(8), DPx(£)) de | as

+J (t— ) P Eu o plAlt—s)%8)

t—1
x f(s,x(s),u(s), D%(s), CDBX(S))dS
< BB [W | 7 || + naT™.

So [|(Fx)(t) — (Fex)(t)[| = 0, [|(Fx)P)(t) — (Fxx)P)(t)]| — 0, as T — 0.
Hence,

o 1

t
1D (Fx) (1) — D™ (Fex) ()| = 3 L (t—s)"*[(Fx)P)(s) — (Fex) P)]ds||

i

< IIml_o() Lt(t — )7 %((F)P)(s) = (Fex) Plds| = 0, T — 0.

In the same way, HCDB (Fx)(t) — cph (Fx)(t)]| — 0, as T — 0.

Hence, relatively compact sets S (t) = {(Ftx)(t), x € By} are arbitrary close to the set {(Fx)(t), x € By},
so {(Fx)(t), x € By} is compact in X by the Arzela-Ascoli theorem.

Next we show that F is continuous. Let {x,,} be a sequence in X, ||x, —x|| = 0, as n — co. Then for all

n and t € J, there is an integer kg such that ||x, || < ko, |[un|l < ko, D% xn ]| < ko, HCDBXTLH < ko. Hence
Ix(®)] < ko, [w(t)]] < ko, [D*x()] < ko, [|DPx(1)]| < ko. %, 1, D*x, DPx € X. By (E4)

£(t,%n (1), Un (1), 5D %xn (1), D P xn (1)) = £(1,x(t), ult), D x(t), DPx(1)),
for each t € ] and since

1£(t, xn (t), un (t), D xn (1), CDan(t)) —f(t,x(t), u(t), D¥(t), CDBx(t)) | <2M.
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By the Fatou-Lebesgue theorem we have

t S
1(Fxn) (8) = (FO)®)] < | L n3BB W ! L (&, % (), 1n (£), D% (&), D Pxn(£))
— (£, x(£),u(E), “D¥x(£), D x(£)) dE] ds

X

t C cH P
+J (s, xn (), n (s), D *xn(s), DPxn (5))
0

—f(s,x(s), u(s), D%(s), CDBx(s))} ds|.

Clearly ||(Fxn)(t) — (Fx)(t)|| = 0, as n — oo.
By x and corresponding relationship of u, we get || (Fu,)(t) — (Fu)(t)|| = 0, as n — oo, then

.
[(Fxn) P (1) — (Fx) P (1)]| < HL n3BB* WL [£(£, xn (£), un (£), D *xn (£), SDP xn (£))

— (&, x(£),u(E), “D¥x(£), DPx(£)) dE] ds

\
+j 12 [£(5, %n (5), n (5), D “xn (5, DPxn ()
0

—f(s,x(s),uls), D%(s), CDBX(S))] ds||.

So [|(Fxn) (1) — (Fx)P)(t)|| 0, as 1 — co.
This implies that

1D (Fxn ) (1) — D (Fx) ()]

# ¢ _ n—u—1 P . P o
STh—o L(t s) [ (Fxn)P(s) — (FX)P(s)[|ds — 0, n. — oo.

Hence F is continuous. Finally, the set {(F) = {x € X;x = AFx, A € [0, 1]} is bounded as shown in front part.
By Schaefer’s theorem, the operator F has a fixed point in X. This fixed point is the solution of (3.1). In
summary, the system (3.1) is controllable on [0, T]. O

4. An example

Consider the problem of nonlinear fractional dynamical system

{ D%x(t) = ADPx(t) + Bu(t) + (£, x(t), u(t), D x(t), DPx(1)), @)

x(0) =%, x'(0)=x1, - ,xP)(0) =xp,

wherep—1<a<p,q—1<pfp<q,p,qeN,te], and

4 3 7 0 i
3 6 2 5 0
A=l7 2 119 | B o | U= /
0 5 9 10 0
and the non-linear function is defined by

0
% cHf 0
f(t,x(t), ut), "D x(t), "D x(t)) = 0

sin(CD*x; (1)) + cos(DPxa (1)) +
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First, let us consider the Mittag-Leffler matrix function for the given system,

% Akik(a—p)
f3
Bopo(ALT ZF (x—B)k+ o)’

By doing some matrix calculations, we can get the following matrices:

L
1
Fa polAT—s)* FB=2| 2 |,
! e 13
ly
* x—py _ 1
B Ex—p,a(A(T—5)""F) = E( U bl L),
where
) 1 41>~ 74t2(0—B)
t) = cee
1t Mo  TRa—B)  TBx—2p)
) 3tx—P 44t2(«=B)  7903(«—B)
t) = e,
2V = 5o =8 T TBa—2p) T e —3p)
7t B 43t2(a=B) 17813 (x—B)
L(t) = — + TR
F2oa—pB) TBx—2p)  T(do—3B)
) 78t2(c—B)  613t3(x=B) 26109t x—B)
t) =
M) =328 T Taa—3p) t Ta—4p) T
ln = 1 (T —5s).
So,

2 LUk Ll Ll

1| b 1 Ll Ll

B * (T _ oe—B _ L 1b2 2 23 bl
EOL—B,OC(A(T S) )BB E(X—B,(X(A (T S) 62 1113 1213 l% 1314
Uls Ll lly 12

=1"

Hence, the controllability matrix W for the system is found by

w = :(T—s)ﬂ“”EaB,a(A(T—s)“B)
éB*Ea_ﬁ,a(A*(T—s)“*ﬁ)ds

= "T(T—s)z(“*lh*ds

> :)(,) for T > 0.

From the above, we have shown that W is an invertible matrix. Moreover, the nonlinear function f
satisfies the hypothesis. Hence the system (4.1) is controllable on ].
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