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Abstract
In the present paper we introduce and study vector valued Orlicz-Lorentz sequence spaces lp,q,M,u,∆,A(X) on Banach

space X with the help of a Musilak-Orlicz function M and for different positive indices p and q. We also study their cross
and topological duals. Finally, we introduce the operator ideals with the help of the corresponding scalar sequence spaces and
s-numbers. c©2017 All rights reserved.
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1. Introduction and preliminaries

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real or complex numbers.
Then we say that A defines a matrix mapping from X into Y, if for every sequence x = (xk)

∞
k=0 ∈ X, the

sequence Ax = {An(x)}
∞
n=0, the A-transform of x, is in Y, where

An(x) =

∞∑
k=0

ankxk, (n ∈N). (1.1)

By (X, Y), we denote the class of all matrices A such that A : X → Y. Thus, A ∈ (X, Y), if and only if the
series on the right-hand side of (1.1) converges for each n ∈N and every x ∈ X.

The matrix domain XA of an infinite matrix A in a sequence space X is defined by

XA = {x = (xk) : Ax ∈ X}.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation
method has recently been employed by several authors (see [20]).
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The study of vector-valued sequence spaces (VVSS) was provoked by the work of Grothendieck in [6].
Since then this theory has developed considerably in different directions, (see [3, 14] and references given
therein).

An Orlicz function M : [0,∞) → [0,∞) is a continuous, nondecreasing and convex function such that
M(0) = 0,M(x) > 0, for x > 0. Such function M always has the integral representation

M(x) =

∫x
0
p(t)dt,

where p(t), known as the kernel of M, is right continuous, non-decreasing function for t > 0. It is clear
that an Orlicz function M is always increasing as M(x) → ∞ as x → ∞. Also tp(t) → ∞ as t → ∞ and
tp(t) = 0 for t = 0, [11]. However p(t) > 0 for t = 0 is equivalent to the fact that the Orlicz sequence
space lM is isomorphic to l1, [8]. Therefore, we presume here that the kernel p(t) has value 0 for t = 0
and obviously p(t)→∞ as t→∞.

For Orlicz function M and kernel p, we define q(s) = sup{t : p(t) 6 s}, s > 0. Clearly q possesses
the same properties as p and the function N defined as N(x) =

∫x
0 q(t)dt, is an Orlicz function. The

functions M and N are called mutually complementary functions. These functions M and N satisfy
Young’s inequality: xy 6M(x) +N(y), for xy > 0 and also M(αx) 6 αM(x) for 0 < α < 1.

An Orlicz function M is said to satisfy the ∆2-condition for small x or at 0, if for each k > 1, there exist
Rk > 0 and xk > 0 such that

M(kx) 6 RkM(x), for all x ∈ (0, xk].

Suppose X and Y are vector spaces over the same field K of real or complex numbers, generates a
dual system 〈X, Y〉 with respect to the bilinear functional 〈x,y〉. We shall denote the vector space of all
sequences formed by the elements of X with respect to the operations of pointwise addition and scalar
multiplication by Ω(X) and the space of all finitely non-zero sequences from Ω(X) by φ(X). A vector-
valued sequence space Λ(X) is a subspace ofΩ(X) containing φ(X). The symbol δxi exists for the sequence
{0, 0, ..., 0, x, 0, 0, ...}, where x is placed at the ith coordinate. The notation x(n) denotes the n-th section of
x given by {x1, x2, ..., xn, 0, 0, ...}.

A subsetM of Λ(X) is said to be normal, if for {xi} ∈M and {αi} ∈ K, with |αi| 6 1, i > 1, the sequence
{αixi} ∈M. The generalized Köthe dual of Λ(X) is the space

Λ×(Y) =
{
y = {yi} ∈ Y :

∑
i>1

|〈xi,yi〉| <∞ for all {xi} ∈ Λ(X)
}

.

The generalized Köthe dual of Λ×(Y) is denoted by Λ××(X). The space Λ(X) is said to be perfect, if
Λ(X) = Λ××(X).

A vector-valued sequence space Λ(X) equipped with a Hausdorff locally convex topology T is called

(i) a GK-space, if the maps Pn,Λ(X) : Λ(X)→ X, Pn,Λ(X)(x) = xn, for each n > 1, are continuous;

(ii) a GAK-space, if Λ(X) is a GK-space and for each {xi} ∈ Λ(X), x(n) → x as n→∞, in T ;

(iii) a GAD-space, if x ∈ φ(X), for every x ∈ Λ(X), i.e., φ(X) = Λ(X).

Remark 1.1. Every perfect sequence space Λ(X) is normal [14].

Let us state here that if the dual system is 〈X,X∗〉 where X is a Banach space and X∗ is its topological
dual, then we may interchangeably use the notations 〈x, f〉 or f(x) for x ∈ X and f ∈ X∗ in the sequel.

We write w for Ω(X), φ for φ(X) and λ for Λ(X), if we take X = K, the field of scalars. If en’s are the
n-th unit vectors in w, i.e., en = {δnj}

∞
j=1, where δnj is the Kronecker delta, φ is clearly the subspace of w

spanned by en’s, n > 1.
A sequence space λ is said to be symmetric, if ασ = {ασ(i)} ∈ λ whenever α ∈ λ and σ ∈ Π, where Π is

the collection of all permutations of N. The Köthe dual λ× of a symmetric sequence space λ is symmetric
[8].
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The δ-dual for scalar-valued sequence space λ is defined as

λδ =
{
α ∈ w :

∑
i>1

|αiβρ(i)| <∞ for all β ∈ λ and ρ ∈ Π
}

.

λ× coincides with λδ, if λ is symmetric.
We define

λ(X) =
{
{xn} : xn ∈ X,n > 1 and {‖xn‖} ∈ λ

}
,

for a scalar-valued sequence space λ and a Banach space X. In case, λ equipped with the norm ‖.‖λ, is a
Banach space. Therefore, λ(X) is also a Banach space with respect to the norm

‖x‖λ(X) = ‖{‖xn‖}‖λ, (see [1, 3]).

As particular cases, we have l∞(X) for λ = l∞ and c0(X) corresponding to λ = c0.
We define the set l̃M(X) as

l̃M(X) = {x ∈ Ω(X) :
∑
i>1

M(‖xi‖) <∞},

for a Banach space X corresponding to an Orlicz function M.
The vector-valued Orlicz sequence space is defined as

lM(X) =
{
x ∈ Ω(X) :

∑
i>1

fi(xi) converges for all {fi} ∈ l̃N(X∗)
}

,

for mutually complementary functions M and N.
A corresponding way of defining lM(X) is

lM(X) =
{
x ∈ Ω(X) :

∑
i>1

M
(‖xi‖
ρ

)
<∞ for some ρ > 0

}
.

Two norms
‖x‖(M) = sup

{∣∣∑
i>1

fi(xi)
∣∣ :∑
i>1

N(‖fi‖) 6 1
}

,

and

‖x‖M = inf
{
ρ > 0 :

∑
i>1

M
(‖xi‖
ρ

)
6 1
}

,

are equivalent on lM and hence we have

‖x‖M 6 ‖x‖(M) 6 2‖x‖M, for x ∈ lM(X), (see [21]).

We shall write lM(X) as lM for X = K. If M satisfies ∆2-condition at 0 and M, N are mutually comple-
mentary Orlicz functions, then (lM)× = lN [8].

A Musielak-Orlicz function M = {Mn} is a sequence of Orlicz functions (see [5, 13]). A Musielak-
Orlicz function M is said to satisfy L1 condition, if pn(x) > pn+1(x) for all x ∈ [0,∞), where pn be the
kernel of Mn, for all n ∈N. A convex modular ρM on w for a Musielak-Orlicz function M is defined as

ρM({αn}) = sup
σ∈Π

∞∑
n=1

Mn(ασ(n)
).

Analogous to a convex modular ρM, we define modular space as

λM = {α = {αn} ∈ w : ρM(βα) <∞, for some β > 0}.
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This space becomes a normed space under the Luxemburg norm

‖α‖ = inf{β > 0 : ρM
(α
β

)
6 1}.

A modular sequence space λM is always a symmetric sequence space.
The decreasing rearrangement of the absolute values of a sequence α = {αn} in l∞ is given by {tn(α)},

where
tn(α) = inf{ρ > 0 : card{k : |αk| > ρ} < n}.

Here card A denotes the cardinality of the set A. The sequence {tn(α)} satisfies the following properties
[16]:

(i) ‖α‖∞ = t1(α) > t2(α) > ... > 0 for α ∈ l∞.

(ii) tm+n−1(α+β) 6 tm(α) + tm(β) for α,β ∈ l∞.

(iii) tm+n−1(αβ) 6 tm(α)tm(β) for α,β ∈ l∞.

Here αβ = {αnβn}.
For x = {xn} ∈ l∞(X), we denote by

tn(x) = tn({xn}) = tn({‖xn‖}), n ∈N.

The Lorentz sequence space lp,q (0 < p,q 6∞) is given by

lp,q = {α = {αn} ∈ l∞ : {n
1
p−

1
q tn(α)} ∈ lq}.

For α ∈ lp,q, let us consider the real-valued function ‖.‖p,q as follows

‖α‖p,q =


{∑
n>1

(n
1
p−

1
q tn(α))

q
} 1
q

for 0 < q <∞,

sup
n>1

n
1
p tn(α) for q =∞.

For a convex modular ρM defined on w, it has been proved in [5], that∑
n>1

Mn(tn(α)) = ρM(α), (1.2)

for α ∈ w, if and only if M satisfies L1 condition. We see that (lp,q, ‖.‖p,q) is Banach spaces for p > q by
(1.2). But for p < q, it is a quasi-Banach space. Further, they are symmetric sequence spaces [15].

Throughout the paper, we shall denote the Banach spaces over the complex field C by X and Y and
the class of all bounded linear maps from X to Y by L(X, Y).

Let L be the class of all bounded linear operators between any pair of Banach spaces and w+ be the
class of sequences of non-negative real numbers. A mapping s : L → w+ is called an s-number function,
if it satisfies the following conditions:

(i) ‖S‖ = s1(S) > s2(S) > ... > 0, s(S) = {sn(S)}, S ∈ L;

(ii) sn(S+ T) 6 sn(S) + ‖T‖ for S, T ∈ L(X, Y) and n ∈N;

(iii) sn(RST) 6 ‖R‖sn(S)‖T‖ for T ∈ L(X0,X), S ∈ L(X, Y), R ∈ L(Y, Y0) and n ∈N;

(iv) if rank S < n, then sn(S) = 0, (v), if dim X > n, then sn(IX) = 1, where IX denotes the identity map
of X.
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If the condition (ii) is replaced by

(ii)
′
sm+n−1(S+ T) 6 sm(S) + sn(T) for S, T ∈ L(X, Y) and m,n = 1, 2, · · · ,

then the s-number function is called additive.
An s-number function is called multiplicative. if the condition (iii) is replaced by

(iii)
′
sm+n−1(RT) 6 sm(R)sn(T) for R ∈ L(Y0, Y) and T ∈ L(X, Y0), m,n = 1, 2, · · · .

We write A(X, Y) = A∩ L(X, Y) for a subset A of L. An operator ideal is a collection of A, if it satisfies
the following:

(i) A contains all finite rank operators;

(ii) T + S ∈ A(X, Y) for S, T ∈ A(X, Y);

(iii) if T ∈ A(X, Y) and S ∈ L(Y,Z), then ST ∈ A(X,Z) and also if T ∈ L(X, Y) and S ∈ A(Y,Z), then
ST ∈ A(X,Z).

For the Banach spaces X and Y the collection A(X, Y) is called a component of A.
A real-valued function f is said to be an ideal quasi-norm, if f is defined on an operator ideal A and

satisfies the following properties:

(i) 0 6 f(T) <∞, for each T ∈ A and f(T) = 0, if and only if T = 0;

(ii) there exists a constant σ > 1 such that f(S+ T) 6 σ[f(S) + f(T)] for S, T ∈ A(X, Y), where A(X, Y) is
any component of A;

(iii) (a) f(RS) 6 ‖R‖f(S), for S ∈ A(X,Z), R ∈ L(Z, Y), and

(b) f(RS) 6 ‖S‖f(R), for S ∈ L(X,Z), R ∈ A(Z, Y).

An operator ideal is said to be quasi-normed operator ideal, if it is equipped with an ideal quasi-norm
and a quasi-Banach operator ideal is a quasi-normed operator ideal of which each component is complete
with respect to the ideal quasi-norm.

The notion of difference sequence spaces was introduced by Kızmaz [10] who studied the difference
sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized by Et and Çolak [4] by
introducing the spaces l∞(∆m), c(∆m) and c0(∆

m). Let m be a non-negative integer, then for Z = c, c0
and l∞, we have sequence spaces

Z(∆m) = {x = (xk) ∈ w : (∆mxk) ∈ Z},

where ∆mx = (∆mxk) = (∆m−1xk −∆
m−1xk+1) and ∆0xk = xk for all k ∈ N, which is equivalent to the

following binomial representation

∆mxk =

m∑
v=0

(−1)v
(
m

v

)
xk+v.

Taking m = 1, we get the spaces studied by Et and Çolak [4]. For more details about this work one can
refer to [1, 2, 9, 12, 16–18].

2. The vector-valued sequence spaces lp,q,M,u,∆,A(X) and hp,q,M,u,∆,A(X)

Let X be a Banach space. Let M = (Mk) be an Musielak-Orlicz function, that is, M is a sequence of
Orlicz functions, u = (uk) be a sequence of strictly positive real numbers and A = (ank) be a nonnegative
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two-dimensional bounded-regular matrix. In this paper we define the following classes of sequences:

lp,q,M,u,∆,A(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ

)]
<∞, for some ρ > 0

}
,

hp,q,M,u,∆,A(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
δ

)]
<∞, for all δ > 0

}
.

For x ∈ lp,q,M,u,∆,A(X), we define

‖x‖p,q,M,u,∆,A(X) = inf
{
ρ > 0 :

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ

)]
6 1
}

.

If we take M(x) = x in lp,q,M,u,∆,A(X) and hp,q,M,u,∆,A(X), then we have the following spaces:

lp,q,u,∆,A(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[‖A k 1
p−

1
q tk(∆

mxk)‖
ρ

]
<∞, for some ρ > 0

}
,

hp,q,u,∆,A(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[‖A k 1
p−

1
q tk(∆

mxk)‖
δ

]
<∞, for all δ > 0

}
.

Let u = (uk) = 1, for all k ∈ N. Then the spaces lp,q,M,u,∆,A(X) and hp,q,M,u,∆,A(X) are reduced to
lp,q,M,∆,A(X) and hp,q,M,∆,A(X), respectively, as follow:

lp,q,M,∆,A(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ

)]
<∞, for some ρ > 0

}
,

hp,q,M,∆,A(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
δ

)]
<∞, for all δ > 0

}
.

If we take A = (C, 1) in lp,q,M,u,∆,A(X) and hp,q,M,u,∆,A(X), then we have the following spaces:

lp,q,M,u,∆(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[
Mk

(‖ k 1
p−

1
q tk(∆

mxk)‖
ρ

)]
<∞, for some ρ > 0

}
,

hp,q,M,u,∆(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[
Mk

(‖ k 1
p−

1
q tk(∆

mxk)‖
δ

)]
<∞, for all δ > 0

}
.

If we take A = (C, 1) and M(x) = x in lp,q,M,u,∆,A(X) and hp,q,M,u,∆,A(X), then we have the following
spaces:

lp,q,u,∆(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[‖ k 1
p−

1
q tk(∆

mxk)‖
ρ

]
<∞, for some ρ > 0

}
,

hp,q,u,∆,(X) =

{
x = {xk} ∈ l∞(X) :∑

k>1

uk

[‖ k 1
p−

1
q tk(∆

mxk)‖
δ

]
<∞, for all δ > 0

}
.

If we take (Mk) = M, A = I, (uk) = 1 for all k ∈ N and m = 0, then we get the analogous of
the spaces defined by Gupta and Bhar [7]. The aim of this paper is to study the vector-valued Orlicz-
Lorentz sequence spaces. We also study their structural properties and investigate cross and topological
duals of these spaces. Finally we prove that the operator ideals defined with the help of scalar-valued
sequence spaces lp,q,M,u,∆,A and additive s-numbers are quasi-Banach operator ideals for p < q and
Banach operator ideals for p > q.
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Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a sequence of strictly positive real num-
bers and A = (ank) be a nonnegative two-dimensional bounded-regular matrix. Then the space lp,q,M,u,∆,A(X)
equipped with ‖.‖p,q,M,u,∆,A is a quasi-Banach space for p < q and Banach space for p > q. Further for
x ∈ lp,q,M,u,∆,A(X), we have ∑

k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
‖x‖p,q,M,u,∆,A

)]
6 1. (2.1)

Proof. We can easily show that lp,q,M,u,∆,A(X) is a vector space with usual coordinate wise addition
and scalar multiplication. To show that ‖.‖p,q,M,u,∆,A is a quasi-norm, let ‖x‖p,q,M,u,∆,A > 0, for each
x ∈ lp,q,M,u,∆,A(X) and ‖x‖p,q,M,u,∆,A = 0, for x = 0. Suppose that ‖x‖p,q,M,u,∆,A = 0, for some x =
{xk} ∈ lp,q,M,u,∆,A(X) and for given ε > 0, we can find ρ > 0 such that ρ < ε and

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ

)]
6 1.

When x 6= 0, we get ‖xk0‖ 6= 0 for some k0 ∈N and so tk1(∆
mxk) = ‖∆mxk0‖, for some k1 ∈N implies

uk

[
Mk

(‖A k 1
p−

1
q

1 tk1(∆
mxk)‖

ε

)]
6 uk

[
Mk

(‖A k 1
p−

1
q

1 tk1(∆
mxk)‖

ρ

)]
6 1,

for any ε > 0. We get a contradiction to the fact, so x = 0.
To prove triangular-type inequality, let us consider x = {xk} and y = {yk} ∈ lp,q,M,u,∆,A(X). Thus for

any ε > 0, there exist ρ1, ρ2 > 0 such that

ρ1 < ‖x‖p,q,M,u,∆,A +
ε

2
with

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ1

)]
6 1,

and

ρ2 < ‖y‖p,q,M,u,∆,A +
ε

2
with

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

myk)‖
ρ2

)]
6 1.

If 1
p − 1

q > 0, then via properties (i) and (ii) of {tk(∆mxk)}, we get

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

m(xk + yk))‖
2

1
p−

1
q+1(ρ1 + ρ2)

)]
=
∑
k>1

uk

[
Mk

(‖A (2k)
1
p−

1
q t2k(∆

m(xk + yk))‖
2

1
p−

1
q+1(ρ1 + ρ2)

)]

+
∑
k>1

uk

[
Mk

(‖A (2k− 1)
1
p−

1
q t2k−1(∆

m(xk + yk))‖
2

1
p−

1
q+1(ρ1 + ρ2)

)]

6 2
∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q (tk(∆

mxk) + tk(∆
myk))‖

2(ρ1 + ρ2)

)]

6
∑
k>1

uk

[
Mk

( ρ1

ρ1 + ρ2

)(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ1

)

+
( ρ2

ρ1 + ρ2

)(‖A k 1
p−

1
q tk(∆

myk)‖
ρ2

)]
6 1.

Hence,

‖x+ y‖p,q,M,u,∆,A 6 2
1
p−

1
q+1(ρ1 + ρ2)
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6 2
1
p−

1
q+1(‖x‖p,q,M,u,∆,A + ‖y‖p,q,M,u,∆,A + ε).

Now we prove the completeness of the space (lp,q,M,u,∆,A(X), ‖.‖p,q,M,u,∆,A). Let {xk} be a Cauchy se-
quence in lp,q,M,u,∆,A(X), as xk = {xnk }n>1, k ∈N. Hence for ε > 0, there exists k0 ∈N such that

‖xk+j − xk‖p,q,M,u,∆,A = inf
{
ρ > 0 :

∑
n>1

un

[
Mn

(‖A n 1
p−

1
q tn(∆

m(xk+j − xk))‖
ρ

)]
6 1
}
< ε,

for each k > k0 and each j ∈N. Thus

∑
n>1

[‖A n 1
p−

1
q tn(∆

m(xk+j − xk))‖
ε

]
6 1, for all k > k0, j ∈N,

which implies that {
{A n

1
p−

1
q tn(∆

m(xk+j − xk))/ε} : n ∈N
}

,

is a bounded set for j ∈ N and for all k > k0. Therefore {xnk } is a Cauchy sequence in X, for each n ∈ N

and so converges to zn. Let z = {zn}. Then tn(∆m(xk+j − xk)) → tn(z− xk) as j → ∞ and hence by
continuity of M, ∑

n>1

un

[
Mn

(‖A n 1
p−

1
q tn(∆

m(z− xk))‖
ε

)]
6 1, for all k > k0.

This implies that z ∈ lp,q,M,u,∆,A(X) and ‖z − xk‖p,q,M,u,∆,A → 0 as k → ∞. Also, inequality (2.1) is
directly obtained from the definition of the quasi-norm ‖.‖p,q,M,u,∆,A. This completes the proof.

Theorem 2.2. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a sequence of strictly positive real
numbers and A = (ank) be a nonnegative two-dimensional bounded-regular matrix. Then hp,q,M,u,∆,A(X) is a
closed subspace of lp,q,M,u,∆,A(X). Moreover, if M = (Mk) satisfies ∆2-condition at 0, then lp,q,M,u,∆,A(X) =
hp,q,M,u,∆,A(X).

Proof. First of all it is without a doubt that hp,q,M,u,∆,A(X) is a subspace of lp,q,M,u,∆,A(X). Now we
prove that hp,q,M,u,∆,A(X) is closed in lp,q,M,u,∆,A(X). Suppose x = {xk} ∈ hp,q,M,u,∆,A(X), the closure of
hp,q,M,u,∆,A(X) in lp,q,M,u,∆,A(X). So there exists a sequence {yk} = {{ynk }} ∈ hp,q,M,u,∆,A(X), k > 1 and
we have ‖yk − x‖p,q,M,u,∆,A → 0 as k→∞. Take any δ > 0. Thus for δ1 = min{2

1
p−

1
q δ, δ}, we get k0 ∈N

such that
‖yk − x‖p,q,M,u,∆,A <

δ1

2
, for all k > k0. (2.2)

When 1
p − 1

q > 0, we have

∑
n>1

un

[
Mn

(‖A n 1
p−

1
q tn(∆

mx)‖
δ

)]
6 2
∑
n>1

un

[
Mn

(‖A n 1
p−

1
q
(
tn(∆

m(x− yk0
)) + tn(∆

myk0
)
)
‖

δ1

)]

6
∑
n>1

un

[
Mn

(‖A n 1
p−

1
q
(
tn(∆

m(x− yk0
))
)
‖

δ1/2

)]

+
∑
n>1

un

[
Mn

(‖A n 1
p−

1
q tn(∆

myk0
)‖

δ1/2

)]

6
∑
n>1

un

[
Mn

(‖A n 1
p−

1
q
(
tn(∆

m(x− yk0
))
)
‖

‖x− yk0
‖p,q,M,u,∆,A

)]
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+
∑
n>1

un

[
Mn

(‖A n 1
p−

1
q tn(∆

myk0
)‖

δ1/2

)]
<∞.

In the case when 1
p − 1

q < 0, we get

∑
n>1

un

[
Mn

(‖A n 1
p−

1
q tn(∆

mx)‖
δ

)]
6
∑
n>1

un

[
Mn

(‖A n 1
p−

1
q
(
tn(∆

m(x− yk0
))
)
‖

δ1/2

)]

+
∑
n>1

un

[
Mn

(‖A n 1
p−

1
q tn(∆

myk0
)‖

δ1/2

)]
<∞,

by the relation (2.2). Clearly x ∈ hp,q,M,u,∆,A(X) and so the subspace hp,q,M,u,∆,A(X) is closed. Now we
suppose that M satisfies ∆2-condition at 0. Let x ∈ lp,q,M,u,∆,A(X), we have

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ0

)]
<∞, for some ρ0 > 0.

To show that x ∈ hp,q,M,u,∆,A(X), choose any η > 0. If η > ρ0, then

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
η

)]
<∞.

Now presume η < ρ0 and suppose K = ρ0
η . Since M satisfies the ∆2-condition, so we can find RK > 0 and

xK > 0 such that M(Kx) 6 RKM(x) for all x ∈ (0, xK]

=⇒
∑
k>k0

uk

[
Mk

(‖KA k 1
p−

1
q tk(∆

mxk)‖
ρ0

)]
6 RK

∑
k>k0

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
ρ0

)]
<∞,

for some k0 ∈N. Hence

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q tk(∆

mxk)‖
η

)]
<∞, for any η > 0,

and so x ∈ hp,q,M,u,∆,A(X), we have hp,q,M,u,∆,A(X) = lp,q,M,u,∆,A(X).

Proposition 2.3. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a sequence of strictly positive real
numbers and A = (ank) be a nonnegative two-dimensional bounded-regular matrix. If Y = hp,q,M,u,∆,A(X) ∩
c0(X), 0 < p,q 6∞. Then Y equipped with the subspace topology of hp,q,M,u,∆,A(X) is a GAD-space.

Proof. Obviously φ(X) ⊂ Y. Suppose x ∈ Y. Now for any ε > 0, we can find k0 ∈N, such that∑
k>k0

uk

[
Mk

(‖A k1/p−1/qtk(∆
mxk)‖

ε

)]
6 1.

Let Ik = {i ∈ N : ‖xi‖ > 1
k }, k ∈ N and vk =

∑
i∈Ik δ

xi
i . Since x ∈ c0(X), Ik is finite and so vk ∈ φ(X). Set

nk = card Ik. Then take m0 ∈N such that∑
k>m0

uk

[
Mk

(‖A k1/p−1/qtk(∆
mxk)‖

ε

)]
6

1
2

.
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Take k so large that
1
k

m0∑
i=1

uk

[
Mk

(‖A i1/p−1/q‖
ε

)]
6

1
2

.

Thus,

∑
i>1

uk

[
Mk

(‖A i1/p−1/qtnk+i(∆
mxk)‖

ε

)]
6

1
k

m0∑
i=1

uk

[
Mk

(‖A i1/p−1/q‖
ε

)]
+
∑

i>m0+1

uk

[
Mk

(‖A k1/p−1/qti(∆
mxk)‖

ε

)]
6

1
2
+

1
2
= 1.

This implies that ‖x− vk‖p,q,M,u,∆,A 6 ε, for sufficiently large k. Hence Y is a GAD-space.

Proposition 2.4. Let M = (Mk) be a Musielak-Orlicz function satisfying ∆2-condition at 0, u = (uk) be a
sequence of strictly positive real numbers and A = (ank) be a nonnegative two-dimensional bounded-regular
matrix. If lp,q,M,u,∆,A(X) ⊂ c0(X), 0 < p 6 q 6∞. Then lp,q,M,u,∆,A is a GAD-space.

Remark 2.5. It is very motivating to know whether the space hp,q,M,u,∆,A(X) is a GAK-space, this means
that the kth section x(k) = {x1, x2, ..., xk, 0, 0, 0, 0, ...} of an element x = {xi} of hp,q,M,u,∆,A converges
to x with respect to its quasi-norm. Whenever, if p,q > 0 with 1

p − 1
q > 0 and x ∈ hp,q,M,u,∆,A(X)

such that ‖x1‖ > ‖x2‖ > ‖x3‖ > · · · , then tk(x) = ‖xk‖ and in this case, one can easily show that
‖x− x(k)‖p,q,M,u,∆,A → 0 as k→∞.

3. Duals of the space lp,q,M,u,∆,A(X), 1 ≤ p ≤ q ≤∞
Suppose that the spaces lp,q,M,u,∆,A(X) are symmetric sequence spaces, since the decreasing rear-

rangement of x would be the same as that of xπ for any permutation π of N and M = (Mk) is an
increasing function. Thus the δ-dual of the scalar-valued sequence space lp,q,M,u,∆,A would coincide with
its cross-dual.

Theorem 3.1. Let M = (Mk) and N = (Nk) be two mutually complementary Musielak-Orlicz functions such
that M satisfies ∆2-condition at 0, u = (uk) be a sequence of strictly positive real numbers and A = (ank) be
a nonnegative two-dimensional bounded-regular matrix. Then (lp1,q1,M,u,∆,A)

× ⊇ lp2,q2,N,u,∆,A, where 1/p1 +
1/p2 = 1 and 1/q1 + 1/q2 = 1. Moreover, (lp1,q1,M,u,∆,A)

× = lp2,q2,N,u,∆,A when 1/p1 − 1/q1 > 0.

Proof. To show that lp2,q2,N,u,∆,A ⊂ (lp1,q1,M,u,∆,A)
×, suppose β ∈ lp2,q2,N,u,∆,A. Then, we have

∑
k>1

uk

[
Nk

(‖A k 1
p2

− 1
q2 tk(∆

mβ)‖
δ0

)]
<∞, for some δ0 > 0.

Let α ∈ lp1,q1,M,u,∆,A. Then
∑
k>1

uk

[
Mk

(‖A k 1
p1

− 1
q1 tk(∆

mα)‖
ρ

)]
<∞, for all ρ > 0. Thus,

∑
k>1

|αkβk| 6
∑
k>1

tk(∆
mα)tk(∆

mβ)

6
∑
k>1

uk

[
Mk

(‖A k 1
p1

− 1
q1 tk(∆

mα)‖
1/δ0

)]
+
∑
k>1

uk

[
Nk

(‖A k 1
p2

− 1
q2 tk(∆

mβ)‖
δ0

)]
<∞.
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Hence β ∈ (lp1,q1,M,u,∆,A)
×. Now to prove (lp1,q1,M,u,∆,A)

× = lp2,q2,N,u,∆,A, suppose β∈(lp1,q1,M,u,∆,A)
×,

then
∑
i>1

|αiβi| < ∞, for all {αi} ∈ lp1,q1,M,u,∆,A. Since lp1,q1,M,u,∆,A and (lp1,q1,M,u,∆,A)
× both are sym-

metric sequence spaces, {tk(∆mα)}∈ lp1,q1,M,u,∆,A, for α∈ lp1,q1,M,u,∆,A and {tk(∆
mβ)} ∈ (lp1,q1,M,u,∆,A)

×,
for β ∈ (lp1,q1,M,u,∆,A)

×. Hence
∑
k>1

tk(∆
mα)tk(∆

mβ) <∞, for all α ∈ lp1,q1,M,u,∆,A.

Again if γ ∈ lM, then {tk(∆
mγ)} ∈ lM as lM is symmetric and normal and so

{Ak
1
p2

− 1
q2 tk(∆

mγ)} ∈ lp1,q1,M,u,∆,A.

Hence ∑
k>1

[
‖A k

1
p2

− 1
q2 tk(∆

mγ)tk(∆
mβ)‖

]
<∞, for all γ ∈ lM.

This implies that {Ak
1
p2

− 1
q2 tk(∆

mβ)} ∈ l×M = lN and so β ∈ lp2,q2,N,u,∆,A. Thus, we have

(lp1,q1,M,u,∆,A)
× = lp2,q2,N,u,∆,A.

Proposition 3.2. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a sequence of strictly positive real
numbers and A = (ank) be a nonnegative two-dimensional bounded-regular matrix. For positive reals p1,p2,q1,q2
with 1/p1 + 1/p2 = 1, 1/q1 + 1/q2 = 1 such that q1 < p1, the spaces lp1,q1,M,u,∆,A are perfect sequences spaces.

Proof. In fact in this case (lp2,q2,N,u,∆,A)
× = lp1,q1,M,u,∆,A and lp2,q2,N,u,∆,A ⊆ (lp1,q1,M,u,∆,A)

×. So we
have lp1,q1,M,u,∆,A ⊂ (lp1,q1,M,u,∆,A)

×× ⊂ (lp2,q2,N,u,∆,A)
× = lp1,q1,M,u,∆,A.

Proposition 3.3. Let M = (Mk) be an Musielak-Orlicz function satisfying ∆2-condition at 0, u = (uk) be a
sequence of strictly positive real numbers andA = (ank) be a nonnegative two-dimensional bounded-regular matrix.
Let X be a Banach space and p1,p2,q1,q2 are such that 1/p1 + 1/p2 = 1, 1/q1 + 1/q2 = 1 and 1/p1 − 1/q1 > 0.
Then (lp1,q1,M,u,∆,A(X))

× = lp2,q2,N,u,∆,A(X
∗).

Proof. One can easily prove it by using Theorem 3.1, so we omit the proof.

Theorem 3.4. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a sequence of strictly positive real
numbers and A = (ank) be a nonnegative two-dimensional bounded-regular matrix. Suppose p1,p2,q1,q2 are real
numbers with 1 < p1,q1,p2,q2 <∞ and 1/p1 + 1/p2 = 1, 1/q1 + 1/q2 = 1. Then the dual of lp1,q1,M,u,∆,A(X)
is topologically isomorphic to lp2,q2,N,u,∆,A(X

∗), if and only if the sequence {fi} ∈ lp2,q2,N,u,∆,A(X
∗) is identified

with the linear functional F given by

F({xi}) =
∑
i>1

〈xi, fi〉, for each {xi} ∈ lp1,q1,M,u,∆,A(X). (3.1)

Proof. Subsequently for {fi} ∈ lp2,q2,N,u,∆,A(X
∗), we define a linear functional F on lp1,q1,M,u,∆,A(X) as in

(+) where convergence of the series is being guaranteed by Proposition 3.3. For k ∈N, let

Fk({xi}) =

k∑
i=1

〈xi, fi〉, {xi} ∈ lp1,q1,M,u,∆,A(X).

Obviously, {Fk} is a sequence of continuous linear functionals on lp1,q1,M,u,∆,A(X) converging pointwise
to F. Thus F is continuous by Banach-Steinhaus Theorem (see [19]). Hence, F ∈ (lp1,q1,M,u,∆,A(X))

∗. Next,
for x ∈ lp1,q1,M,u,∆,A(X), we get
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|f(x)| 6
∑
i>1

|〈xi, fi〉|

6
∑
i>1

ti(x) ti(f)

6 ‖f‖p2,q2,N,u,∆,A

∑
i>1

ui

[
Mi

(
|A( i1/p1−1/q1ti(∆

mx))‖‖(i
1/p2−1/q2ti(∆

mf))‖
‖f‖p2,q2,N,u,∆,A

)]
6 ‖f‖p2,q2,N,u,∆,A ‖uiA{i1/p1−1/q1ti(∆

mx)}‖(M),

since
∑
i>1

ui

[
Ni

(‖A i1/p2−1/q2ti(∆
mf)‖

‖f‖p2,q2,N,u,∆,A

)]
6 1. Therefore,

|F(x)| 6 2‖f‖p2,q2,N,u,∆,A ‖x‖p1,q1,M,u,∆,A,

for any x ∈ lp1,q1,M,u,∆,A(X). Thus,
‖f‖ 6 2‖{fi}‖p2,q2,N,u,∆,A. (3.2)

Conversely, suppose F ∈ (lp1,q1,M,u,∆,A(X))
∗. Define fi ∈ X∗, i ∈ N as fi(x) = F(δxi ). Now to prove

{fi} ∈ lp2,q2,N,u,∆,A(X
∗) we choose {αi} ∈ lp1,q1,M,u,∆,A. Take {xi} ⊆ X with ‖xi‖ = 1 and ‖fi‖ < fi(xi) +

1/2i, for all i ∈N. Let {βi} ⊂ C be such that |fi(αixi)| = fi(αiβixi), for all i ∈N. Obviously, |βi| = 1, for
all i ∈N, and so {αiβixi} ∈ lp1,q1,M,u,∆,A(X). Suppose∑

i>1

|αi|‖fi‖ <
∑
i>1

fi(αiβixi) +
∑
i>1

αi
2i

=
∑
i>1

F(δαiβixi) +K

= lim
k→∞

k∑
i=1

F(δαiβixi) +K

= F({δαiβixi}) +K,

where K=
∑
i>1

αi
2i

. Therefore,
∑
i>1

|αi|‖fi‖ <∞, for all {αi}∈ lp1,q1,M,u,∆,A and hence {fi}∈ lp2,q2,N,u,∆,A(X
∗)

by Theorem 3.1. To prove that F has the form as given in equation (3.1), suppose for {xi} ∈ lp1,q1,M,u,∆,A(X)∑
i>1

|〈xi, fi〉| =
∑
i>1

|F(δxi)|

= lim
k→∞

k∑
i=1

F(δβixi) = F({βixi}),

where βi are taken as above. Thus
∑
i>1

|〈xi, fi〉| <∞. Hence,

∑
i>1

|〈xi, fi〉| is unconditionally convergent. (3.3)

Now if 0 < p1 < q1 6∞, lp1,q1,M,u,∆,A(X) is a GAD-space. We write ti(x) = ‖xφ(i)‖, for some φ ∈ π and

uk =

k∑
i=1

δ
xφ(i)

φ(i)
, for k ∈ N. Therefore uk ∈ φ(X) and ‖x− uk‖p1,q1,M,u,∆,A → 0 as k → ∞ by Proposition

3.3. Then,
F({xi}) = F( lim

k→∞uk) =
∑
i>1

〈xi, fi〉,
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by (3.3). Hence the mapping R : lp2,q2,N,u,∆,A(X
∗) → (lp1,q1,M,u,∆,A(X))

∗ defined by R(f) = F, with
f = {fi}, fi(x) = F(δxi ), i ∈ N is a topological isomorphism from equations (3.1), (3.2) and the open
mapping theorem (see [19]). This completes the proof.

4. The operator ideals L
(s)
p,q,M,u,∆,A, 0 < p,q ≤∞

Let M = (Mk) be a Musielak-Orlicz function and X, Y are Banach spaces.

Definition 4.1. Let T : X → Y be a bounded linear operator. Then T is said to be of type lp,q,M,u,∆,A, if
{sk(T)} ∈ lp,q,M,u,∆,A. We shall denote the set of all above mappings by L(s)p,q,M,u,∆,A where

L
(s)
p,q,M,u,∆,A = {T ∈ L : {sk(T)} ∈ lp,q,M,u,∆,A}.

We define the norm for any T ∈ L(s)p,q,M,u,∆,A as

‖T‖p,q,M,u,∆,A = inf
{
ρ > 0 :

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q∆msk(T)‖
ρ

)]
6 1
}

.

Theorem 4.2. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a sequence of strictly positive real
numbers and A = (ank) be a nonnegative two-dimensional bounded-regular matrix. Then for p < q, L(s)p,q,M,u,∆,A
equipped with ‖.‖p,q,M,u,∆,A is a quasi-Banach operator ideal and for p > q it is a Banach ideal.

Proof. To show that L(s)p,q,M,u,∆,A is an operator ideal, firstly note that all finite rank operators are contained

in L(s)p,q,M,u,∆,A, since sk(T) = 0 for k > k0, if rank T < k0. For T1, T2 ∈ L(s)p,q,M,u,∆,A(X, Y), we have

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q∆msk(T1)‖
ρ1

)]
<∞,

and ∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q∆msk(T2)‖
ρ2

)]
<∞,

for some ρ1, ρ2 > 0. Firstly, we consider the condition when 1
p − 1

q > 0

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q∆msk(T1 + T2)‖

2
1
p−

1
q+1(ρ1 + ρ2)

)]
6
∑
k>1

ρ1

ρ1 + ρ2
uk

[
Mk

(‖A k 1
p−

1
q∆msk(T1)‖
ρ1

)]

+
∑
k>1

ρ2

ρ1 + ρ2
uk

[
Mk

(‖A k 1
p−

1
q∆msk(T2)‖
ρ2

)]
<∞.

Again, if 1
p − 1

q < 0, then

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q∆msk(T1 + T2)‖
(ρ1 + ρ2)

)]
6
∑
k>1

ρ1

ρ1 + ρ2
uk

[
Mk

(‖A k 1
p−

1
q∆msk(T1)‖
ρ1

)]

+
∑
k>1

ρ2

ρ1 + ρ2
uk

[
Mk

(‖A k 1
p−

1
q∆msk(T2)‖
ρ2

)]
<∞.

This implies that T1 + T2 ∈ L(s)p,q,M,u,∆,A(X, Y). Now, we want to show that for T ∈ L(s)p,q,M,u,∆,A(E, F),
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R ∈ L(F, Y) and S ∈ L(X,E), RTS ∈ L(s)p,q,M,u,∆,A(X, Y). Thus for T ∈ L(s)p,q,M,u,∆,A(E, F), we have

∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q∆msk(T)‖
ρ0

)]
<∞,

for some ρ0 > 0 and hence ∑
k>1

uk

[
Mk

(‖A k 1
p−

1
q∆msk(RTS)‖
‖R‖‖S‖ρ0

)]
<∞,

by the property (iii) of s-number function. Thus RTS ∈ L(s)p,q,M,u,∆,A(X, Y). Therefore, L(s)p,q,M,u,∆,A is an
operator ideal.

The proof of the function ‖.‖p,q,M,u,∆,A is a quasi-norm (or, norm) defined on L(s)p,q,M,u,∆,A is similar
to one defined on Lp,q,M,u,∆,A(X) and so excluded. To prove the completeness, suppose {Tk} is a Cauchy
sequence in component of L(s)p,q,M,u,∆,A(X, Y) of L(s)p,q,M,u,∆,A. Thus for ε > 0, there exists k0 ∈N such that

‖Tk+j − Tk‖p,q,M,u,∆,A < ε, for all k > k0 and j ∈N.

This implies that there exists ρ > 0 such that ρ < ε and

∑
n>1

un

[
Mn

(‖A n 1
p−

1
q∆msn(Tk+j − Tk)‖

ε

)]
6 1, for all k > k0, j ∈N. (4.1)

Thus, {
A n

1
p−

1
q∆msn(Tk+j − Tk)

ε
;n > 1

}
,

is a bounded sequence for each k > k0 and j ∈N. Therefore for some constant K > 0, we get

‖Tk+j − Tk‖ < εK, for all k > k0, j ∈N.

Thus, {Tk} is a Cauchy sequence in L(X, Y). So there exists a T ∈ L(X, Y) such that ‖Tk− T‖ → 0 as k→∞.
As sn(Tk − T) 6 ‖Tk − T‖, for all k > 1, we have sn(Tk − T)→ 0 as k→∞. Also,

|sn(Tk+j − Tk) − sn(T − Tk)| 6 ‖Tk+j − Tk‖,

which implies
sn(Tk+j − Tk)→ sn(T − Tk) as j→∞.

Now, we have from (4.1),

∑
n>1

un

[
Mn

(‖A n 1
p−

1
q∆msn(T − Tk)‖

ε

)]
6 1, for all k > k0.

This implies that T − Tk ∈ L
(s)
p,q,M,u,∆,A(X, Y) and ‖T − Tk‖p,q,M,u,∆,A < ε, for all k > k0. Therefore,

T ∈ L(s)p,q,M,u,∆,A and Tk → T ∈ L(s)p,q,M,u,∆,A, which shows that L(s)p,q,M,u,∆,A is a quasi-Banach operator
ideal.

Theorem 4.3. Let M = (Mk) and N = (Nk) be two complementary Musielak-Orlicz functions, u = (uk)
be a sequence of strictly positive real numbers, A = (ank) be a nonnegative two-dimensional bounded-regular
matrix and s is a multiplicative s-number function. If 0 < p1,p2,p,q1,q2,q < ∞ are such that 1

p1
+ 1
p2

= 1
p ,

1
q1

+ 1
q2

= 1
q , then

L
(s)
p1,q1,M,u,∆,A ◦ L

(s)
p2,q2,N,u,∆,A ⊂ L

(s)
p,q,1,u,∆,A,
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where

L
(s)
p,q,1,u,∆,A =

{
T ∈ L :

∑
k>1

uk

[
‖A k

1
p−

1
q∆mskT‖

]
∈ l1
}

.

Proof. Suppose T ∈ L(s)p1,q1,M,u,∆,A ◦L
(s)
p2,q2,N,u,∆,A(X, Y). Then T = T1T2, where T1 ∈ L

(s)
p1,q1,M,u,∆,A(Z, Y) and

T2 ∈ L(s)p2,q2,N,u,∆,A(X,Z) and here Z is a Banach space. Thus

∑
k>1

uk

[
Mk

(‖A k 1
p1

− 1
q1∆msk(T1)‖
ρ1

)]
<∞, for some ρ1 > 0,

∑
k>1

uk

[
Nk

(‖A k 1
p2

− 1
q2∆msk(T2)‖
ρ2

)]
<∞, for some ρ2 > 0.

If 1
p − 1

q > 0, we have

∑
k>1

uk

[‖A k 1
p−

1
q∆msk(T1T2)‖

2
1
p−

1
qρ1ρ2

]

6 2
∑
k>1

uk

[
Mk

(‖A k 1
p1

− 1
q1∆msk(T1)‖
ρ1

)]
+
∑
k>1

uk

[
Nk

(‖A k 1
p2

− 1
q2∆msk(T2)‖
ρ2

)]
<∞,

and for 1
p − 1

q < 0, we have

∑
k>1

uk

[‖A k 1
p−

1
q∆msk(T1T2)‖
ρ1ρ2

]
6 2
∑
k>1

uk

[
Mk

(‖A k 1
p1

− 1
q1∆msk(T1)‖
ρ1

)]

+
∑
k>1

uk

[
Nk

(‖A k 1
p2

− 1
q2∆msk(T2)‖
ρ2

)]
<∞.

This implies that {A k
1
p−

1
q∆msk(T1T2)} ∈ l1 or T1T2 ∈ L(s)p,q,1,u,∆,A. This completes the proof.
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