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Abstract
For many technical systems, stress-strength models are of special importance. Stress-strength models can be described

as an assessment of the reliability of the component in terms of X and Y random variables where X is the random ”stress”
experienced by the component and Y is the random ”strength” of the component available to overcome the stress. The reliability
of the component is the probability that component is strong enough to overcome the stress applied on it. Traditionally, both
the strength of the component and the applied stress are considered to be both time-independent random variables. But in most
of real life systems, the status of a stress and strength random variables clearly change dynamically with time. Also, in many
important systems, it is very necessary to estimate the reliability of the component without waiting to observe the component
failure. In this paper we study multi-state component where component is subjected to two stresses. In particular, inspired by
the idea of Kullback-Leibler divergence, we aim to propose a new method to compute the dynamic reliability of the component
under stress-strength model. The advantage of the proposed method is that Kullback-Leibler divergence is equal to zero when
the component strength is equal to applied stress. In addition, the formed function can include both stresses when two stresses
exist at the same time. Also, the proposed method provides a simple way and good alternative to compute the reliability of the
component in case of at least one of the stress or strengths quantities depend on time. c©2017 All rights reserved.
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1. Introduction and preliminaries

The reliability of technical systems is one of the most important research subjects in the point reached
by modern science. In some cases, the performance rate of the system depends on variable environmental
conditions which cause degradation. The system may not fail fully but can degrade and there may exist
several operation level of the system. A system that can have a finite number of operation levels is called
a multi-state system. Generally, multi-state system is consisted of components that they also can be multi-
state. The operation levels of the components can range from perfect functioning up to complete failure.
The quality of the system is completely determined by components. Because, components failure can
lead to the degradation of the entire multi-state system performance. Multi-state systems offer a flexible
structure for modeling engineering systems.
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In literature, much attention has been paid to multi-state system modeling. Hudson and Kapur [17]
presented some models and their applications, in terms of reliability evaluation, to situations where the
system and all its components have a multiple state. Ebrahimi [8] proposed two types of multi-state
system and presented various properties related to them. Brunella and Kapur [2] studied a series of
reliability measures and expanded their definitions to be consisted with binary, multi-state and continuum
models. Kuo and Zuo [22] focused on multi-state system reliability models and introduced several special
multi-state system reliability models. Eryılmaz [9] studied mean residual and mean past lifetime concepts
for multi-state systems. Gökdere and Gürcan [12] designed a system which consists of two components
that can be repairable with the aging property. Firstly, the Laplace-Stieltjes transform of the system is
formed. Later, the mean operating time of the system is calculated by means of Laplace-Stieltjes transform,
Also, for more details about multi-state system model one can see Lisnionski and Levitin [24]. Also, Guo
and Zhang [16], Zhang and Guo [27] presented a new kind of repairable system. Hwang and Yao [18]
considered a linear consecutively connected system with binary system states and multistate components
and provided the following equations for system reliability evaluation:

f(0, j) = p0,j, for 0 < j < k0,

f(i, j) = f(i− 1, j)
j∑
h=i

pi,h + pi,j

j−1∑
h=i

f(i− 1,h), for i = 1, 2, · · · ,n and i < j 6 max06u6i{u+ ku},

where ki is the transmission capability of component i, pi,i, is the probability that component i is com-
pletely failed, pi,i is the probability that component i is directly connected to components i+ 1, i+ 2, · · · , j
but not to components farther than j for i < j 6 i+ ki and f(i, j) is the probability that component 0
reaches component i and component j is the farthest component that is directly connected to one of the
components 0, 1, · · · ,n (1 6 i < j 6 n+ 1). Kossow and Preuss [19] provided the following equations for
the reliability evaluation of a linear multistate consecutively connected systems, which is the same as the
one defined by [18] except that the source is assumed to be failure prone:

RL(n) =


P0,1, for n = 0,∑n
v=1 αv(n)RL(n− v) +αn+1(n), for 1 6 n < k0,∑min{K,n}
v=1 αv(n)RL(n− v), for n > k0,

where

αv(n) =


Pn,n+1, for v = 1,
(
∏v−1
j=1 Qn−j+1,n+1)Pn−v+1,n+1, for 2 6 v < kn−v+1,

0, for v > kn−v+1,

and Pi,j is the probability that component i can directly reach component j or beyond.
Stress-strength models are very important for reliability analysis and have a wide application area in

engineering applications. In the simplest terms, stress-strength model can be described as an assessment
of the reliability of the component in terms of X and Y random variables where X is the random stress
experience by the component and Y is the random strength of the component available to overcome the
stress.

From this simplified explanation, the reliability of the component is the probability that the component
is strong enough to overcome the stress applied on it. Then the reliability of the system is defined as

R = P(X < Y) =

∫∞
0
F(x)dG(x), (1.1)

where F(x) and G(x) are distribution functions of X and Y, respectively. In literature, extensive works
have been done about stress-strength reliability. Chandra and Owen [3] studied the estimation of the
reliability of a component where component is subject to several stresses whereas its strength is a single
random variable. Eryılmaz and Işçioğlu [11], Gökdere and Gürcan [13, 14] studied multi-state systems
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in a stress-strength setup. Also, for comprehensive information about all methods and results on the
stress-strength model one can see Kotz et al. [20].

The Kullback-Leibler divergence introduced by Kullback and Leibler [21], gives an asymmetric mea-
sure of the similarity between the distributions of two random variables. If the densities p(x) and q(x) of
P and Q, respectively, exist with respect to Lebesque measure, the Kullback-Leibler divergence DKL(P||Q)
of Q from P is defined as

DKL(P||Q) =

∫
s

p(x)log
p(x)

q(x)
dx, (1.2)

where S is the support set of p(x). Note that DKL(P||Q) is finite only, if P is absolutely continuous with
respect to Q, and +∞ otherwise. Also, the Kullback-Leibler divergence remains non-negative and is zero,
if and only if P = Q. It is important to point that the Kullback-Leibler divergence is not a symmetrical
quantity.

In information theory and machine learning, the Kullback-Leibler divergence plays an important role.
In literature, much attention has been paid to it. Dahlhaus [6] calculated the asymptotic Kulback-Leibler
information divergence of two locally stationary sequences and the limit of the Fisher information ma-
trix. Do [7] proposed a fast algorithm to approximate the Kullback-Leibler distance between two hidden
Markov models. Rached et al. [25] provided an explicit computable expression for the Kullback-Leibler
divergence rate between two arbitrary time-invariant finite-alphabet Markov sources. Lee and Park [23]
considered estimation of the Kullback-Leibler divergence between the true density and a selected para-
metric model. Yari et al. [26] used the new divergence measure, called Kullback-Leibler divergence of
Survival functions, to estimate the parameters of a Weibull distribution. The following definitions are
available in [26].

Definition 1.1. Let X1,X2, · · · be a sequence of positive, independent and identically distributed random
variables from a non-increasing survival function F(x, θ) = Pθ(X > x) with support Sx and vector of
parameters θ. Define the empirical survival function of random sample of size n by

Gn(x) =

n−1∑
i=0

(1 −
i

n
)I(Xi:n,Xi+1:n)(x),

where I is the indicator function and X0:n 6 X1:n 6 ... 6 Xn:n are ordered sample (X0:n = 0).

Definition 1.2. Let F(x, θ) be the true survival function with unknown parameter θ and Gn(x) be the em-
pirical survival function of a random sample of size n from F(x, θ). Define the Kullback-Leibler divergence
of Survival function Gn and F by

KLS(Gn||F) =

∫∞
0
Gn(x)ln

Gn(x)

F(x)
− [Gn(x) − F(x)]dx.

The following theorems show that the Kullback-Leibler divergence of survival function is a divergence
measure which converges to zero with increasing sample size. Also the following theorems are available
in [26] and hence the proof of theorems are not presented here.

Theorem 1.3. KLS(Gn||F) > 0 for all n ∈N, and the equality holds if and only if Gn = F.

Theorem 1.4. If
∫∞

0 F(x)lnF(x)dx <∞, the introduced measure converges to zero as n tends to infinity.

In this paper, we suppose that the component is subject to X1 and X2 stresses, which remain fixed
over time, whereas its strength, Y(t), is a single random variable, which is stochastically decreasing in
time. Let, X2 is stochastically larger than X1, i.e., for real α, P(X2 > α) > P(X1 > α). The failure of
the component occurs when the firstly time-independent X1 stress process and then X2 stress process
exceed the time-dependent strength. The use of multiple stresses rather than single stress is more realistic
approach in the reliability of technical systems.
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The rest of the paper is organized as three sections. In Section 2, we explain the proposed approach
for evaluation of the components dynamic operational level under stress-strength setup. Section 3 gives
a gamma distributed example to illustrate the theoretical results for the proposed approach. In Section 4,
we summarize what we have done in the paper.

2. Operation performance of the component

In this section, we use Kullback-Leibler divergence for computing the component operation level
where component is subject to X1 and X2 stresses with continuous cumulative distribution function
Fl(x) = P{Xl 6 x}(l = 1, 2), whereas its strength, Y(t), is a single random variable with marginal dis-
tribution function Gt(x) = P{Y(t) 6 x}.

In our method, we first set Kullback-Leibler divergence D(t)
KL(l) = DKL(Y(t)||Xl) of Xl from Y(t) by

using (1.2) for l = 1, 2. After setting Kullback-Leibler divergence, we calculate the D(t)
KL(l) for selected

values of the parameters of marginal lifetime distributions of the stress and strength random variables.
Then using these values, the operation level of the component depending on the both stresses can be
defined as follows.

The operation level of the component =


2, t < t2,
1, t2 6 t < t1,
0, t1 6 t,

where tl(l = 1, 2) denotes the time when D(t)
KL(l) is equal to zero. Also using D(t)

KL(l) and tl values we can
define the following equations

ζ1
t =

{
D

(t)
KL(1), t2 6 t < t1,

0, t 6 t2,

and

ζ2
t =

{
D

(t)
KL(2), t 6 t2,

0, t2 6 t < t1.

Now with the help of the above equalities, the reliability degree Rd(t) of the component depending on its
operation level can be expressed as follows:

Rd(t) = (1 −αt)
ζ1
t

u1
+αt(1 +

ζ2
t

u2
), (2.1)

where

αt =

{
1, ζ2

t > 0,
0, ζ2

t = 0,

and ul = supD(t)
KL(l). The superiority of the Rd(t) which is presented in (2.1) is that when two stresses

exist at the same time the formed function can include both stresses at the same time. However, when
R which is presented in (1.1) is used, this is not possible because of stresses are evaluated separately. In
probabilistic design it is common to use parametric statistical models to compute the reliability obtained
from stress-strength interference theory. In the following section we apply our method to a gamma
distributional example.

3. Gamma distributional example

A gamma process is frequently used for lifetime analysis and reliability testing. Let us suppose that
Y(t) is gamma random variables with cumulative distribution function

Gt(x;k, θt) = γ(k,
x

θ(t)
)

1
Γ(k)

, (3.1)
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where γ(k,
x

θ(t)
) is the lower incomplete gamma function, k > 0 is the shape parameter and θ(t) is the

scale parameter which decreases over time. Similarly, assume that X1 and X2 stresses are gamma random
variables with cumulative distribution functions

Fl(x;kl, θl) = γ(kl,
x

θl
)

1
Γ(kl)

, (3.2)

where γ(kl,
x

θl
) is the lower incomplete gamma function, Γ(kl) is the gamma function, kl > 0 is the shape

parameter, θl is the scale parameter and l = 1, 2. Also both kl and θl are constant with aging time. For
obtaining the reliability degree Rd(t) of the component, at first we derive a closed form solution for the
Kullback-Leibler divergence D(t)

KL(l) for l = 1, 2. Using probability density functions of (3.1) and (3.2) in

(1.2) and referring to Bauckhage [1], the D(t)
KL(l) can be obtained as

D
(t)
KL(l) =

∫∞
0

xk−1

(θ(t))kΓ(k)
exp(

−x

θ(t)
) ln

xk−1

(θ(t))kΓ(k)
exp(

−x

θ(t)
)

xkl−1

(θl)klΓ(kl)
exp(

−x

θl
)

=ln
(θl)

klΓ(kl)

(θ(t))kΓ(k)
+

k− kl
(θ(t))kΓ(k)

∫∞
0
xk−1exp(

−x

θ(t)
)lnxdx+

1
θl

−
1
θ(t)

(θ(t))kΓ(k)

∫∞
0
xk−1exp(

−x

θ(t)
)dx.

By making the substitution t = x/θ(t) in above equation and then using following integrals,∫∞
0
xv−1exp(−µx)lnxdx =

1
µv
Γ(v)[ψ(v) − lnµ],

where ψ(v) =
d

dv
lnΓ(v) is the psi function (Gradshteyn and Ryzhik, [15, Eq. 4.352.1]) and∫∞

0
xv−1exp(−µx)dx =

1
µv
Γ(v),

where µ > 0 and v > 0 (Gradshteyn and Ryzhik, [15, Eq. 3.381.4]) we have

D
(t)
KL(l) = ln

(θl)
klΓ(kl)

(θ(t))kΓ(k)
+ (k− kl)(lnθ(t) +ψ(k))) + k(

θ(t)

θl
− 1). (3.3)

Because of θ(t) decreases over time, in (3.3), let θ(t) = 1/t, then we finally have

D
(t)
KL(l) = ln

tk(θl)
klΓkl
Γk

+ (k− kl)(ln
1
t
+ψ(k)) + k(

1
tθl

− 1), (3.4)

where l = 1, 2. In order to compare Rd(t) and R expediently, let k = k1 = k2 = 1 in (3.4), then we can get

D
(t)
KL(l) = ln(tθl) +

1
tθl

− 1.

Also, taking into account that k = k1 = k2 = 1 and θ(t) = 1/t, using (3.1) and (3.2) in (1.1) the
reliability function can be easily derived as

Rl(t) = P(X1 < Y(t)) =
1
tθl

. (3.5)
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For more details, see Chiodo et al. [4], Chiodo and Mazzanti [5] and Eryılmaz [10]. Clearly, using (3.4)
and (3.5) for t = 0.1, 0.2, · · · , 2 and selected values of the parameters θ1 and θ2, we can obtain D(t)

KL(l) and
Rl(t) values presented in Table 1.

Table 1: Numerical values obtained from Equation (3.4) and (3.5) for θ1 = 0.6 and θ2 = 0.8.

t D
(t)
KL(1) D

(t)
KL(2) R1(t) R2(t)

0.1 12.8533 8.9742 0.9433 0.9259
0.2 5.2130 3.4174 0.8928 0.8620
0.3 2.8407 1.7395 0.8474 0.8064
0.4 1.7395 0.9855 0.8064 0.7575
0.5 1.1293 0.5837 0.7692 0.7142
0.6 0.7561 0.3493 0.7352 0.6756
0.7 0.5134 0.2058 0.7042 0.6410
0.8 0.3493 0.1162 0.6756 0.6097
0.9 0.2356 0.0603 0.6493 0.5813
1.0 0.1558 0.0268 0.6250 0.5555
1.1 0.0996 0.0085 0.6024 0.5319
1.2 0.0603 0.0008 0.5813 0.5102
t2 0.0456 0. 0.5714 0.5
1.3 0.0335 0.0007 0.5617 0.4901
1.4 0.0161 0.0061 0.5434 0.4716
1.5 0.0057 0.0156 0.5263 0.4545
1.6 0.0008 0.0281 0.5102 0.4385
t1 0. 0.0366 0.5 0.4295
1.7 0.0001 0.0427 0.4950 0.4237
1.8 0.0028 0.0590 0.4807 0.4098
1.9 0.0082 0.0766 0.4672 0.3968
2.0 0.0156 0.0950 0.4545 0.3846

In Table 1, t1 = 1.66 and t2 = 1.25. Also, it can be observed from numerical values in D(t)
KL(1) and

D
(t)
KL(2) columns how stresses affect the performance of the component that operates under different

parameters. When the component starts working, its strength is greater than either stresses. However,
because the components strength is decreasing depending on the selected time, as the uptime increases
at first the Kullback-Leibler divergence D(t)

KL(2) decreases to near zero. In this period, the strength of the
component will begin to move to the average position declined from a good position. From the moment
that D(t)

KL(2) = 0, the component will pass to the average working period from a good working period,

the Kullback-Leibler divergence D(t)
KL(2) is not considered and instead of the Kullback-Leibler divergence

D
(t)
KL(1) is taken into account. The Kullback-Leibler divergence D(t)

KL(1) will be reduced again depending
on the time. From the moment it is equal to zero, the operation of the machine will end and because
the machine’s durability remains weak in both stresses the machine will be impaired. In the table, there
are also separately calculated R1(t) and R2(t) reliabilities of the machine according to either stresses.
When attention is paid to their numerical values, for the stress and strength have the same parameters
the reliability values becomes 0.5. This numeric value does not provide clear information about the
component’s operating performance. Considering two stresses, a joint reliability is not calculated but
instead the reliability is calculated separately according to the stresses.
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Figure 1: Reliability for R1(t) at time t. Figure 2: Reliability for R2(t) at time t.

Figure 3: Reliability degree Rd(t) at time t.

In Figures 1 and 2, we plot the reliability scores R1(t) and R2(t) at time t for θ1 = 0.6 and θ2 = 0.8,
respectively. In Figure 3, we plot the reliability degree Rd(t) of the component at time t for θ1 = 0.6 and
θ2 = 0.8. Finally, using (2.1) for ζ1

t and ζ2
t values in Table 1, u1 = 12.8533 and u2 = 8.9742, we can obtain

dynamic reliability degree presented Table 2 for the component under stress-strength setup.

Table 2: Dynamic reliability degree for the component when θ1 = 0.6 and θ2 = 0.8.
t Rd(t) t Rd(t)

0.1 2. 1.2 1.00008
0.2 1.3808 1.25 1.
0.3 1.1938 1.3 0.0026
0.4 1.1098 1.4 0.0012
0.5 1.0650 1.5 0.0004
0.6 1.0389 1.6 0.000006
0.7 1.0229 1.66 0.
0.8 1.0129 1.7 0.
0.9 1.0067 1.8 0.
1.0 1.0029 1.9 0.
1.1 1.0009 2.0 0.

4. Conclusion

In this study, we aimed to measure the damage caused by stresses which is applied to the component.
In the method that we have offered, it is preferred to use Kullback-Leibler divergence to obtain this
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measurement. Because Kullback-Leibler divergence plays an important role in information theory and
statistics. The Kullback-Leibler divergence is not a metric. But this feature does not adversely affect
on the use of our method. Also it is assumed that the Kullback-Leibler divergence is known. In our
method, it is theoretically assumed that a component operates under two different stresses and when the
components strength remains weak in both stresses the component fails. Let us consider two stresses by
using (1.1) a joint reliability is not calculated. However, instead the reliability can be calculated separately
according to the stresses. Here, for reliability evaluation we provide a new approach for obtaining the
component operation performance. The proposed method can clearly show the change of component
operation performance depending on time while under both stresses. The reliability degree Rd(t) can
denote the change of component operation performance under two stresses depending on time. When
the related parameters of the component in Table 2 are selected as θ1=0.6 and θ2=0.8, the values of
reliability score are calculated in the interval 0< t 6 1.6. The method used in the study does not depend
on probability distribution. When different effect functions are used instead of probability functions of
stress and strength, the recommended method can be easily used. In terms of theoretical applications, the
Kullback-Leibler divergence used in this study is a useful method for leveling the stress-strength models.
The results of the study are widely used in technical applications. In this respect, the study brings a
different perspective to the subject.
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