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Abstract

The purpose of this paper is to introduce the implicit midpoint rule of nonexpansive mappings in CAT(0) spaces. The strong
convergence of this method is proved under certain assumptions imposed on the sequence of parameters. Moreover, it is shown
that the limit of the sequence generated by the implicit midpoint rule solves an additional variational inequality. Applications
to nonlinear Volterra integral equations and nonlinear variational inclusion problem are included. The results presented in the
paper extend and improve some recent results announced in the current literature. c©2017 all rights reserved.
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1. Introduction

The implicit midpoint rule is one of the powerful numerical methods for solving ordinary differential
equations and differential algebraic equations. For related works, please refer to [2–5, 15, 17, 18, 21].

For the ordinary differential equation

x ′(t) = f(t), x(0) = x0, (1.1)

the implicit midpoint rule generates a sequence {xn} by the recursion procedure

xn+1 = xn + hf(
xn + xn+1

2
), n > 0, (1.2)

where h > 0 is a stepsize. It is known that if f : RN → RN is Lipschitz continuous and sufficiently smooth,
then the sequence {xn} generated by (1.2) converges to the exact solution of (1.1) as h→ 0 uniformly over
t ∈ [0, T ] for any fixed T > 0.
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Based on the above fact, Alghamdi et al. [2] presented the following semi-implicit midpoint rule for
nonexpansive mappings in the setting of Hilbert space H:

xn+1 = (1 −αn)xn +αnT(
xn + xn+1

2
), n > 0, (1.3)

where αn ∈ (0, 1) and T : H→ H is a nonexpansive mapping. They proved the weak convergence of (1.3)
under some additional conditions on {αn}.

Recently, Xu et al. [22] and Yao et al. [23] in a Hilbert spaces presented the following viscosity implicit
midpoint rule for nonexpansive mappings:

xn+1 = αnf(xn) + (1 −αn)T(
xn + xn+1

2
), ∀n > 0,

where αn ∈ (0, 1) and f is a contraction. Under suitable conditions and by using a very complicated
method, the authors proved that the sequence {xn} converges strongly to a fixed point of T , which is also
the unique solution of the following variational inequality

〈(I− f)q, x− q〉 > 0, ∀x ∈ Fix(T).

Very recently, Zhao et al. [25] presented the following viscosity implicit midpoint rule for an asymp-
totically nonexpansive mapping T in a Hilbert space:

xn+1 = αnf(xn) + (1 −αn)T
n(
xn + xn+1

2
), ∀n > 0,

and under suitable conditions some strong convergence theorems to a fixed point of T are proved.
On the other hand, the theory and applications of CAT(0) space have been studied extensively by

many authors.
Recall that a metric space (X,d) is called a CAT(0) space, if it is geodetically connected and if every

geodesic triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is known
that any complete, simply connected Riemannian manifold having non-positive sectional curvature is a
CAT(0) space. Other examples of CAT(0) spaces include pre-Hilbert spaces, R-trees [8, 16], Euclidean
buildings [9], and many others. A complete CAT(0) space is often called a Hadamard space. A subset K
of a CAT(0) space X is convex if for any x,y ∈ K, we have [x,y] ⊂ K, where [x,y] is the uniquely geodesic
joining x and y. For a thorough discussion of CAT(0) spaces and of the fundamental role they play in
geometry, we refer the reader to Bridson and Haefliger [8].

Motivated and inspired by the research going on in this direction, it is natural to put forward the
following.

Open Question: Can we establish the viscosity implicit midpoint rule for nonexpansive mapping in
CAT(0) and generalize the main results in [22, 23] to CAT(0) spaces?

The purpose of this paper is to give an affirmative answer to the above open question. In our paper
we introduce and consider the following semi-implicit algorithm which is called the viscosity implicit
midpoint rule in CAT(0):

xn+1 = αnf(xn)⊕ (1 −αn)T

(
xn ⊕ xn+1

2

)
, n > 0. (1.4)

Under suitable conditions, some strong converge theorems to a fixed point of the nonexpansive mapping
in CAT(0) space are proved. Moreover, it is shown that the limit of the sequence {xn} generated by
(1.4) solves an additional variational inequality. As applications, we shall utilize the results presented in
the paper to study the existence problems of solutions of nonlinear variational inclusion problem, and
nonlinear Volterra integral equations. The results presented in the paper also extend and improve the
main results in Xu [22], Yao et al. [23], and others.
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2. Preliminaries

In this paper, we write (1 − t)x⊕ ty for the unique point z in the geodesic segment joining from x to
y such that

d(z, x) = td(x,y), and d(z,y) = (1 − t)d(x,y).

The following lemmas play an important role in our paper.

Lemma 2.1 ([13]). Let X be a CAT(0) space, x,y, z ∈ X and t ∈ [0, 1]. Then

(i) d(tx⊕ (1 − t)y, z) 6 td(x, z) + (1 − t)d(y, z);
(ii) d2(tx⊕ (1 − t)y, z) 6 td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x,y).

Lemma 2.2 ([6]). Let X be a CAT(0) space, p,q, r, s ∈ X and λ ∈ [0, 1]. Then

d(λp⊕ (1 − λ)q, λr⊕ (1 − λ)s) 6 λd(p, r) + (1 − λ)d(q, s).

Berg and Nikolaev [7] introduced the concept of quasilinearization as follows. Let us denote a pair
(a,b) ∈ X×X by

−→
ab and call it a vector. Then, quasilinearization is defined as a map 〈·, ·〉 : (X×X)× (X×

X)→ R defined by

〈
−→
ab,
−→
cd〉 = 1

2
(d2(a,d) + d2(b, c) − d2(a, c) − d2(b,d)), (a,b, c,d ∈ X).

It is easy to see that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+ 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all

a,b, c,d ∈ X. We say that X satisfies the Cauchy-Schwartz inequality if

〈
−→
ab,
−→
cd〉 6 d(a,b)d(c,d)

for all a,b, c,d ∈ X. It is well-known [7] that a geodesically connected metric space is a CAT(0) space if
and only if it satisfies the Cauchy-Schwartz inequality.

Let C be a nonempty closed convex subset of a complete CAT(0) space X. The metric projection
PC : X→ C is defined by

u = PC(x) ⇔ d(u, x) = inf{d(y, x) : y ∈ C}, ∀x ∈ X.

Lemma 2.3 ([11]). Let C be a nonempty convex subset of a complete CAT(0) space X, x ∈ X and u ∈ C. Then
u = PC(x) if and only if u is a solution of the following variational inequality

〈−→yu,−→ux〉 > 0, ∀y ∈ C,

i.e., u satisfies the following inequality:

d2(x,y) − d2(y,u) − d2(u, x) > 0, ∀y ∈ C.

Lemma 2.4 ([14]). Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subsequence.

Lemma 2.5 ([1]). Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X. Then {xn} ∆-converges
to x if and only if lim supn→∞〈−−→xxn,−→xy〉 6 0 for all y ∈ X.

Lemma 2.6 ([12]). Let X be a complete CAT(0) space. Then for all u, x,y ∈ X, the following inequality holds

d2(x,u) 6 d2(y,u) + 2〈−→xy,−→xu〉.

Lemma 2.7 ([19]). Let X be a complete CAT(0) space. For any t ∈ [0, 1] and u, v ∈ X, let ut = tu⊕ (1 − t)v.
Then, for all x,y ∈ X,
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(i) 〈−−→utx,−−→uty〉 6 t〈−→ux,−−→uty〉+ (1 − t)〈−→vx,−−→uty〉;
(ii) 〈−−→utx,−→uy〉 6 t〈−→ux,−→uy〉+ (1 − t)〈−→vx,−→uy〉 and 〈−−→utx,−→vy〉 6 t〈−→ux,−→vy〉+ (1 − t)〈−→vx,−→vy〉.

Lemma 2.8 ([20]). Let {an} be a sequence of nonnegative real numbers satisfying

an+1 6 (1 − γn)an + δn, ∀n > 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞
n=1 γn =∞ ;

(2) lim supn→∞ δn
γn

6 0 or
∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a closed convex subset of a complete CAT(0) space X, and T : C → C be a nonexpansive
mapping with Fix(T) 6= ∅. Let f be a contraction on C with coefficient k ∈ [0, 1), and for the arbitrary initial point
x0 ∈ C, let {xn} be generated by

xn+1 = αnf(xn)⊕ (1 −αn)T

(
xn ⊕ xn+1

2

)
, n > 0,

where {αn} ∈ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii)
∑∞
n=0 αn =∞;

(iii)
∑∞
n=0 |αn −αn+1| <∞, or limn→∞ αn+1

αn
= 1.

Then the sequence {xn} converges strongly to x̃ = PFix(T)f(x̃), which is a fixed point of T and it is also a solution of
the following variational inequality:

〈
−−−→
x̃f(x̃),

−→
xx̃〉 > 0, ∀ x ∈ Fix(T),

i.e., x̃ satisfies the following inequality equation:

d2(f(x̃), x) − d2(x̃, x) − d2(f(x̃), x̃) > 0, ∀x ∈ Fix(T).

Proof. We divide the proof into five steps.

Step 1. We prove that {xn} is bounded. To see this, we take p ∈ Fix(T) to deduce that

d(xn+1,p) = d
(
αnf(xn)⊕ (1 −αn)T

(
xn ⊕ xn+1

2

)
,p

)
6 αnd(f(xn),p) + (1 −αn)d

(
T

(
xn ⊕ xn+1

2

)
,p

)
6 αn(d(f(xn), f(p)) + d(f(p),p)) + (1 −αn)d

(
T

(
xn ⊕ xn+1

2

)
,p

)
6 αnkd(xn,p) +αnd(f(p),p) + (1 −αn)d

(
xn ⊕ xn+1

2
,p

)
6 αnkd(xn,p) +αnd(f(p),p) +

1 −αn
2

(d(xn,p) + d(xn+1,p)).

It then follows that

1 +αn
2

d(xn+1,p) 6
1 + (2k− 1)αn

2
d(xn,p) +αnd(f(p),p),
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and, moreover

d(xn+1,p) 6
1 + (2k− 1)αn

1 +αn
d(xn,p) +

2αn
1 +αn

d(f(p),p)

=

(
1 −

2(1 − k)αn
1 +αn

)
d(xn,p) +

2(1 − k)αn
1 +αn

1
1 − k

d(f(p),p)

6 max
{
d(xn,p),

1
1 − k

d(f(p),p)
}

.

By induction we readily obtain

d(xn,p) 6 max{d(x0,p),
1

1 − k
d(f(p),p)},

for all n > 0. Hence {xn} is bounded, and so are {f(xn)} and {T(xn⊕xn+1
2 )}.

Step 2. We show that limn→∞ d(xn+1, xn) = 0. Observe that

d(xn+1, xn) = d
(
αnf(xn)⊕ (1 −αn)T

(
xn ⊕ xn+1

2

)
,αn−1f(xn−1)⊕ (1 −αn−1)T

(
xn−1 ⊕ xn

2

))
6 d

(
αnf(xn)⊕ (1 −αn)T(

xn ⊕ xn+1

2
),αnf(xn)⊕ (1 −αn)T(

xn−1 ⊕ xn
2

)

)
+ d

(
αnf(xn)⊕ (1 −αn)T(

xn−1 ⊕ xn
2

),αnf(xn−1)⊕ (1 −αn)T(
xn−1 ⊕ xn

2
)

)
+ d

(
αnf(xn−1)⊕ (1 −αn)T(

xn−1 ⊕ xn
2

),αn−1f(xn−1)⊕ (1 −αn−1)T(
xn−1 ⊕ xn

2
)

)
6 (1 −αn)d

(
T(
xn ⊕ xn+1

2
), T(

xn−1 ⊕ xn
2

)

)
+αnd(f(xn), f(xn−1))

+ |αn −αn−1|d

(
f(xn−1), T(

xn−1 ⊕ xn
2

)

)
6 (1 −αn)d

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)
+αnkd(xn, xn−1) + |αn −αn−1|M

6
(1 −αn)

2
[
d(xn+1, xn) + d(xn, xn−1)

]
+αnkd(xn, xn−1) + |αn −αn−1|M.

Here M > 0 is a constant such that

M > sup
{
d

(
f(xn−1), T(

xn−1 ⊕ xn
2

)

)
, n > 0

}
.

It turns out that

1 +αn
2

d(xn+1, xn) 6
1 + (2k− 1)αn

2
d(xn, xn−1) +M|αn −αn−1|.

Consequently, we arrive at

d(xn+1, xn) 6
1 + 2kαn −αn

1 +αn
d(xn, xn−1) +M|αn −αn−1|

=
1 +αn + 2kαn − 2αn

1 +αn
d(xn, xn−1) +M|αn −αn−1|

=

(
1 −

2(1 − k)αn
1 +αn

)
d(xn, xn−1) +M|αn −αn−1|.
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Since {αn} ∈ (0, 1), then 1 +αn < 2, 1
1+αn

> 1
2 , (1 −

2(1−k)αn
1+αn

) < (1 − (1 − k)αn). We have

d(xn+1, xn) 6 (1 − (1 − k)αn)d(xn, xn−1) +M|αn −αn−1|. (3.1)

By virtue of the conditions (ii) and (iii), we can apply Lemma 2.8 to (3.1) to obtain limn→∞ d(xn+1, xn) = 0.

Step 3. We show that limn→∞ d(xn, Txn) = 0. In fact, we have

d(xn, Txn) 6 d(xn, xn+1) + d

(
xn+1, T(

xn ⊕ xn+1

2
)

)
+ d

(
T(
xn ⊕ xn+1

2
), Txn

)
6 d(xn, xn+1) +αnd

(
f(xn), T(

xn ⊕ xn+1

2
)

)
+ d

(
xn ⊕ xn+1

2
, xn

)
6 d(xn, xn+1) +αnd

(
f(xn), T(

xn ⊕ xn+1

2
)

)
+

1
2
d(xn, xn+1)

6
3
2
d(xn, xn+1) +αnM→ 0 (as n→∞).

Step 4. Now we prove
lim sup
n→∞ 〈

−−−→
f(x̃)x̃,

−−→
xnx̃〉 6 0.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that ∆-converges to x̃ and

lim sup
n→∞ 〈

−−−→
f(x̃)x̃,

−−→
xnx̃〉 = lim sup

n→∞ 〈
−−−→
f(x̃)x̃,

−−→
xnj x̃〉. (3.2)

Since {xnj} ∆-converges to x̃, by Lemma 2.5, we have

lim sup
n→∞ 〈

−−−→
f(x̃)x̃,

−−→
xnj x̃〉 6 0.

This together with (3.2) shows that

lim sup
n→∞ 〈

−−−→
f(x̃)x̃,

−−→
xnx̃〉 = lim sup

n→∞ 〈
−−−→
f(x̃)x̃,

−−→
xnj x̃〉 6 0. (3.3)

Step 5. Finally, we prove that xn → x̃ ∈ Fix(T) as n → ∞. For any n ∈ N, we set zn = αnx̃⊕ (1 −
αn)T(

xn⊕xn+1
2 ). It follows from Lemma 2.6 and Lemma 2.7 that

d2(xn+1, x̃) 6 d2(zn, x̃) + 2〈−−−−−→xn+1zn,
−−−−→
xn+1x̃〉

6 (1 −αn)
2d2

(
T(
xn ⊕ xn+1

2
), x̃

)
+ 2

[
αn〈
−−−−−→
f(xn)zn,

−−−−→
xn+1x̃〉

+ (1 −αn)

〈−−−−−−−−−−−−→
T(
xn ⊕ xn+1

2
) zn,

−−−−→
xn+1x̃

〉]
6 (1 −αn)

2d2
(
xn ⊕ xn+1

2
, x̃
)
+ 2

[
αnαn〈

−−−−→
f(xn)x̃,

−−−−→
xn+1x̃〉

+αn(1 −αn)

〈−−−−−−−−−−−−−−→
f(xn)T(

xn ⊕ xn+1

2
),
−−−−→
xn+1x̃

〉
+αn(1 −αn)

〈−−−−−−−−−−−→
T(
xn ⊕ xn+1

2
) x̃,
−−−−→
xn+1x̃

〉
+ (1 −αn)

2
〈−−−−−−−−−−−−−−−−−−−−−→
T(
xn ⊕ xn+1

2
) T(

xn ⊕ xn+1

2
),
−−−−→
xn+1x̃

〉]
6 (1 −αn)

2d2
(
xn ⊕ xn+1

2
, x̃
)
+ 2

[
α2
n〈
−−−−→
f(xn)x̃,

−−−−→
xn+1x̃〉

+αn(1 −αn)

〈−−−−−−−−−−−−−−→
f(xn)T(

xn ⊕ xn+1

2
),
−−−−→
xn+1x̃

〉
+αn(1 −αn)

〈−−−−−−−−−−−→
T(
xn ⊕ xn+1

2
) x̃,
−−−−→
xn+1x̃

〉]
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6 (1 −αn)
2d2

(
xn ⊕ xn+1

2
, x̃
)
+ 2[α2

n〈
−−−−→
f(xn)x̃,

−−−−→
xn+1x̃〉+αn(1 −αn)〈

−−−−→
f(xn)x̃,

−−−−→
xn+1x̃〉

6 (1 −αn)
2d2

(
xn ⊕ xn+1

2
, x̃
)
+ 2αn〈

−−−−→
f(xn)x̃,

−−−−→
xn+1x̃〉

6 (1 −αn)
2
[

1
2
d2(xn, x̃) +

1
2
d2(xn+1, x̃) −

1
4
d2(xn, xn+1)

]
+ 2αn〈

−−−−−−→
f(xn)f(x̃),

−−−−→
xn+1x̃+ 2αn〈

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉

6
(1 −αn)

2

2
[d2(xn, x̃) + d2(xn+1, x̃)] + 2αnkd(xn, x̃)d(xn+1, x̃) + 2αn〈

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉

6
(1 −αn)

2

2
[d2(xn, x̃) + d2(xn+1, x̃)] +αnk[d2(xn, x̃) + d2(xn+1, x̃)] + 2αn〈

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉

6

(
(1 −αn)

2

2
+αnk

)
[d2(xn, x̃) + d2(xn+1, x̃)] + 2αn〈

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉

6
1 − 2(1 − k)αn

2
[d2(xn, x̃) + d2(xn+1, x̃)] +α2

nM1 + 2αn〈
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉.

Here M1 > 0 is a constant such that

M1 > sup{d2(xn, x̃), n > 0}.

It follows that

d2(xn+1, x̃) 6
1 − 2(1 − k)αn
1 + 2(1 − k)αn

d2(xn, x̃) +
2α2
n

1 + 2(1 − k)αn
M1 +

4αn
1 + 2(1 − k)αn

〈
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉

6

(
1 −

2(1 − k)αn
1 + (1 − k)αn

)
d2(xn, x̃) +

2α2
n

1 + (1 − k)αn
M1 +

4αn
1 + (1 − k)αn

〈
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉.

Since 1 + (1 − k)αn < 2 − k, 1
1+(1−k)αn

> 1
2−k , we have

d2(xn+1, x̃) 6
(

1 −
2(1 − k)αn

2 − k

)
d2(xn, x̃) +

2α2
n

1 + (1 − k)αn
M1 +

4αn
1 + (1 − k)αn

〈
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉

6

(
1 −

2(1 − k)αn
2 − k

)
d2(xn, x̃) + 2α2

nM1 +
4αn

1 + (1 − k)αn
〈
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉.

Take γn =
2(1−k)αn

2−k , δn = 2α2
nM1 +

4αn
1+(1−k)αn

〈
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉. It follows from conditions (i), (ii), and (3.3)

that {γn} ⊂ (0, 1),
∑∞
n=1 γn =∞ and

lim sup
n→∞

δn

γn
= lim sup

n→∞
2 − k

1 − k

(
αnM1 +

2
1 + (1 − k)αn

〈
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃〉

)
6 0.

From Lemma 2.8 we have that xn → x̃ as n→∞. This completes the proof.

Remark 3.2. Since every Hilbert space is a complete CAT(0) space, Theorem 3.1 is an improvement and
generalization of the main results in Xu et al. [22] and Yao et al. [23].

The following result can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H, and let T : C → C be a
nonexpansive mapping with Fix(T) 6= ∅. Let f be a contraction on C with coefficient k ∈ [0, 1), and for the arbitrary
initial point x0 ∈ C, let {xn} be the sequence generated by

xn+1 = αnf(xn) + (1 −αn)T

(
xn + xn+1

2

)
, n > 0, (3.4)
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where {αn} ∈ (0, 1) satisfies the conditions (i), (ii), and (iii) in Theorem 3.1. Then the sequence {xn} defined by (3.4)
converges strongly to x̃ such that x̃ = PFix(T)f(x̃) which is equivalent to the following variational inequality:

〈x̃− f(x̃), x− x̃〉 > 0, ∀ x ∈ Fix(T).

4. Applications

4.1. Application to nonlinear variational inclusion problem
Let H be a real Hilbert space, M : H → 2H be a multi-valued maximal monotone mapping. Then, the

resolvent mapping JMλ : H→ H associated with M, is defined by

JMλ (x) := (I+ λM)−1(x), ∀x ∈ H,

for some λ > 0, where I stands for the identity operator on H.
We note that for all λ > 0 the resolvent operator JMλ is a single-valued nonexpansive mapping.
The “so-called” monotone variational inclusion problem (in short, MVIP) [10] is to find x∗ ∈ H such that

0 ∈M(x∗). (4.1)

From the definition of resolvent mapping JMλ , it is easy to know that (MVIP) (4.1) is equivalent to find
x∗ ∈ H such that

x∗ ∈ Fix(JMλ ) for some λ > 0.

For any given function x0 ∈ H, define a sequence by

xn+1 = αnf(xn) + (1 −αn)J
M
λ

(
xn + xn+1

2

)
, n > 0. (4.2)

From Theorem 3.3 we have the following.

Theorem 4.1. LetM and JMλ be the same as above. Let f : H→ H be a contraction. Let {xn} be the sequence defined
by (4.2). If the sequence {αn} ∈ (0, 1) satisfies the conditions (i), (ii), and (iii) in Theorem 3.1 and Fix(JMλ ) 6= ∅,
then {xn} converges strongly to the solution of monotone variational inclusion (4.1), which is also a solution of the
following variational inequality:

〈x̃− f(x̃), x− x̃〉 > 0, ∀ x ∈ Fix(JMλ ).

4.2. Application to nonlinear Volterra integral equations
Let us consider the following nonlinear Volterra integral equation

x(t) = g(t) +

∫t
0
F(t, s, x(s))ds, t ∈ [0, 1], (4.3)

where g is a continuous function on [0, 1] and F : [0, 1]× [0, 1]×R → R is continuous and satisfies the
following condition.

|F(t, s, x) − F(t, s,y)| 6 |x− y|, t, s ∈ [0, 1], x,y ∈ R.

Then equation (4.3) has at least one solution in L2[0, 1] (see, for example, [24]).
Define a mapping T : L2[0, 1]→ L2[0, 1] by

(Tx)(t) = g(t) +

∫t
0
F(t, s, x(s))ds, t ∈ [0, 1].

It is easy to see that T is a nonexpansive mapping. This means that finding the solution of integral
equation (4.3) is reduced to find a fixed point of the nonexpansive mapping T in L2[0, 1].

For any given function x0 ∈ L2[0, 1], define a sequence of functions {xn} in L2[0, 1] by

xn+1 = αnf(xn) + (1 −αn)T

(
xn + xn+1

2

)
, n > 0. (4.4)

From Theorem 3.3 we have the following.
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Theorem 4.2. Let F, g, T ,L2[0, 1] be the same as above. Let f be a contraction on L2[0, 1] with coefficient k ∈ [0, 1).
Let {xn} be the sequence defined by (4.4). If the sequence {αn} ∈ (0, 1) satisfies the conditions (i), (ii), and (iii)
in Theorem 3.1, then {xn} converges strongly in L2[0, 1] to the solution of integral equation (4.3) which is also a
solution of the following variational inequality:

〈x̃− f(x̃), x− x̃〉 > 0, ∀ x ∈ Fix(T).
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