.....

ISSN: 2008-1898



Journal of Nonlinear Sciences and Applications



Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

# A sharp generalization on cone b-metric space over Banach algebra

Huaping Huang<sup>a,\*</sup>, Stojan Radenović<sup>b</sup>, Guantie Deng<sup>a</sup>

<sup>a</sup>School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China.

<sup>b</sup>Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120, Beograd, Serbia.

Communicated by Y. J. Cho

## Abstract

The aim of this paper is to generalize a famous result for Banach-type contractive mapping from  $\rho(k) \in [0, \frac{1}{s})$  to  $\rho(k) \in [0, 1)$  in cone b-metric space over Banach algebra with coefficient  $s \ge 1$ , where  $\rho(k)$  is the spectral radius of the generalized Lipschitz constant k. Moreover, some similar generalizations for the contractive constant k from  $k \in [0, \frac{1}{s})$  to  $k \in [0, 1)$  in cone b-metric space and in b-metric space are also obtained. In addition, two examples are given to illustrate that our generalizations are in fact real generalizations. ©2017 All rights reserved.

Keywords: Cone b-metric space over Banach algebra, fixed point, c-sequence, iterative sequence. 2010 MSC: 47H10, 54H25.

### 1. Introduction and preliminaries

Since Bakhtin [1] or Czerwik [4] introduced b-metric space, also called metric type space by some authors, as a large generalization of metric space, people have paid close attention to fixed point results in such spaces for many years. Recently, Jovanović et al. [10] proved Banach-type version of a fixed point result (see [2]) for contractive mapping including the contractive constant  $k \in [0, \frac{1}{s})$  in b-metric space with coefficient  $s \ge 1$ . Subsequently, Huang and Xu [8] expanded the work of [10] into cone b-metric space with coefficient  $s \ge 1$ , where the contractive constant k also satisfies  $k \in [0, \frac{1}{s})$ . Later on, Huang and Radenović [7] gave a further generalization from cone b-metric space with coefficient  $s \ge 1$  to cone b-metric space over Banach algebra with the same coefficient. They considered the Banach-type version of a fixed point result with the generalized Lipschitz constant k satisfying  $\rho(k) \in [0, \frac{1}{s})$ , where  $\rho(k)$  is the spectral radius of k. So far, there have been some open questions whether the result in b-metric space or in cone b-metric space is true for  $k \in [0, 1)$ , and whether the result in cone b-metric space over Banach algebra is true for  $\rho(k) \in [0, 1)$ . In this paper, by using a new method of proof, we prove that the answers to the above questions are positive.

doi:10.22436/jnsa.010.02.09

<sup>\*</sup>Corresponding author

*Email addresses:* mathhhp@163.com (Huaping Huang), radens@beotel.net (Stojan Radenović), denggt@bnu.edu.cn (Guantie Deng)

**Definition 1.1** ([1, 4]). Let X be a (nonempty) set and  $s \ge 1$  be a given real number. A function  $d : X \times X \rightarrow [0, \infty)$  is called a b-metric on X, if for all  $x, y, z \in X$  the following conditions hold:

- (b1) d(x, y) = 0 iff x = y;
- (b2) d(x,y) = d(y,x);
- (b3)  $d(x,z) \leq s[d(x,y) + d(y,z)].$

In this case, the pair (X, d) is called a b-metric space.

For some concepts such as b-convergence, b-Cauchy sequence and b-completeness in the setting of b-metric spaces, the reader refers to [10, 13, 15].

In the following example we correct some errors from several papers (see [3, 12–16]) for b-metric space with the false coefficient  $s = 2^{\frac{1}{p}}$ . As a matter of fact, its correct coefficient should be  $s = 2^{\frac{1}{p}-1}$ .

**Example 1.2.** The set  $l_p(\mathbb{R})$  with 0 , where

$$l_p(\mathbb{R}) := \left\{ \{x_n\} \subseteq \mathbb{R} \left| \sum_{n=1}^{\infty} |x_n|^p < \infty \right\} \right\},$$

together with the mapping  $d: l_p(\mathbb{R}) \times l_p(\mathbb{R}) \to [0,\infty)$  defined by

$$\mathbf{d}(\mathbf{x},\mathbf{y}) = \left(\sum_{n=1}^{\infty} |\mathbf{x}_n - \mathbf{y}_n|^p\right)^{\frac{1}{p}},$$

for each  $x = \{x_n\}, y = \{y_n\} \in l_p(\mathbb{R})$  is a b-metric space with coefficient  $s = 2^{\frac{1}{p}-1}$ .

In fact, we only need to prove that condition (b3) in Definition 1.1 is satisfied. To this end, let  $x = \{x_n\}, y = \{y_n\}, z = \{z_n\} \in l_p(\mathbb{R})$ , we shall show that

$$\left(\sum_{n=1}^{\infty} |x_n - z_n|^p\right)^{\frac{1}{p}} \leqslant 2^{\frac{1}{p}-1} \left[ \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |y_n - z_n|^p\right)^{\frac{1}{p}} \right].$$
(1.1)

Denote  $a_n = x_n - y_n$ ,  $b_n = y_n - z_n$ , then  $x_n - z_n = a_n + b_n$ , so (1.1) becomes

$$\left(\sum_{n=1}^{\infty} |a_n + b_n|^p\right)^{\frac{1}{p}} \leqslant 2^{\frac{1}{p}-1} \left[ \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |b_n|^p\right)^{\frac{1}{p}} \right].$$
(1.2)

In order to prove (1.2), we notice that the following inequalities:

$$\begin{split} (a+b)^p &\leqslant a^p + b^p, \qquad (a,b \geqslant 0, \ 0$$

then

$$\begin{split} \left(\sum_{n=1}^{\infty} |a_n + b_n|^p\right)^{\frac{1}{p}} &\leqslant \left[\sum_{n=1}^{\infty} (|a_n| + |b_n|)^p\right]^{\frac{1}{p}} \leqslant \left[\sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)\right]^{\frac{1}{p}} \\ &= \left(\sum_{n=1}^{\infty} |a_n|^p + \sum_{n=1}^{\infty} |b_n|^p\right)^{\frac{1}{p}} \leqslant 2^{\frac{1}{p}-1} \left[\left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} |b_n|^p\right)^{\frac{1}{p}}\right] \end{split}$$

Let  $\mathbb{A}$  be a real Banach algebra,  $\|\cdot\|$  be its norm and  $\theta$  be its zero element. A nonempty closed subset P of  $\mathbb{A}$  is called a cone, if  $P^2 = P \cap P \subset P$ ,  $P \cap (-P) = \{\theta\}$  and  $\lambda P + \mu P \subset P$  for all  $\lambda, \mu \ge 0$ . We denote intP as the interior of P. If intP  $\neq \emptyset$ , then P is said to be a solid cone. Define a partial ordering  $\preceq$  with respect to P by  $u \preceq v$ , iff  $v - u \in P$ . Define  $u \ll v$ , iff  $v - u \in$  intP.

In the sequel, unless otherwise specified, we always suppose that  $\mathbb{A}$  is a real Banach algebra with a unit *e*, P is a solid cone in  $\mathbb{A}$ , and "  $\leq$  " and "  $\ll$  " are partial orderings with respect to P.

**Definition 1.3** ([7]). Let X be a (nonempty) set,  $s \ge 1$  be a constant and A be a Banach algebra. Suppose that a mapping  $d : X \times X \to A$  satisfies for all  $x, y, z \in X$ ,

(d1)  $\theta \leq d(x, y)$  and  $d(x, y) = \theta$ , iff x = y;

- (d2) d(x,y) = d(y,x);
- (d3)  $d(x,z) \leq s[d(x,y) + d(y,z)].$

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric space over Banach algebra.

For some examples on cone b-metric space over Banach algebra, the reader refers to [6, 7].

**Definition 1.4** ([6]). A sequence  $\{u_n\}$  in a solid cone P is said to be a c-sequence, if for each  $c \gg \theta$ , there exists a natural number N such that  $u_n \ll c$  for all n > N.

**Definition 1.5.** Let (X, d) be a cone b-metric space over Banach algebra and  $\{x_n\}$  a sequence in X. We say that

- (i)  $\{x_n\}$  b-converges to  $x \in X$ , if  $\{d(x_n, x)\}$  is a c-sequence;
- (ii)  $\{x_n\}$  is a b-Cauchy sequence, if  $\{d(x_n, x_m)\}$  is a c-sequence for n, m;
- (iii) (X, d) is b-complete, if every b-Cauchy sequence in X is b-convergent.

**Lemma 1.6** ([7]). Let  $\{u_n\}$  and  $\{v_n\}$  be two c-sequences in a solid cone P. If  $\alpha, \beta \in P$  are two arbitrarily given vectors, then  $\{\alpha u_n + \beta v_n\}$  is a c-sequence.

**Lemma 1.7** ([9]). If  $u \leq v$  and  $v \ll w$ , then  $u \ll w$ .

**Lemma 1.8** ([6]). Let A be a Banach algebra with a unit e, then the spectral radius  $\rho(k)$  of  $k \in A$  holds

$$\rho(k) = \lim_{n \to \infty} \|k^n\|^{\frac{1}{n}} = \inf \|k^n\|^{\frac{1}{n}}.$$

If  $\rho(k) < 1$ , then e - k is invertible in  $\mathbb{A}$ , moreover,  $(e - k)^{-1} = \sum_{i=0}^{\infty} k^{i}$ .

**Lemma 1.9** ([6]). Let A be a Banach algebra with a unit e. Let  $k \in A$  and  $\rho(k) < 1$ . Then  $\{k^n\}$  is a c-sequence.

# 2. Main results

**Theorem 2.1.** Let (X, d) be a b-complete cone b-metric space over Banach algebra with coefficient  $s \ge 1$ . Suppose that  $T : X \to X$  is a mapping such that for all  $x, y \in X$  it holds:

$$d(\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{y}) \preceq \mathsf{k}d(\mathsf{x},\mathsf{y}),\tag{2.1}$$

where  $k \in P$  is a generalized Lipschitz constant with  $\rho(k) < 1$ . Then T has a unique fixed point in X. And for any  $x \in X$ , the iterative sequence  $\{T^n x\}$   $(n \in \mathbb{N})$  b-converges to the fixed point.

*Proof.* Let  $x_0 \in X$  and  $x_{n+1} = Tx_n$  for all  $n \in \mathbb{N}$ . We divide the proof into three cases.

*Case 1:* Let  $\rho(k) \in [0, \frac{1}{s})$  (s > 1). By (2.1), we have

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n)$$
  

$$\leq kd(x_{n-1}, x_n)$$
  

$$= kd(Tx_{n-2}, Tx_{n-1})$$
  

$$\leq k^2 d(x_{n-2}, x_{n-1})$$
  

$$\vdots$$
  

$$\leq k^n d(x_0, x_1).$$

In view of  $\rho(k) < \frac{1}{s}$ , then  $\rho(sk) = s\rho(k) < 1$ , so by Lemma 1.8, we get that e - sk is invertible and  $(e - sk)^{-1} = \sum_{i=0}^{\infty} (sk)^i$ . Thus for any n > m, it follows that

$$\begin{split} d(x_m, x_n) &\preceq s[d(x_m, x_{m+1}) + d(x_{m+1}, x_n)] \\ &\preceq sd(x_m, x_{m+1}) + s^2[d(x_{m+1}, x_{m+2}) + d(x_{m+2}, x_n)] \\ &\preceq sd(x_m, x_{m+1}) + s^2d(x_{m+1}, x_{m+2}) + s^3[d(x_{m+2}, x_{m+3}) + d(x_{m+3}, x_n)] \\ &\preceq sd(x_m, x_{m+1}) + s^2d(x_{m+1}, x_{m+2}) + s^3d(x_{m+2}, x_{m+3}) \\ &+ \dots + s^{n-m-1}d(x_{n-2}, x_{n-1}) + s^{n-m-1}d(x_{n-1}, x_n) \\ &\preceq sk^m d(x_0, x_1) + s^2k^{m+1}d(x_0, x_1) + s^3k^{m+2}d(x_0, x_1) \\ &+ \dots + s^{n-m-1}k^{n-2}d(x_0, x_1) + s^{n-m-1}k^{n-1}d(x_0, x_1) \\ &\preceq sk^m(e + sk + s^2k^2 + \dots + s^{n-m-2}k^{n-m-2} + s^{n-m-1}k^{n-m-1})d(x_0, x_1) \\ &\preceq sk^m \left[\sum_{i=0}^{\infty} (sk)^i\right] d(x_0, x_1) \\ &= sk^m(e - sk)^{-1}d(x_0, x_1). \end{split}$$

Note that  $\rho(k) < \frac{1}{s} < 1$  and Lemma 1.9, it is easy to see that  $\{k^m\}$  is a c-sequence. Therefore, by using Lemma 1.6 and Lemma 1.7, we claim that  $\{x_n\}$  is a b-Cauchy sequence. Since (X, d) is b-complete, then there exists  $x^* \in X$  such that  $\{x_n\}$  b-converges to  $x^*$ .

Next, let us show that  $x^*$  is a fixed point of T. Indeed, by (2.1), we have

$$d(x_{n+1}, Tx^*) \leq kd(x_n, x^*).$$
 (2.2)

Since  $\{d(x_n, x^*)\}$  is a c-sequence, then by Lemma 1.6, it is not hard to verify that  $\{kd(x_n, x^*)\}$  is a c-sequence. Hence, by Lemma 1.7, (2.2) implies that  $\{d(x_{n+1}, Tx^*)\}$  is also a c-sequence, which means that  $\{x_n\}$  b-converges to  $Tx^*$ . By the uniqueness of limit of a b-convergent sequence, we get  $Tx^* = x^*$ . That is to say,  $x^*$  is a fixed point of T.

Further,  $x^*$  is the unique fixed point of T. Actually, assume that there is another fixed point  $y^*$ , then by (2.1), it is obvious that

$$d(x^*, y^*) = d(Tx^*, Ty^*) \preceq kd(x^*, y^*) \preceq k^2 d(x^*, y^*) \preceq \cdots \preceq k^n d(x^*, y^*).$$

Now that  $\{k^n\}$  is a c-sequence, then by Lemma 1.6 and Lemma 1.7, we obtain  $d(x^*, y^*) = \theta$ . This leads to  $x^* = y^*$ .

*Case 2:* Let  $\rho(k) \in [\frac{1}{s}, 1)$  (s > 1). In this case, we have  $[\rho(k)]^n \to 0$  as  $n \to \infty$ , then there is  $n_0 \in \mathbb{N}$  such that  $[\rho(k)]^{n_0} < \frac{1}{s}$ . Notice that

$$\rho(k^{n_0}) = \lim_{n \to \infty} \|(k^{n_0})^n\|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \|\underbrace{k^{n} \cdots k^{n}}_{n_{0} \text{ terms}}\|^{\frac{1}{n}}$$

$$\leq \lim_{n \to \infty} \left(\underbrace{\|k^{n}\| \cdots \|k^{n}\|}_{n_{0} \text{ terms}}\right)^{\frac{1}{n}}$$

$$= \left(\underbrace{\lim_{n \to \infty} \|k^{n}\|^{\frac{1}{n}}}_{n_{0} \text{ terms}}\right)^{\frac{1}{n}}$$

$$= [\rho(k)]^{n_{0}}$$

$$< \frac{1}{s'}$$

and by (2.1) for all  $x, y \in X$ , it follows that

$$d(\mathsf{T}^{n_0}x,\mathsf{T}^{n_0}y) = d\left(\mathsf{T}(\mathsf{T}^{n_0-1}x),\mathsf{T}(\mathsf{T}^{n_0-1}y)\right)$$
  

$$\leq kd(\mathsf{T}^{n_0-1}x,\mathsf{T}^{n_0-1}y)$$
  

$$= kd\left(\mathsf{T}(\mathsf{T}^{n_0-2}x),\mathsf{T}(\mathsf{T}^{n_0-2}y)\right)$$
  

$$\leq k^2d(\mathsf{T}^{n_0-2}x,\mathsf{T}^{n_0-2}y)$$
  

$$\vdots$$
  

$$\prec k^{n_0}d(x,y).$$

Then by Case 1, we claim that the mapping  $T^{n_0}$  has a unique fixed point  $x^{**} \in X$ .

Now we prove that  $x^{**}$  is also a fixed point of T. As a matter of fact, on account of  $T^{n_0}x^{**} = x^{**}$ , we have

$$\mathsf{T}^{n_0}(\mathsf{T} \mathsf{x}^{**}) = \mathsf{T}^{n_0+1} \mathsf{x}^{**} = \mathsf{T}(\mathsf{T}^{n_0} \mathsf{x}^{**}) = \mathsf{T} \mathsf{x}^{**},$$

then  $Tx^{**}$  is also a fixed point of  $T^{n_0}$ . Thus, by the uniqueness of fixed point of  $T^{n_0}$ , it ensures us that  $Tx^{**} = x^{**}$ . In other words,  $x^{**}$  is also a fixed point of T.

Finally, we show that the fixed point of T is unique. Virtually, we suppose for absurd that there exists another fixed point  $x^{***}$  of T, that is,  $Tx^{**} = x^{**}$ ,  $Tx^{***} = x^{***}$ , then

$$T^{n_0}x^{**} = T^{n_0-1}(Tx^{**}) = T^{n_0-1}x^{**} = \dots = Tx^{**} = x^{**},$$
  
$$T^{n_0}x^{***} = T^{n_0-1}(Tx^{***}) = T^{n_0-1}x^{***} = \dots = Tx^{***} = x^{***},$$

which imply that  $x^{**}$  and  $x^{***}$  are two fixed points of  $T^{n_0}$ . Because the fixed point of  $T^{n_0}$  is unique, we claim that  $x^{**} = x^{***}$ .

*Case 3:* s = 1. Since  $\rho(k) < 1$ , repeat the process of Case 1, then the claim holds.

**Corollary 2.2.** Let (X, d) be a b-complete cone b-metric space with coefficient  $s \ge 1$ . Suppose that  $T : X \to X$  is a mapping such that for all  $x, y \in X$ , it holds:

$$d(Tx,Ty) \leq kd(x,y),$$

where  $k \in [0,1)$  is a real constant. Then T has a unique fixed point in X. And for any  $x \in X$ , the iterative sequence  $\{T^n x\}$   $(n \in \mathbb{N})$  b-converges to the fixed point.

*Proof.* Choose  $k \in \mathbb{R}$  in Theorem 2.1, then the proof is completed.

**Corollary 2.3.** Let (X, d) be a b-complete b-metric space with coefficient  $s \ge 1$ . Suppose that  $T : X \to X$  is a mapping such that for all  $x, y \in X$ , it holds:

$$d(\mathsf{T} x, \mathsf{T} y) \leqslant k d(x, y),$$

where  $k \in [0,1)$  is a real constant. Then T has a unique fixed point in X. And for any  $x \in X$ , the iterative sequence  $\{T^n x\}$   $(n \in \mathbb{N})$  b-converges to the fixed point.

*Remark* 2.4. Theorem 2.1 greatly generalizes [7, Theorem 2.1] from  $\rho(k) \in [0, \frac{1}{s})$  to  $\rho(k) \in [0, 1)$ . Corollary 2.2 greatly generalizes [8, Theorem 2.1] from  $k \in [0, \frac{1}{s})$  to  $k \in [0, 1)$ . Corollary 2.3 greatly generalizes [10, Theorem 3.3] from  $k \in [0, \frac{1}{s})$  to  $k \in [0, 1)$ .

*Remark* 2.5. Regarding the improvement of contractive coefficients, there have been some articles dealing with them. For instance, compared with [11], [5] generalizes the range of the coefficient  $\lambda$  from  $\lambda \in (0, \frac{1}{2})$  to  $\lambda \in (0, 1)$  for quasi-contraction, which is an interesting generalization. Whereas, our results generalize some famous results on Banach-type contractions for the coefficient k from  $\rho(k) \in [0, \frac{1}{s})$  to  $\rho(k) \in [0, 1)$ , as well as from  $k \in [0, \frac{1}{s})$  to  $k \in [0, 1)$ . Consequently, our generalizations are indeed sharp generalizations. The following examples illustrate our conclusions.

**Example 2.6.** Let X = [0,1],  $A = C_{\mathbb{R}}^1(X)$  and define a norm on A by  $||u|| = ||u||_{\infty} + ||u'||_{\infty}$ . Define multiplication in A as just pointwise multiplication. Then A is a real Banach algebra with a unit e = 1 (e(t) = 1 for all  $t \in X$ ). The set  $P = \{u \in A : u(t) \ge 0, t \in X\}$  is a non-normal solid cone (see [9]). Define a mapping  $d : X \times X \to A$  by  $d(x, y)(t) = |x - y|^2 e^t$ . We have that (X, d) is a b-complete cone b-metric space over Banach algebra A with coefficient s = 2. Define a self-mapping T on X by  $Tx = \frac{\sqrt{2}}{2}x$ . Put  $k = \frac{1}{2} + \frac{1}{4}t$ . Then  $d(Tx, Ty) \preceq kd(x, y)$  for all  $x, y \in X$ . Simple calculations show that  $\frac{1}{s} = \frac{1}{2} < \rho(k) = \frac{3}{4} < 1$ . Clearly,  $\rho(k) \notin [0, \frac{1}{s})$ , but  $\rho(k) \in [\frac{1}{s}, 1)$ . Hence, [7, (i) of Theorem 2.1] is not satisfied. That is to say, [7, Theorem 2.1] cannot be used in this example. However, our Theorem 2.1 is satisfied. Accordingly, T has a unique fixed point x = 0.

**Example 2.7.** Let  $X = [0, \frac{3}{5}]$ ,  $E = \mathbb{R}^2$  and  $p \ge 5$  be a constant. Put  $P = \{(x, y) \in E : x, y \ge 0\}$ . We define  $d : X \times X \to E$  as  $d(x, y) = |x - y|^p$ , for all  $x, y \in X$ . Then (X, d) is a b-complete b-metric space with coefficient  $s = 2^{p-1}$ . Define a self-mapping T on X by  $Tx = \frac{1}{2}(\cos \frac{x}{2} - |x - \frac{1}{2}|)$ , for all  $x \in X$ . Hence, for all  $x, y \in X$ , we speculate that

$$\begin{split} \mathrm{d}(\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{y}) &= |\mathsf{T}\mathsf{x} - \mathsf{T}\mathsf{y}|^{\mathrm{p}} \\ &= \frac{1}{2^{\mathrm{p}}} \left| \left( \cos\frac{\mathsf{x}}{2} - \cos\frac{\mathsf{y}}{2} \right) - \left( \left| \mathsf{x} - \frac{1}{2} \right| - \left| \mathsf{y} - \frac{1}{2} \right| \right) \right|^{\mathrm{p}} \\ &\leqslant \frac{1}{2^{\mathrm{p}}} \left( \left| \cos\frac{\mathsf{x}}{2} - \cos\frac{\mathsf{y}}{2} \right| + |\mathsf{x} - \mathsf{y}| \right)^{\mathrm{p}} \\ &\leqslant \frac{1}{2^{\mathrm{p}}} \left( \frac{|\mathsf{x} + \mathsf{y}|}{8} |\mathsf{x} - \mathsf{y}| + |\mathsf{x} - \mathsf{y}| \right)^{\mathrm{p}} \\ &\leqslant 0.575^{\mathrm{p}} |\mathsf{x} - \mathsf{y}|^{\mathrm{p}}. \end{split}$$

In view of  $p \ge 5$ , then  $k = 0.575^p \notin [0, \frac{1}{s})$ , but  $k = 0.575^p \in [\frac{1}{s}, 1)$ . Thus, [10, Theorem 3.3] does not hold in this case. In other words, [10, Theorem 3.3] is not applicable in this example. However, our Corollary 2.3 can be utilized in this case. To sum up,  $x_0 \in X$  satisfied with 0.472251591454  $< x_0 < 0.472251591479$  is the unique fixed point of T.

### Acknowledgment

(

The research was partially supported by the National Natural Science Foundation of China (11271045).

## References

- I. A. Bakhtin, *The contraction mapping principle in almost metric space*, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, (1989), 26–37. 1, 1.1
- [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- [3] M. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367–377. 1
- [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. 1, 1.1

- [5] L. Gajić, V. Rakočević, Quasi-contractions on a nonnormal cone metric space, Funct. Anal. Appl., 46 (2012), 62–65. 2.5
- [6] H.-P. Huang, S. Radenović, Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl., 8 (2015), 787–799. 1, 1.4, 1.8, 1.9
- [7] H.-P. Huang, S. Radenović, Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., **20** (2016), 566–583. 1, 1.3, 1, 1.6, 2.4, 2.6
- [8] H.-P. Huang, S.-Y. Xu, Correction: Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2014 (2014), 5 pages. 1, 2.4
- [9] S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601. 1.7, 2.6
- [10] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., 2010 (2015), 15 pages. 1, 1, 2.4, 2.7
- [11] Z. Kadelburg, S. Radenović, V. Rakočević, *Remarks on "Quasi-contraction on a cone metric space"*, Appl. Math. Lett., 22 (2009), 1674–1679. 2.5
- [12] P. K. Mishra, S. Sachdeva, S. K. Banerjee, Some fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, 2 (2014), 19–22. 1
- [13] W. Sintunavarat, Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations, ev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, **110** (2016), 585–600. 1
- [14] W. Sintunavarat, Nonlinear integral equations with new admissibility types in b-metric spaces, J. Fixed Point Theory Appl., 18 (2016), 397–416.
- [15] O. Yamaod, W. Sintunavarat, Y. J. Cho, Common fixed point theorems for generalized cyclic contraction pairs in b-metric spaces with applications, Fixed Point Theory Appl., 2015 (2015), 18 pages. 1
- [16] O. Yamaod, W. Sintunavarat, Y. J. Cho, Existence of a common solution for a system of nonlinear integral equations via fixed point methods in b-metric spaces, Open Math., 14 (2016), 128–145. 1