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Abstract

The aim of this paper is to generalize a famous result for Banach-type contractive mapping from ρ(k) ∈ [0, 1
s ) to ρ(k) ∈ [0, 1)

in cone b-metric space over Banach algebra with coefficient s > 1, where ρ(k) is the spectral radius of the generalized Lipschitz
constant k. Moreover, some similar generalizations for the contractive constant k from k ∈ [0, 1

s ) to k ∈ [0, 1) in cone b-metric
space and in b-metric space are also obtained. In addition, two examples are given to illustrate that our generalizations are in
fact real generalizations. c©2017 All rights reserved.
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1. Introduction and preliminaries

Since Bakhtin [1] or Czerwik [4] introduced b-metric space, also called metric type space by some
authors, as a large generalization of metric space, people have paid close attention to fixed point results
in such spaces for many years. Recently, Jovanović et al. [10] proved Banach-type version of a fixed point
result (see [2]) for contractive mapping including the contractive constant k ∈ [0, 1

s) in b-metric space
with coefficient s > 1. Subsequently, Huang and Xu [8] expanded the work of [10] into cone b-metric
space with coefficient s > 1, where the contractive constant k also satisfies k ∈ [0, 1

s). Later on, Huang
and Radenović [7] gave a further generalization from cone b-metric space with coefficient s > 1 to cone
b-metric space over Banach algebra with the same coefficient. They considered the Banach-type version
of a fixed point result with the generalized Lipschitz constant k satisfying ρ(k) ∈ [0, 1

s), where ρ(k) is the
spectral radius of k. So far, there have been some open questions whether the result in b-metric space or
in cone b-metric space is true for k ∈ [0, 1), and whether the result in cone b-metric space over Banach
algebra is true for ρ(k) ∈ [0, 1). In this paper, by using a new method of proof, we prove that the answers
to the above questions are positive.
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Definition 1.1 ([1, 4]). Let X be a (nonempty) set and s > 1 be a given real number. A function d : X×X→
[0,∞) is called a b-metric on X, if for all x,y, z ∈ X the following conditions hold:

(b1) d (x,y) = 0 iff x = y;

(b2) d (x,y) = d (y, x);

(b3) d (x, z) 6 s [d (x,y) + d (y, z)].

In this case, the pair (X,d) is called a b-metric space.

For some concepts such as b-convergence, b-Cauchy sequence and b-completeness in the setting of
b-metric spaces, the reader refers to [10, 13, 15].

In the following example we correct some errors from several papers (see [3, 12–16]) for b-metric space
with the false coefficient s = 2

1
p . As a matter of fact, its correct coefficient should be s = 2

1
p−1.

Example 1.2. The set lp(R) with 0 < p < 1, where

lp(R) :=

{
{xn} ⊆ R

∣∣∣∣∣
∞∑

n=1

|xn|
p <∞} ,

together with the mapping d : lp(R)× lp(R)→ [0,∞) defined by

d(x,y) =

( ∞∑
n=1

|xn − yn|
p

) 1
p

,

for each x = {xn},y = {yn} ∈ lp(R) is a b-metric space with coefficient s = 2
1
p−1.

In fact, we only need to prove that condition (b3) in Definition 1.1 is satisfied. To this end, let x =
{xn},y = {yn}, z = {zn} ∈ lp(R), we shall show that( ∞∑

n=1

|xn − zn|
p

) 1
p

6 2
1
p−1

( ∞∑
n=1

|xn − yn|
p

) 1
p

+

( ∞∑
n=1

|yn − zn|
p

) 1
p

 . (1.1)

Denote an = xn − yn, bn = yn − zn, then xn − zn = an + bn, so (1.1) becomes( ∞∑
n=1

|an + bn|
p

) 1
p

6 2
1
p−1

( ∞∑
n=1

|an|
p

) 1
p

+

( ∞∑
n=1

|bn|
p

) 1
p

 . (1.2)

In order to prove (1.2), we notice that the following inequalities:

(a+ b)p 6 ap + bp, (a,b > 0, 0 < p 6 1),

(a+ b)p 6 2p−1(ap + bp), (a,b > 0, p > 1),

then ( ∞∑
n=1

|an + bn|
p

) 1
p

6

[ ∞∑
n=1

(|an|+ |bn|)
p

] 1
p

6

[ ∞∑
n=1

(|an|
p + |bn|

p)

] 1
p

=

( ∞∑
n=1

|an|
p +

∞∑
n=1

|bn|
p

) 1
p

6 2
1
p−1

( ∞∑
n=1

|an|
p

) 1
p

+

( ∞∑
n=1

|bn|
p

) 1
p

 .
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Let A be a real Banach algebra, ‖ · ‖ be its norm and θ be its zero element. A nonempty closed subset
P of A is called a cone, if P2 = P ∩ P ⊂ P, P ∩ (−P) = {θ} and λP+ µP ⊂ P for all λ,µ > 0. We denote intP
as the interior of P. If intP 6= ∅, then P is said to be a solid cone. Define a partial ordering � with respect
to P by u � v, iff v− u ∈ P. Define u� v, iff v− u ∈ intP.

In the sequel, unless otherwise specified, we always suppose that A is a real Banach algebra with a
unit e, P is a solid cone in A, and ” � ” and ”� ” are partial orderings with respect to P.

Definition 1.3 ([7]). Let X be a (nonempty) set, s > 1 be a constant and A be a Banach algebra. Suppose
that a mapping d : X×X→A satisfies for all x,y, z ∈ X,

(d1) θ � d(x,y) and d(x,y) = θ, iff x = y;

(d2) d(x,y) = d(y, x);

(d3) d(x, z) � s[d(x,y) + d(y, z)].

Then d is called a cone b-metric on X, and (X,d) is called a cone b-metric space over Banach algebra.

For some examples on cone b-metric space over Banach algebra, the reader refers to [6, 7].

Definition 1.4 ([6]). A sequence {un} in a solid cone P is said to be a c-sequence, if for each c � θ, there
exists a natural number N such that un � c for all n > N.

Definition 1.5. Let (X,d) be a cone b-metric space over Banach algebra and {xn} a sequence in X. We say
that

(i) {xn} b-converges to x ∈ X, if {d(xn, x)} is a c-sequence;

(ii) {xn} is a b-Cauchy sequence, if {d(xn, xm)} is a c-sequence for n,m;

(iii) (X,d) is b-complete, if every b-Cauchy sequence in X is b-convergent.

Lemma 1.6 ([7]). Let {un} and {vn} be two c-sequences in a solid cone P. If α,β ∈ P are two arbitrarily given
vectors, then {αun +βvn} is a c-sequence.

Lemma 1.7 ([9]). If u � v and v� w, then u� w.

Lemma 1.8 ([6]). Let A be a Banach algebra with a unit e, then the spectral radius ρ(k) of k ∈A holds

ρ(k) = lim
n→∞ ‖kn‖ 1

n = inf ‖kn‖
1
n .

If ρ(k) < 1, then e− k is invertible in A, moreover, (e− k)−1 =
∑∞

i=0 k
i.

Lemma 1.9 ([6]). Let A be a Banach algebra with a unit e. Let k ∈A and ρ(k) < 1. Then {kn} is a c-sequence.

2. Main results

Theorem 2.1. Let (X,d) be a b-complete cone b-metric space over Banach algebra with coefficient s > 1. Suppose
that T : X→ X is a mapping such that for all x,y ∈ X it holds:

d(Tx, Ty) � kd(x,y), (2.1)

where k ∈ P is a generalized Lipschitz constant with ρ(k) < 1. Then T has a unique fixed point in X. And for any
x ∈ X, the iterative sequence {Tnx} (n ∈N) b-converges to the fixed point.

Proof. Let x0 ∈ X and xn+1 = Txn for all n ∈N. We divide the proof into three cases.
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Case 1: Let ρ(k) ∈ [0, 1
s) (s > 1). By (2.1), we have

d(xn, xn+1) = d(Txn−1, Txn)
� kd(xn−1, xn)
= kd(Txn−2, Txn−1)

� k2d(xn−2, xn−1)

...
� knd(x0, x1).

In view of ρ(k) < 1
s , then ρ(sk) = sρ(k) < 1, so by Lemma 1.8, we get that e − sk is invertible and

(e− sk)−1 =
∑∞

i=0(sk)
i. Thus for any n > m, it follows that

d(xm, xn) � s[d(xm, xm+1) + d(xm+1, xn)]

� sd(xm, xm+1) + s
2[d(xm+1, xm+2) + d(xm+2, xn)]

� sd(xm, xm+1) + s
2d(xm+1, xm+2) + s

3[d(xm+2, xm+3) + d(xm+3, xn)]

� sd(xm, xm+1) + s
2d(xm+1, xm+2) + s

3d(xm+2, xm+3)

+ · · ·+ sn−m−1d(xn−2, xn−1) + s
n−m−1d(xn−1, xn)

� skmd(x0, x1) + s
2km+1d(x0, x1) + s

3km+2d(x0, x1)

+ · · ·+ sn−m−1kn−2d(x0, x1) + s
n−m−1kn−1d(x0, x1)

� skm(e+ sk+ s2k2 + · · ·+ sn−m−2kn−m−2 + sn−m−1kn−m−1)d(x0, x1)

� skm
[ ∞∑
i=0

(sk)i

]
d(x0, x1)

= skm(e− sk)−1d(x0, x1).

Note that ρ(k) < 1
s < 1 and Lemma 1.9, it is easy to see that {km} is a c-sequence. Therefore, by using

Lemma 1.6 and Lemma 1.7, we claim that {xn} is a b-Cauchy sequence. Since (X,d) is b-complete, then
there exists x∗ ∈ X such that {xn} b-converges to x∗.

Next, let us show that x∗ is a fixed point of T . Indeed, by (2.1), we have

d(xn+1, Tx∗) � kd(xn, x∗). (2.2)

Since {d(xn, x∗)} is a c-sequence, then by Lemma 1.6, it is not hard to verify that {kd(xn, x∗)} is a c-
sequence. Hence, by Lemma 1.7, (2.2) implies that {d(xn+1, Tx∗)} is also a c-sequence, which means that
{xn} b-converges to Tx∗. By the uniqueness of limit of a b-convergent sequence, we get Tx∗ = x∗. That is
to say, x∗ is a fixed point of T .

Further, x∗ is the unique fixed point of T . Actually, assume that there is another fixed point y∗, then
by (2.1), it is obvious that

d(x∗,y∗) = d(Tx∗, Ty∗) � kd(x∗,y∗) � k2d(x∗,y∗) � · · · � knd(x∗,y∗).

Now that {kn} is a c-sequence, then by Lemma 1.6 and Lemma 1.7, we obtain d(x∗,y∗) = θ. This leads to
x∗ = y∗.

Case 2: Let ρ(k) ∈ [ 1
s , 1) (s > 1). In this case, we have [ρ(k)]n → 0 as n → ∞, then there is n0 ∈ N such

that [ρ(k)]n0 < 1
s . Notice that

ρ(kn0) = lim
n→∞ ‖(kn0)n‖

1
n
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= lim
n→∞ ‖kn · · · · · · kn︸ ︷︷ ︸

n0 terms

‖
1
n

6 lim
n→∞

(
‖kn‖ · · · · · · ‖kn‖︸ ︷︷ ︸

n0 terms

) 1
n

=
(

lim
n→∞ ‖kn‖ 1

n

)
· · · · · ·

(
lim
n→∞ ‖kn‖ 1

n︸ ︷︷ ︸
n0 terms

)
= [ρ(k)]n0

<
1
s

,

and by (2.1) for all x,y ∈ X, it follows that

d(Tn0x, Tn0y) = d
(
T(Tn0−1x), T(Tn0−1y)

)
� kd(Tn0−1x, Tn0−1y)

= kd
(
T(Tn0−2x), T(Tn0−2y)

)
� k2d(Tn0−2x, Tn0−2y)

...
� kn0d(x,y).

Then by Case 1, we claim that the mapping Tn0 has a unique fixed point x∗∗ ∈ X.
Now we prove that x∗∗ is also a fixed point of T . As a matter of fact, on account of Tn0x∗∗ = x∗∗, we

have
Tn0(Tx∗∗) = Tn0+1x∗∗ = T(Tn0x∗∗) = Tx∗∗,

then Tx∗∗ is also a fixed point of Tn0 . Thus, by the uniqueness of fixed point of Tn0 , it ensures us that
Tx∗∗ = x∗∗. In other words, x∗∗ is also a fixed point of T .

Finally, we show that the fixed point of T is unique. Virtually, we suppose for absurd that there exists
another fixed point x∗∗∗ of T , that is, Tx∗∗ = x∗∗, Tx∗∗∗ = x∗∗∗, then

Tn0x∗∗ = Tn0−1(Tx∗∗) = Tn0−1x∗∗ = · · · = Tx∗∗ = x∗∗,
Tn0x∗∗∗ = Tn0−1(Tx∗∗∗) = Tn0−1x∗∗∗ = · · · = Tx∗∗∗ = x∗∗∗,

which imply that x∗∗ and x∗∗∗ are two fixed points of Tn0 . Because the fixed point of Tn0 is unique, we
claim that x∗∗ = x∗∗∗.

Case 3: s = 1. Since ρ(k) < 1, repeat the process of Case 1, then the claim holds.

Corollary 2.2. Let (X,d) be a b-complete cone b-metric space with coefficient s > 1. Suppose that T : X→ X is a
mapping such that for all x,y ∈ X, it holds:

d(Tx, Ty) � kd(x,y),

where k ∈ [0, 1) is a real constant. Then T has a unique fixed point in X. And for any x ∈ X, the iterative sequence
{Tnx} (n ∈N) b-converges to the fixed point.

Proof. Choose k ∈ R in Theorem 2.1, then the proof is completed.

Corollary 2.3. Let (X,d) be a b-complete b-metric space with coefficient s > 1. Suppose that T : X → X is a
mapping such that for all x,y ∈ X, it holds:

d(Tx, Ty) 6 kd(x,y),

where k ∈ [0, 1) is a real constant. Then T has a unique fixed point in X. And for any x ∈ X, the iterative sequence
{Tnx} (n ∈N) b-converges to the fixed point.
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Remark 2.4. Theorem 2.1 greatly generalizes [7, Theorem 2.1] from ρ(k) ∈ [0, 1
s) to ρ(k) ∈ [0, 1). Corollary

2.2 greatly generalizes [8, Theorem 2.1] from k ∈ [0, 1
s) to k ∈ [0, 1). Corollary 2.3 greatly generalizes [10,

Theorem 3.3] from k ∈ [0, 1
s) to k ∈ [0, 1).

Remark 2.5. Regarding the improvement of contractive coefficients, there have been some articles dealing
with them. For instance, compared with [11], [5] generalizes the range of the coefficient λ from λ ∈ (0, 1

2)
to λ ∈ (0, 1) for quasi-contraction, which is an interesting generalization. Whereas, our results generalize
some famous results on Banach-type contractions for the coefficient k from ρ(k) ∈ [0, 1

s) to ρ(k) ∈ [0, 1), as
well as from k ∈ [0, 1

s) to k ∈ [0, 1). Consequently, our generalizations are indeed sharp generalizations.
The following examples illustrate our conclusions.

Example 2.6. Let X = [0, 1], A = C1
R(X) and define a norm on A by ‖u‖ = ‖u‖∞ + ‖u ′‖∞. Define

multiplication in A as just pointwise multiplication. Then A is a real Banach algebra with a unit e =
1 (e(t) = 1 for all t ∈ X). The set P = {u ∈ A : u(t) > 0, t ∈ X} is a non-normal solid cone (see [9]).
Define a mapping d : X× X → A by d(x,y)(t) = |x− y|2et. We have that (X,d) is a b-complete cone b-
metric space over Banach algebra A with coefficient s = 2. Define a self-mapping T on X by Tx =

√
2

2 x. Put
k = 1

2 +
1
4t. Then d(Tx, Ty) � kd(x,y) for all x,y ∈ X. Simple calculations show that 1

s = 1
2 < ρ(k) =

3
4 < 1.

Clearly, ρ(k) /∈ [0, 1
s), but ρ(k) ∈ [ 1

s , 1). Hence, [7, (i) of Theorem 2.1] is not satisfied. That is to say, [7,
Theorem 2.1] cannot be used in this example. However, our Theorem 2.1 is satisfied. Accordingly, T has
a unique fixed point x = 0.

Example 2.7. Let X = [0, 3
5 ], E = R2 and p > 5 be a constant. Put P = {(x,y) ∈ E : x,y > 0}. We define

d : X× X → E as d(x,y) = |x − y|p, for all x,y ∈ X. Then (X,d) is a b-complete b-metric space with
coefficient s = 2p−1. Define a self-mapping T on X by Tx = 1

2

(
cos x

2 − |x− 1
2 |
)
, for all x ∈ X. Hence, for all

x,y ∈ X, we speculate that

d(Tx, Ty) = |Tx− Ty|p

=
1

2p

∣∣∣∣(cos
x

2
− cos

y

2

)
−

(∣∣∣∣x− 1
2

∣∣∣∣− ∣∣∣∣y− 1
2

∣∣∣∣)∣∣∣∣p
6

1
2p
(∣∣∣cos

x

2
− cos

y

2

∣∣∣+ |x− y|
)p

6
1

2p

(
|x+ y|

8
|x− y|+ |x− y|

)p

6 0.575p|x− y|p.

In view of p > 5, then k = 0.575p /∈ [0, 1
s), but k = 0.575p ∈ [ 1

s , 1). Thus, [10, Theorem 3.3] does not hold
in this case. In other words, [10, Theorem 3.3] is not applicable in this example. However, our Corollary
2.3 can be utilized in this case. To sum up, x0 ∈ X satisfied with 0.472251591454 < x0 < 0.472251591479 is
the unique fixed point of T .

Acknowledgment

The research was partially supported by the National Natural Science Foundation of China (11271045).

References

[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ulyanovsk.
Gos. Ped. Inst., Ulyanovsk, (1989), 26–37. 1, 1.1

[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3
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[10] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory

Appl., 2010 (2015), 15 pages. 1, 1, 2.4, 2.7
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