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Abstract

This paper is mainly concerned with the dynamics of the stochastic Gilpin-Ayala model under regime switching with
impulsive perturbations. The goal is to analyze the effects of Markov chain and impulse on the dynamics. Some asymptotic
properties are considered and sufficient criteria for stochastic permanence, extinction, non-persistence in the mean and weak
persistence are obtained. The critical value among the extinction, non-persistence in the mean and weak persistence is explored.
Our results demonstrate that the dynamics of the model have close relations with the impulse and the stationary distribution of
the Markov chain. c©2017 All rights reserved.
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1. Introduction and preliminaries

The Gilpin-Ayala model, is denoted by the following ordinary differential equation

ẋ(t) = x(t)
[
b− axλ(t)

]
, λ > 0, (1.1)

and λ is the parameter to modify the classical logistic model. In the model, x(t) expresses the population
size at time t, b denotes the intrinsic growth rate and b/a is the carrying capacity. Many good results
have been reported on model (1.1), see [4, 6] and the references cited therein.

If the environmental noise, which is important in ecosystem (see e.g. Gard [7, 8]), is taken into account,
we get the corresponding Itô equation

dx(t) = x(t)
[
b− axλ(t)

]
dt+ σ1x(t)dB1(t) + σ2x

1+λ(t)dB2(t). (1.2)

In the model, σ2
i(i = 1, 2) denotes the intensity of the noise, the pair B(t) = (B1(t),B2(t))

T is a two-
dimensional Brownian motion defined on a complete probability space (Ω,F, {Ft}t>0, P) with a filtration
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{Ft}t>0 satisfying the usual conditions. The stochastic Gilpin-Ayala models have been studied a lot, the
readers can refer to [12, 13, 19, 22, 23] and the references therein.

Further, increasing attention has been devoted to hybrid systems, in which continuous dynamics are
intertwined with discrete events. One of the distinct features of such systems is that the underlying
dynamics are subject to changes with respect to certain configurations. It is recognized that using a
continuous-time Markov chain is suitable to depict such kind of systems where they differ by factors such
as rain falls or nutrition [5, 33].

Let r(t), t > 0, be a right-continuous Markov chain taking values in a finite state space S = {1, 2, · · · ,N}

with generator Q = (qij)N×N given by

P =
{
r(t+4t) = j|r(t) = i

}
=

{
qij4t+ o(4t), if j 6= i;

1 + qii4t+ o(4t), if j = i,

where 4t > 0, qij > 0 is the transition rate from i to j if i 6= j while
∑N
j=1 qij = 0. Throughout the paper,

we assume that B(t) is independent of r(t). Further assume that the Markov chain r(t) is irreducible which
means that the system can switch from any regime to any other regime. And the irreducibility implies
that the Markov chain has a unique stationary (probability) distribution π = (π1,π2, · · · ,πN) ∈ R1×N (see
[2]) satisfying

πQ = 0, (1.3)

subject to
∑N
i=1 πi = 1 and πi > 0, for all i ∈ S.

Introducing the Markovian switching into model (1.2), we get the general stochastic hybrid system, or
system under regime switching:

dx(t) = x(t)
[
b(r(t)) − a(r(t))xλ(t)

]
dt+ σ1(r(t))x(t)dB1(t) + σ2(r(t))x

1+θ(t)dB2(t), θ > 0. (1.4)

In its operation, the hybrid system will switch from one mode to another according to the law of the
Markov chain. If the initial state r(0) = i ∈ S, then (1.4) obeys

dx(t) = x(t)
[
b(i) − a(i)xλ(t)

]
dt+ σ1(i)x(t)dB1(t) + σ2(i)x

1+θ(t)dB2(t),

till time τ1 when the Markov chain switches to r(τ1) = j ∈ S from r(0), then the system obeys

dx(t) = x(t)
[
b(j) − a(j)xλ(t)

]
dt+ σ1(j)x(t)dB1(t) + σ2(j)x

1+θ(t)dB2(t),

until the next switching. The system will continue to switch as long as the Markov chain switches.
The Markov chain has important impacts on the population dynamics. Takeuchi et al. [34] revealed
the significant effect of Markovian switching on the population system: both its subsystems develop
periodically but switching between them makes them become neither permanent nor dissipative.

Let us take a more further step, in reality, due to some natural or man-made factors, the growth of
species often undergoes some discrete changes of relatively short time interval at some fixed times, such
as drought, flooding, hunting, planting, etc. These phenomena cannot be considered continually, so in
this case, system (1.4) fails to explain these phenomena. Introducing the impulsive effects into the model
may be more suitable for such phenomena, see [3, 14].

Lots of deterministic population dynamical systems with impulsive effects have been proposed and
studied. Many results on dynamical behavior for such systems have been published, see e.g. [1, 9, 11, 36]
and the references therein. Recently, authors of [16–18, 32] considered the stability of stochastic differential
equation (SDE) with impulsive effects. However, so far as we know, there are few papers published which
study the impulsive stochastic population model, see [24, 25, 35]. By now, there are no result related to
the general stochastic Gilpin-Ayala system under regime switching with impulsive effects.
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Inspired by the above discussions, in this paper, we study the general stochastic hybrid system with
impulsive effects, or system under regime switching:

dx(t) = x(t)
[
b(r(t)) − a(r(t))xλ(t)

]
dt+ σ1(r(t))x(t)dB1(t)

+ σ2(r(t))x
1+θ(t)dB2(t), t 6= tk, k ∈N,

x(t+k ) − x(tk) = bkx(tk), k ∈N,

(1.5)

where λ > 0, θ > 0.
It is worth pointing out that many classical and important stochastic models are the special cases of

(1.5). If λ = 1,σ2(r(t)) ≡ 0, system (1.5) is the model (2) for nonautonomous case in [26]. If λ = θ = 1,
system (1.5) becomes the model (5) in [24]. This indicates that our model is more general and meaningful.

As we know that, the extinction and stochastic permanence are two important and interesting topics in
the biomathematics, and the threshold value of persistence and extinction is meaningful in practice. So in
this paper, we focus on exploring the effects of the Markovian switching and impulse on the extinction and
persistence of system (1.5). The rest of the paper is arranged as follows. In Section 2 we propose sufficient
conditions for the existence of the global positive solutions. We give the critical value between persistence
and extinction in Section 3. In Section 4, we establish sufficient criteria for stochastic permanence by using
the theory of M-matrices. The numerical simulations are illustrated to confirm our results in Section 5.
We conclude our paper with further remarks in Section 6.

2. Global positive solutions

Throughout this paper, we assume mink∈S a(k) > 0. For a matrix or vector G, G � 0 means all
elements of G are positive, and the symbol ZN×N denotes ZN×N := {A = (aij)N×N : aij 6 0, i 6= j}. Take∏n
i=1 yi(t) = y1(t) · · ·yn(t) and assume that a product equals unity if the number of factors is zero.
In the following, for convenience and simplicity, we use the following notations:

f̂ = min
k∈S

f(k), f̌ = max
k∈S

f(k), f∗ = lim sup
t→+∞ f(t), f∗ = lim inf

t→+∞ f(t), f(t) = t−1
∫t

0
f(s)ds.

In view of the biological significance of model (1.5), only positive solutions are meaningful. Before
we analyze the properties of the solutions, first we should ensure the existence of positive solutions. The
following theorem illustrates this point.

Theorem 2.1. For any initial value r(0) ∈ S and x(0) > 0, (1.5) admits a unique global positive solution x(t) on
t > 0 a.s. (almost surely).

Proof. Consider the following Itô equation without impulse:

dy(t) = y(t)
[
b(r) − a(r)

∏
0<tk<t

(1 + bk)
λyλ(t)

]
dt+ σ1(r)y(t)dB1(t)

+ σ2(r)
∏

0<tk<t

(1 + bk)
θy1+θ(t)dB2(t),

(2.1)

with initial value y(0) = x(0). Here for simplicity, we drop t from b(r(t)) and a(r(t)) etc. According
to the result of [22, Theorem 1], (2.1) has a unique global positive solution y(t) on t > 0. Let x(t) =∏

0<tk<t(1 + bk)y(t), then we claim that x(t) is the solution of (1.5) with initial data x(0). We easily see
that x(t) is continuous on (0, t1) and each interval (tk, tk+1) ⊂ [0,∞),k ∈N. And for t 6= tk

dx(t) = d[
∏

0<tk<t

(1 + bk)y(t)] =
∏

0<tk<t

(1 + bk)dy(t)
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=
∏

0<tk<t

(1 + bk)y(t)
[
b(r) − a(r)

∏
0<tk<t

(1 + bk)
λyλ(t)

]
dt

+ σ1(r)
∏

0<tk<t

(1 + bk)y(t)dB1(t) + σ2(r)
∏

0<tk<t

(1 + bk)
1+θy1+θ(t)dB2(t)

= x(t)[b(r) − a(r)xλ(t)]dt+ σ1(r)x(t)dB1(t) + σ2(r)x
1+θ(t)dB2(t).

Further, for every tk ∈ R+, k ∈N,

x(t+k ) = lim
t→t+k

x(t) = lim
t→t+k

∏
0<tj<t

(1 + bj)y(t) =
∏

0<tj6tk

(1 + bj)y(t
+
k )

= (1 + bk)
∏

0<tj<tk

(1 + bj)y(tk) = (1 + bk)x(tk),

and

x(t−k ) = lim
t→t−k

x(t) = lim
t→t−k

∏
0<tj<t

(1 + bj)y(t) =
∏

0<tj<tk

(1 + bj)y(t
−
k ) =

∏
0<tj<tk

(1 + bj)y(tk) = x(tk).

This completes the proof.

Now, we conclude that system (1.5) admits a unique global positive solution. However, from the
biological point of view, the non-explosion property and positivity in a population dynamical system are
often not good enough. Further, in the next we will investigate asymptotic properties of the solutions.

3. Critical value between extinction and persistence

In the sequel, we will consider the long time behaviors of the positive solutions which are important
in practice, because they can predict the future properties of the solutions. First we give several concepts,
then we will attempt to illustrate sufficient conditions for them.

Definition 3.1 ([22]). Let x(t) be the solution of (1.5),

(a) if lim
t→+∞x(t) = 0 a.s., then species x(t) is said to be extinct;

(b) if lim
t→+∞xλ(t) = lim

t→+∞t−1
∫t

0 x
λ(s)ds = 0 a.s., then species x(t) is said to be non-persistent in the

mean;

(c) if x∗ = lim sup
t→+∞ x(t) > 0 a.s., then species x(t) is said to be weakly persistent.

Definition 3.2 ([13]). The solution x(t) of (1.5) is said to be stochastically permanent, if for any ε ∈ (0, 1),
there is a pair of positive constants H1 = H1(ε) and H2 = H2(ε) such that

lim inf
t→+∞ P

[
x(t) 6 H1

]
> 1 − ε, and lim inf

t→+∞ P
[
x(t) > H2

]
> 1 − ε,

where x(t) is an arbitrary solution of the equation with initial value x(0) > 0, r(0) ∈ S.

From the definitions we can see that extinction implies non-persistence in the mean, and the stochastic
permanence is the strongest property, we will consider them one by one. First, we give an asymptotic
pathwise estimation.

Theorem 3.3. For any initial value x(0) > 0 and r(0) ∈ S, the solution x(t) of (1.5) obeys

lim sup
t→∞

ln x(t)
t

6 h̄ := lim sup
t→∞

∑
0<tk<t ln(1 + bk)

t
+

N∑
i=1

πih(i) a.s..

Particularly, if h̄ < 0, then species x(t) will go to extinction, where h(i) = b(i) − 0.5σ2
1(i).
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Proof. Applying generalized Itô formula to (2.1) leads to

d lny(t) =
[
h(r) − a(r)

∏
0<tk<t

(1 + bk)
λyλ(t) − 0.5σ2

2(r)
∏

0<tk<t

(1 + bk)
2θy2θ(t)

]
dt

+ σ1(r)dB1(t) + σ2(r)
∏

0<tk<t

(1 + bk)
θyθ(t)dB2(t),

which is equivalent to

lny(t) = lny(0)

+

∫t
0

[
h(r(s)) − a(r(s))

∏
0<tk<s

(1 + bk)
λyλ(s) − 0.5σ2

2(r(s))
∏

0<tk<s

(1 + bk)
2θy2θ(s)

]
ds

+M1(t) +M2(t),

(3.1)

where M1(t) =
∫t

0 σ1(r(s))dB1(s), M2(t) =
∫t

0 σ2(r(s))
∏

0<tk<s(1+ bk)
θyθ(s)dB2(s). The quadratic varia-

tion of M1(t) is

〈M1,M1〉(t) =
∫t

0
σ2

1(r(s))ds 6 σ̌2
1t.

Using the strong law of large numbers for martingales results in

lim
t→∞M1(t)

t
= 0 a.s.. (3.2)

The quadratic variation of M2(t) is 〈M2,M2〉(t) =
∫t

0 σ
2
2(r(s))

∏
0<tk<s(1 + bk)

2θy2θ(s)ds. By exponential
martingale inequality,

P

(
sup

06t6n

[
M2(t) −

1
2
〈M2,M2〉(t)

]
> 2 lnn

)
6

1
n2 .

By applying Borel-Cantelli lemma we see that for almost all ω ∈ Ω, there is a random integer n0 = n0(ω)
such that if n > n0,

M2(t) 6 2 lnn+
1
2

∫t
0
σ2

2(r(s))
∏

0<tk<s

(1 + bk)
2θy2θ(s)ds

holds for all 0 6 t 6 n,n > n0. Using above inequality to (3.1) leads to

lny(t) 6 lny(0) +
∫t

0

[
h(r(s)) − a(r(s))

∏
0<tk<s

(1 + bk)
λyλ(s)

]
ds+ 2 lnn+M1(t),

for all 0 6 t 6 n, n > n0. Recalling that x(t) =
∏

0<tk<t(1 + bk)y(t), we obtain

ln x(t) 6 ln x(0) +
∑

0<tk<t

ln(1 + bk) +

∫t
0
h(r(s))ds−

∫t
0
a(r(s))xλ(s)ds+ 2 lnn+M1(t). (3.3)

Then for n− 1 6 t 6 n,n > n0, we derive

ln x(t)
t

6
ln x(0)
t

+
1
t

∑
0<tk<t

ln(1 + bk) +
1
t

∫t
0
h(r(s))ds+

2 lnn
n− 1

+
M1(t)

t
.

By (3.2) and the ergodic property of the Markov chain, we conclude our desired assertion. This completes
the proof.
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Remark 3.4. It is evident that x(t) ≡ 0 is the trivial solution of (1.5). By Theorem 3.3 we conclude that if
h̄ = lim supt→∞ t−1∑

0<tk<t ln(1 + bk) +
∑N
i=1 πih(i) < 0, the trivial solution of system (1.5) is almost

surely exponentially stable, it also demonstrates that the species will go extinct exponentially fast.

Remark 3.5. If lim supt→∞ t−1∑
0<tk<t ln(1 + bk) = 0, then our result is consistent with [22, Theorem 2].

It reveals that the small impulse has no nature impact on the species, but from the result we can see that
the negative impulse can contribute on the extinction of the population and the positive impulse can resist
the extinction of species, this also coincides with the reality.

Theorem 3.6. If h̄ > 0, then x(t) satisfies

lim sup
t→∞

1
t

∫t
0
xλ(s)ds 6 h̄/â a.s..

Particularly, if h̄ = 0, then species x(t) modeled by (1.5) is non-persistent in the mean.

Proof. Note that for for all ε > 0, there exists a constant T > 0 such that

ln x(0)
t

6
ε

4
,

1
t

 ∑
0<tk<t

ln(1 + bk) +

∫t
0
h(r(s))

ds 6 h̄+
ε

4
,

2 lnn
t

6
ε

4
,
M1(t)

t
6
ε

4
,

for 0 < T < n− 1 6 t 6 n, n > n0. By above inequalities, (3.3) becomes into

ln x(t) 6 (ε+ h̄)t− â

∫t
0
xλ(s)ds.

By [27, Lemma 4], we have lim supt→∞ t−1
∫t

0 x
λ(s)ds 6 (ε+ h̄)/â a.s.. By the arbitrariness of ε, we get

our required assertion. This completes the proof.

Theorem 3.7. If h̄ > 0, then species modeled by system (1.5) will be weakly persistent.

Proof. To get the weak persistence, we need to show x∗ > 0 a.s. If this assertion is not true, then P(E) > 0,
where E =

{
lim supt→+∞ x(t) = 0

}
. By (3.1), we see that

ln x(t)
t

=
ln x(0)
t

+
1
t

 ∑
0<tk<t

ln(1 + bk) +

∫t
0
h(r(s))ds

−
1
t

∫t
0
a(r(s))xλ(s)ds

−
1
2t

∫t
0
σ2

2(r(s))x
2θ(s)ds+

M1(t)

t
+
M2(t)

t
. (3.4)

Note that for all ω ∈ E, limt→+∞ x(t,ω) = 0. Therefore,

lim sup
t→∞

ln x(t,ω)

t
6 0, lim

t→∞ 1
t

∫t
0
a(r(s))xλ(s)ds = 0, lim

t→∞ 1
t

∫t
0
σ2

2(r(s))x
2θ(s)ds = 0, lim

t→+∞M2(t)

t
= 0.

Substituting above inequalities into (3.4) and using (3.2) we can get a contradiction

0 > lim sup
t→∞ t−1 ln x(t,ω) = h̄ > 0.

This completes the proof.

Remark 3.8. Theorems 3.3, 3.6, and 3.7 have a clear and interesting biological interpretation. It is not
difficult to see that the extinction and persistence of species x(t) modeled by (1.5) depend only on the
value of h̄, which also implies that the long time behaviors of system (1.5) have close relations with the
impulse and stationary distribution of the Markovian switching.



R. Wu, J. Nonlinear Sci. Appl., 10 (2017), 436–450 442

Remark 3.9. Let us consider the effects of white noise on the species. By the expression h(i) = b(i) −
0.5σ2

1(i), we can see that the white noise σ1(r(t)) imposed on the intrinsic growth rate b(r(t)) contributes
to the extinction of the species and has negative effect on the survival of the population. The white
noise σ2(r(t)) imposed on the intraspecific competition coefficient has no impact on the extinction and
persistence of the species, which coincides with the special case when λ = θ = 1 (see [24]).

Remark 3.10. Let us look at the effects of impulse on the extinction and persistence of species. If bk is
big enough such that lim supt→∞ t−1∑

0<tk<t ln(1 + bk) >
∑N
i=1 πih(i), that is h̄ > 0, then species will

be weakly persistent which means that the positive impulse is always advantageous for the existence of
the species, e.g. planting. Further, we can see that the positive impulse can resist the impact of the white
noise which accords with the reality and will not happen in the model without impulse.
Remark 3.11. Let us consider some subsystem dx(t) = x(t)

[
b(i) − a(i)xλ(t)

]
dt+ σ1(i)x(t)dB1(t) + σ2(i)x

1+θ(t)dB2(t), t 6= tk, k ∈N,

x(t+k ) − x(tk) = bkx(tk), k ∈N,
(3.5)

for the state i. Similarly, we can prove that if h̄(i) := lim supt→∞ t−1∑
0<tk<t ln(1 + bk) + h(i) < 0, then

species x(t) of (3.5) will go extinct, if h̄(i) = 0, then species x(t) of (3.5) will be non-persistent in the mean,
if h̄(i) > 0, then species x(t) of (3.5) will be weakly persistent, see [28].

Remark 3.12. Let us turn to see the impacts of the Markovian switching on the system. Here we take an
example for negative impulse. If h(i) < 0, for every i ∈ S, then every subsystem (3.5) is extinct. From
Theorem 3.3 we can see that, in this case, as a result of Markovian switching, the overall behavior of (1.5)
also remains extinct. However, Theorems 3.3, 3.6, and 3.7 indicate an interesting result: if some individual
subsystems are extinctive, the corresponding h(i) > 0 or h(i) < 0, some are persistent, the corresponding
h(i) must be positive, due to the Markovian switching, the value h̄ may be less than zero or large than
zero, that is to say, the overall system may be extinct or persistent.

4. Stochastic permanence

Stochastic permanence is a more important asymptotic behavior, it implies that the population will
survive forever, so it is interesting and valuable in biomathematics. In the following, we propose the
conditions under which the species is stochastically permanent. First we talk about the moment property.

Assumption 4.1. There exist two positive constants m and M such that m 6
∏

0<tk<t(1 + bk) 6 M for
all t > 0.

Lemma 4.2. Under Assumption 4.1, for any p ∈ (0, 1), there exists a constant K such that the solution of (1.5) has
the property

lim sup
t→+∞ E[xp(t)] 6 K.

Proof. The proof follows Luo and Mao [29]. For any p ∈ (0, 1), define V(y) = yp. For any y(0) < k, define
a stopping time

σk = inf
{
t > 0,y(t) > k

}
.

Then σk ↑∞ a.s. as k→∞. Applying generalized Itô’s formula reaches that

d[etV(y)] = etyp
{

1 + p
[
b(r) − a(r)

∏
0<tk<t

(1 + bk)
λyλ + 0.5(p− 1)σ2

1(r)

+ 0.5(p− 1)σ2
2(r)

∏
0<tk<t

(1 + bk)
2θy2θ]}dt

+ petyp[σ1(r)dB1(t) + σ2(r)
∏

0<tk<t

(1 + bk)
θyθdB2(t)]
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6 etyp
[
1 + pb̌− pâmλyλ + 0.5p(p− 1)σ̂2

2m
2θy2θ

]
dt

+ petyp[σ1(r)dB1(t) + σ2(r)
∏

0<tk<t

(1 + bk)
θyθdB2(t)]

6 etK1 + pe
typ[σ1(r)dB1(t) + σ2(r)

∏
0<tk<t

(1 + bk)
θyθdB2(t)],

where K1 is a positive constant. Integrating above inequality and then taking expectations for both sides,
one can arrive at

E
[
et∧σkV

(
y(t∧ σk)

)]
6 yp(0) + E

∫t∧σk
0

esK1ds.

Letting k→∞ leads to E
[
etyp(t)

]
6 yp(0) +K1e

t. Further, we have lim supt→+∞E[yp(t)] 6 K1. By now,
we can conclude that lim supt→+∞E[xp(t)] = lim supt→+∞E[

∏
0<tk<t(1 + bk)

pyp(t)] 6 MpK1 := K

which is our desired assertion. This completes the proof.

In the following, we use the theory of M-matrices to get the stochastic permanence. First we give a
condition for the generator Q of the Markov chain.

Assumption 4.3. For some u ∈ S, qiu > 0, ∀i 6= u.

Lemma 4.4. Let Assumption 4.3 hold, if h̃ =
∑N
k=1 πkh(k) > 0, then there exists a constant α ∈ (0, 1) such that

the matrix
A(α) := diag(ξ1(α), ξ2(α), · · · , ξN(α)) −Q,

is a nonsingular M-matrix, where ξk(α) = α(1 + θ)h(k) − 0.5α2(1 + θ)2σ2
1(k).

Proof. The proof of this lemma is similar to [23, Lemma 3], the reader can refer to it, here we omit the
proof.

We are now in position to present our main result of this section. In the following, we write y(t) with
y, V(y(t), r(t)) with V(y,k) and etc. for simplicity.

Theorem 4.5. Under Assumptions 4.1 and 4.3 together with 0 < θ 6 1 and 0 < λ 6 1 + θ, if

h̃ =

N∑
k=1

πkh(k) > 0,

then species x(t) modeled by (1.5) will be stochastically permanent.

Proof. First we prove lim inf
t→+∞ P[x(t) > H2] > 1 − ε. Define V1(y) = 1/y1+θ, by Itô formula we derive that

dV1(y(t)) = (1 + θ)V1

[
a(r(t))

∏
0<tk<t

(1 + bk)
λyλ − b(r(t))

]
dt+ 0.5(1 + θ)(2 + θ)σ2

1(r(t))V1dt

+ 0.5(1 + θ)(2 + θ)σ2
2(r(t))

∏
0<tk<t

(1 + bk)
2θyθ−1dt− (1 + θ)σ1(r(t))V1dB1(t)

− (1 + θ)σ2(r(t))
∏

0<tk<t

(1 + bk)
θy−1dB2(t).

For α given in Lemma 4.4, by [31, Theorem 2.10], there exists a vector ~p = (p1,p2, · · · ,pN)T � 0 such that
A(α)~p� 0 which is equivalent to

pk

[
α(1 + θ)

(
b(k) − 0.5σ2

1(k)
)
− 0.5α2(1 + θ)2σ2

1(k)
]
−

N∑
j=1

qkjpj > 0,

for 1 6 k 6 N. Define function V2 : R+ × S→ R+ by

V2(y,k) = pk(1 + V1)
α.
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Making use of the generalized Itô formula yields that

dV2(y(t),k) = LV2(y,k)dt−αpk(1 + θ)σ1(k)(1 + V1(t))
α−1V1(t)dB1(t)

−αpk(1 + θ)σ2(k)
∏

0<tk<t

(1 + bk)
θ(1 + V1(t))

α−1y−1dB2(t),

where

LV2(y,k)

= αpk(1 + V1)
α−2
{
(1 + V1)(1 + θ)V1

(
a(k)

∏
0<tk<t

(1 + bk)
λyλ − b(k)

)
+ 0.5(1 + θ)(2 + θ)σ2

1(k)(1 + V1)V1

+ 0.5(1 + θ)(2 + θ)σ2
2(k)(1 + V1)

∏
0<tk<t

(1 + bk)
2θyθ−1 + 0.5(α− 1)(1 + θ)2σ2

1(k)V
2
1

+ 0.5(α− 1)(1 + θ)2σ2
2(k)

∏
0<tk<t

(1 + bk)
2θy−2

}
+

N∑
j=1

qkjpj(1 + V1)
α

= αpk(1 + V1)
α−2

{
(1 + V1)

[
(1 + θ)V1

(
a(k)

∏
0<tk<t

(1 + bk)
λyλ − b(k)

)
+ 0.5(1 + θ)(2 + θ)σ2

1(k)V1

+ 0.5(1 + θ)(2 + θ)σ2
2(k)

∏
0<tk<t

(1 + bk)
2θyθ−1

]
+ 0.5(α− 1)(1 + θ)2σ2

1(k)V
2
1

+ 0.5(α− 1)(1 + θ)2σ2
2(k)

∏
0<tk<t

(1 + bk)
2θy−2

}
+ (1 + V1)

α
N∑
j=1

qkjpj

= (1 + V1)
α−2

{
−
[
αpk(1 + θ)h(k) − 0.5α2pk(1 + θ)2σ2

1(k) −

N∑
j=1

qkjpj

]
V2

1

+
[
−αpk(1 + θ)b(k) + 0.5αpk(1 + θ)(2 + θ)σ2

1(k) + 2
N∑
j=1

qkjpj

]
V1

+

N∑
j=1

qkjpj +αpk(1 + θ)a(k)
∏

0<tk<t

(1 + bk)
λV1y

λ−1−θ +αpk(1 + θ)a(k)
∏

0<tk<t

(1 + bk)
λyλ−1−θ

+ 0.5αpk(1 + θ)(2 + θ)σ2
2(k)

∏
0<tk<t

(1 + bk)
2θyθ−1

+ 0.5αpk(1 + θ)(2 + θ)σ2
2(k)

∏
0<tk<t

(1 + bk)
2θy−2

+ 0.5pkα(α− 1)(1 + θ)2σ2
2(k)

∏
0<tk<t

(1 + bk)
2θy−2

}
.

Now choose sufficiently small η > 0 satisfying

αpk(1 + θ)
(
b(k) − 0.5σ2

1(k)
)
− 0.5α2pk(1 + θ)2σ2

1(k) −

N∑
j=1

qkjpj − ηpk > 0,

for all 1 6 k 6 N. Set V3(y,k) = eηtV2(y,k). Using generalized Itô formula derives that

E[V3(y(t), r(t))] = V2(y(0), r(0)) + E

∫t
0
eηs[LV2(y(s), r(s)) + ηV2(y(s), r(s))]ds,
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where

LV2(y,k) + ηV2(y,k) = (1 + V1)
α−2

{
−
[
αpk(1 + θ)h(k) − 0.5α2pk(1 + θ)2σ2

1(k) −

N∑
j=1

qkjpj − ηpk

]
V2

1

+
[
−αpk(1 + θ)b(k) + 0.5αpk(1 + θ)(2 + θ)σ2

1(k) + 2
N∑
j=1

qkjpj + 2ηpk
]
V1 + ηpk

+

N∑
j=1

qkjpj +αpk(1 + θ)a(k)
∏

0<tk<t

(1 + bk)
λV1y

λ−1−θ

+αpk(1 + θ)a(k)
∏

0<tk<t

(1 + bk)
λyλ−1−θ

+ 0.5αpk(1 + θ)(2 + θ)σ2
2(k)

∏
0<tk<t

(1 + bk)
2θyθ−1 (4.1)

+ 0.5αpk(1 + θ)(2 + θ)σ2
2(k)

∏
0<tk<t

(1 + bk)
2θy−2

+ 0.5pkα(α− 1)(1 + θ)2σ2
2(k)

∏
0<tk<t

(1 + bk)
2θy−2

}

6 (1 + V1)
α−2

{
−
[
αpk(1 + θ)h(k) − 0.5α2pk(1 + θ)2σ2

1(k) −

N∑
j=1

qkjpj − ηpk

]
V2

1

+
[
αpk(1 + θ)b̌+ 0.5αpk(2 + θ)2σ̌2

1 + 2
N∑
j=1

qkjpj + 2ηpk
]
V1 + ηpk +

N∑
j=1

qkjpj

+αpk(1 + θ)ǎMλV1y
λ−1−θ +αpk(1 + θ)ǎMλyλ−1−θ + 0.5αpk(2 + θ)2σ̌2

2M
2θyθ−1

+ 0.5αpk(2 + θ)2σ̌2
2M

2θy−2 + 0.5pkα2(2 + θ)2σ̌2
2M

2θy−2

}
:= J(y,k).

We claim that J(y,k) is upper bounded. Without loss of generality, suppose that σ̌2
2 > 0. Set

Lk = min

{
1,
(
αpk(1 + θ)h(k) − 0.5α2pk(1 + θ)2σ2

1(k) −
∑N
j=1 qkjpj − ηpk

αpk(2 + θ)2(1 +α)σ̌2
2M

2θ

)1/(2θ)
}

.

(a) If y > Lk, by the definition of V1 and the condition 0 < θ 6 1, 0 < λ 6 1 + θ, J(y,k) is upper
bounded, namely, there exists a positive number J1k such that supy>Lk J(y,k) < J1k.

(b) If y < Lk. For 0 < λ 6 1 + θ, we can easily see that there exists a constant τ ∈ (0, 1] such that
λ = τ(1 + θ). Recalling y < 1, one can see that

yλ−1−θ = yτ(1+θ)y−(1+θ) = V1−τ
1 , yθ−1 = y2θy−(1+θ) 6 V1. (4.2)

Note that

y <

(
αpk(1 + θ)h(k) − 0.5α2pk(1 + θ)2σ2

1(k) −
∑N
j=1 qkjpj − ηpk

αpk(2 + θ)2(1 +α)σ̌2
2M

2θ

)1/(2θ)

,

then

− 0.5
[
αpk(1 + θ)h(k) − 0.5α2pk(1 + θ)2σ2

1(k) −

N∑
j=1

qkjpj − ηpk

]
V2

1 + 0.5αpk(2 + θ)2(1 +α)σ̌2
2M

2θy−2 < 0. (4.3)



R. Wu, J. Nonlinear Sci. Appl., 10 (2017), 436–450 446

Substituting (4.2) and (4.3) into (4.1), we receive

J(y,k) 6 (1 + V1)
α−2

{
− 0.5

[
αpk(1 + θ)h(k) − 0.5α2pk(1 + θ)2σ2

1(k) −

N∑
j=1

qkjpj − ηpk

]
V2

1

+
[
αpk(1 + θ)b̌+ 0.5αpk(2 + θ)2σ̌2

1 + 2
N∑
j=1

qkjpj + 2ηpk
]
V1 + ηpk +

N∑
j=1

qkjpj

+αpk(1 + θ)ǎMλV2−τ
1 +αpk(1 + θ)ǎMλV1−τ

1 + 0.5αpk(2 + θ)2σ̌2
2M

2θV1

}
.

By now, we can conclude that if y < Lk, then there exists a positive number J2k such that supy<Lk J(y,k) <
J2k. Choose J = maxk∈S{J1k, J2k}, then supy∈R+,k∈S J(y,k) < J <∞ is obtained. Hence,

pke
ηtE[(1 + V1(y(t)))

α] 6 pk(1 + V1(y(0)))α + J(eηt − 1)/η.

Further,

lim sup
t→+∞ E[y−α(1+θ)(t)] = lim sup

t→∞ E[Vα1 (y(t))] 6 lim sup
t→∞ E[(1 + V1)

α(y(t))] 6 J/(ηp̂).

Then,

lim sup
t→+∞ E[x(t)−α(1+θ)] = lim sup

t→+∞ E[
∏

0<tk<t

(1 + bk)
−α(1+θ)y−α(1+θ)(t)]

6 m−α(1+θ) lim sup
t→+∞ E[y−α(1+θ)(t)]

6 m−α(1+θ)J/(ηp̂) := J̃.

For any given ε > 0, let H2 = (ε/̃J)1/(α(1+θ)), using Chebyshev inequality deduces that

P{x(t) 6 H2} = P{x−α(1+θ)(t) > H−α(1+θ)
2 } 6 E[x−α(1+θ)(t)]/H

−α(1+θ)
2 = H

α(1+θ)
2 E[x−α(1+θ)(t)].

So, lim supt→+∞P{x(t) 6 H2} 6 ε. Then, lim inft→+∞P{x(t) > H2} > 1 − ε is obtained. As applications
of Chebyshev’s inequality and Lemma 4.2, we have lim inf

t→+∞ P[x(t) 6 H1] > 1 − ε. Therefore, the stochastic

permanence is obtained. This completes the proof.

Remark 4.6. From the conditions and results of Theorem 4.5, we can see that the stochastic permanence
of the population has close relations with the impulse and stationary distribution of the Markov chain.
In order to make the population survive forever, the impulse cannot be too small or too large, in other
words, the impulse must be in a certain range, this is also consistent with the reality.

Remark 4.7. From the conditions of Theorem 4.5, we can see that the property of stochastic permanence
of the population has relation with the power of the system. This implies that our model is more general
and meaningful.

5. Numerical simulations

In this section, we use the Milsteins Method (see [10]) to illustrate our results and the impulsive
effects on the population. First we give an example to illustrate the effects of the negative impulse on the
populations.

Example 5.1. For model (1.5), the parameters are chosen as follows: b(r(t)) = 0.6,a(r(t)) = 0.4,σ2
1(r(t)) =

0.8,σ2
2(r(t)) = 1.5, λ = 0.9, θ = 0.1.
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By simple computation, we see h(r(t)) = 0.6− 0.4 > 0, by the results of [22], the species will be weakly
persistent, in Figure 1 the blue line shows this.
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without impulse

impulse

Figure 1: The negative impulse is disadvantageous for the persistence of the species.

Now we take the impulse into account, in Example 5.1, let bk = e−0.6 − 1, tk = k be negative impulses,
then the result changes greatly. By computation, we have lim supt→∞ t−1∑

0<tk<t ln(1 + bk) + h(r(t)) =
−0.4 < 0, then species x(t) will be extinct. In Figure 1, the green line illustrates this. This example reveals
that the negative impulses are disadvantageous for the ecosystem.

In the following, we present examples to show the regulation of the Markov chain. Here, we consider
the Markov chain with two state space S = {1, 2}.

Example 5.2. For model (1.5), choose the initial value x(0) = 0.2 with the following choice of parameters:

b(1) = 0.3,a(1) = 0.5,σ2
1(1) = 0.8,σ2

2(1) = 5;b(2) = 0.5,a(2) = 0.5,σ2
1(2) = 0.6,σ2

2(2) = 3,bk = e
− 1
k2 −

1, tk = k, λ = 0.9, θ = 0.1.

By computation, we have h(1) = b(1) − 0.5σ2
1(1) = 0.3− 0.4 < 0, h(2) = b(2) − 0.5σ2

1(2) = 0.5− 0.3 > 0,
by Theorems 3.3 and 3.7, we conclude that:
in state 1, the population will be extinct; and in state 2, the population will be weakly persistent. The
state 1 can be regarded as the “bad” state, and the state 2 can be considered as the “good” state. First,

we take the generator of the Markov chain as Q =

(
−1 1
4 −4

)
, by (1.3) the unique stationary distribu-

tion π of r(t) is expressed by π = (π1,π2) = (4/5, 1/5). Then h̄ = lim supt→∞ t−1∑
0<tk<t ln(1 + bk) +∑2

i=1 πih(i) = −0.04 < 0, by Theorem 3.3, the species will be extinct, see Figure 2.

Now choose the generator of the Markov chain to be Q =

(
−2 2
1 −1

)
, so the corresponding sta-

tionary distribution is denoted by π = (π1,π2) = (1/3, 2/3). Then we have h̃ =
∑2
i=1 πih(i) = 0.1 > 0, by

Theorem 4.5, the population will be stochastically permanent, see Figure 3.
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Figure 2: The stationary distribution π = (π1,π2) = (4/5, 1/5).
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Figure 3: The stationary distribution π = (π1,π2) = (1/3, 2/3).
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6. Conclusions and further remarks

This paper is concerned with the stochastic Gilpin-Ayala model under regime switching with im-
pulsive perturbations. We consider several asymptotic properties and present sufficient conditions for
stochastic permanence and extinction. Our key contributions are as follows.

(A) The model is new and more general. By now, as our knowledge is concerned, the extinction and
stochastic permanence of the model under regime switching with impulse has little been reported.
In this paper, we discuss in detail the effects of the Markov chain and impulse on the dynamics.

(B) The critical value among the extinction, non-persistence in the mean and weak persistence is given.

(C) Our results demonstrate that the long time behaviors of the model have close relations with the
impulse and stationary distribution of the Markov chain, see Remarks 3.5, 3.8, 3.9, 3.10, 3.12, 4.6.

(D) From our results we can see that the Markovian switching plays important roles in the model, it can
regulate the overall property of the system, see Remarks 3.12, 4.6.

Some interesting topics deserve further consideration. In this paper, we consider the single-species
model. One may investigate some n-species models, it may be more difficult, about biological multiple
models, readers can refer the references [20, 21].
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