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Abstract
We propose an intuitive theorem which uses some concepts of auxiliary functions for establishing existence and uniqueness

of the fixed point of a self-mapping. First we work in the setting of fuzzy metric spaces in the sense of George and Veeramani,
then we deduce some consequences in modular metric spaces. Finally, a sample homotopy result is derived making use of the
main theorem. c©2017 All rights reserved.
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1. Introduction

Starting with the pioneering paper of Zadeh [15], fuzzy numbers and fuzzy sets theory attracted the
interest of many researchers who have to deal with vagueness and uncertainty in real processes and
mathematical formulations of practical situations. In particular, a vivid line of research is focused on
the study of fuzzy metric spaces with important topological aspects and characterizations, see [9, 10]
and references therein. The proponents of such a kind of investigations consider the transposition of
classical metric concepts, i.e., convergence, completeness and so on, an improvement of knowledge and
enlargement of classical metric spaces theory. On the other hand, the detractors of this process consider
the transposition approach just an exercise without real advantages. We use few lines to synthesize our
point of view on this matter and motivate this paper, see again [10]. Precisely, it is well-known that
the metrizability of a fuzzy topological space induces a strong link with classical metrizable topological
spaces, roughly speaking we can identify the two settings. However, we point out that a major flexibility
and capacity of adaptation must be recognized to fuzzy metrics by referring to the parameter “t” in the
definition of the fuzzy metric. In fact, this parameter has not a counterpart in the classical definition
of metric, but it is fundamental in developing some applications, for example, in image processing and
related finding. In addition, we have to say that the completion of fuzzy metric spaces was largely
discussed in recent years, by pointing out its diversity from the completion of classical metric spaces; in
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particular, there are fuzzy metric spaces which are non-completable, see [11].
Building on this background and aiming to improve the understanding of the behaviour of fuzzy

metric spaces in relation to generalized metric spaces, we present some fixed point theorems in the
setting of fuzzy metric spaces, then we obtain analogous results in the setting of modular metric spaces.
A modular metric space is another generalization of a classical metric space, where a parameter, say “λ”,
plays a crucial role, as will be shown in the following, see also [5, 6].

Fixed point theory gives us effective techniques based on a simple mathematical reasoning to approach
various problems arising in mathematics and applied sciences. Thus, we choose to propose an intuitive
theorem which uses some concepts of auxiliary functions for computing the contractive condition; see also
[14] for some preliminaries. First we work in the setting of fuzzy metric spaces in the sense of George and
Veeramani, then we deduce some consequences in modular metric spaces. Finally, a sample homotopy
result is derived making use of the main theorem.

2. Preliminaries and statements

We start by recalling some basic concepts used in a fuzzy setting: t-norm, regular and triangular fuzzy
metric, non-Archimedean fuzzy metric space.

Definition 2.1. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a continuous t-norm, if it satisfies the
following assertions:

(i) ∗ is commutative and associative;

(ii) ∗ is continuous;

(iii) a ∗ 1 = a for all a ∈ [0, 1];

(iv) a ∗ b 6 c ∗ d when a 6 c and b 6 d and a,b, c,d ∈ [0, 1].

Lemma 2.2. Let a,b ∈ [0, 1]. The following statements hold:

(i) a+ b 6 1 + ab;

(ii) 1
a + 1

b − 1 6 1
a+b−1 , whenever a+ b > 1.

Proof. The statement (i) holds if a+ b 6 1 or a = 1 or b = 1. Assume that there exist a,b ∈]0, 1[ such that
a+b > 1+ab. Then, (a+b)2 > (1+ab)2 which implies a2 +b2 > 1+a2b2. Thus, a2n +b2n > 1+a2nb2n

for all n ∈ N. Clearly, this inequality cannot hold true since a2n ,b2n → 0 as n → +∞. About the
statement (ii), it is equivalent to a+b−ab

ab 6 1
a+b−1 , that is, (a+ b)(a+ b− ab− 1) 6 0. Therefore (ii)

follows by (i).

Definition 2.3 (George and Veeramani [8]). A fuzzy metric space is an ordered triple (X,M, ∗) such that
X is a nonempty set, ∗ a continuous t-norm and M a fuzzy set on X×X×]0,+∞[ satisfying the following
conditions, for all x,y, z ∈ X and t, s > 0:

(j) M(x,y, t) > 0;

(jj) M(x,y, t) = 1, if and only if x = y;

(jjj) M(x,y, t) =M(y, x, t);

(jv) M(x,y, t) ∗M(y, z, s) 6M(x, z, t+ s);

(v) M(x,y, ·) : ]0,+∞[→]0, 1] is continuous,

then the triple (X,M, ∗) is called a fuzzy metric space. If we replace (jv) by



F. Tchier, C. Vetro, F. Vetro, J. Nonlinear Sci. Appl., 10 (2017), 451–464 453

(vj) M(x,y, t) ∗M(y, z, t) 6M(x, z, t),

then the triple (X,M, ∗) is called a non-Archimedean fuzzy metric space. We note that if M(x,y, ·) is
nondecreasing for all x,y ∈ X, then (vj) is equivalent to

M(x,y, t) ∗M(y, z, s) 6M(x, z, max{t, s}),

that implies (jv). Thus each non-Archimedean fuzzy metric space is a fuzzy metric space, if M(x,y, ·) is
nondecreasing for all x,y ∈ X.

Definition 2.4 ([7]). Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric M is called triangular when-
ever

1
M(x,y, t)

− 1 6
1

M(x, z, t)
− 1 +

1
M(z,y, t)

− 1,

for all x,y, z ∈ X and all t > 0.

Lemma 2.5. Let (X,M, ∗) be a fuzzy metric space. If M is triangular and a ∗ b = max{0,a + b − 1} for all
a,b ∈ [0, 1], then (X,M, ∗) is a non-Archimedean fuzzy metric space.

Proof. Suppose 0 < M(x, z, t) ∗M(z,y, t), then M(x,y, t) >M(x, z, t) ∗M(z,y, t), if and only if 1
M(x,y,t) 6

1
M(x,z,t)∗M(z,y,t) . The hypothesis that M is triangular ensures that 1

M(x,y,t) 6 1
M(x,z,t) +

1
M(z,y,t) − 1.

By using (ii) of Lemma 2.2, we get

1
M(x,y, t)

6
1

M(x, z, t)
+

1
M(z,y, t)

− 1

6
1

M(x, z, t) +M(z,y, t) − 1

=
1

M(x, z, t) ∗M(z,y, t)
.

Thus (X,M, ∗) is a non-Archimedean fuzzy metric space.

Lemma 2.6. Let (X,M, ∗) be a non-Archimedean fuzzy metric space. If 1+a ∗ b > a+ b for all a,b ∈ [0, 1], then
1 −M(x,y, t) 6 1 −M(x, z, t) + 1 −M(z,y, t).

Proof. Since (X,M, ∗) is non-Archimedean, we have

1 −M(x,y, t) 6 1 −M(x, z, t) ∗M(z,y, t)
6 1 −M(x, z, t) + 1 −M(z,y, t).

Remark 2.7. If a ∗ b = ab or a ∗ b = min{a,b}, then by (i) of Lemma 2.2, we get 1 + a ∗ b > 1 + ab > a+ b.
The same holds if a ∗ b = max{0,a+ b− 1}.

Definition 2.8. Let (X,M, ∗) be a fuzzy metric space. Then:

(i) a sequence {xn} converges to x ∈ X, if and only if for all t > 0, lim
n→+∞M(xn, x, t) = 1;

(ii) a sequence {xn} in X is a Cauchy sequence [8], if and only if for all ε ∈]0, 1[ and t > 0, there exists
n0 such that M(xn, xm, t) > 1 − ε, for all m,n > n0;

(iii) (X,M, ∗) is called complete [8], if every Cauchy sequence converges to some x ∈ X.

Our first main statement is an existence result for unique fixed point. It is inspired from Theorem 2.8
of [13].
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Theorem 2.9. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric space with M triangular and let T : X→
X be a self-mapping. Suppose that there exist a function ζ : [0,+∞[×[0,+∞[→ R and a lower semi-continuous
function ϕ : X→ [0,+∞[ such that

(ζ1) ζ
(

1
M(Tx, Ty, t)

− 1 +ϕ(Tx) +ϕ(Ty),
1

M(x,y, t)
− 1 +ϕ(x) +ϕ(y)

)
> 0 for all x,y ∈ X and for all

t > 0;

(ζ2) ζ(u, v) < v− u, for all u, v > 0;

(ζ3) if {un} and {vn} are sequences in ]0,+∞[ such that lim
n→+∞un = lim

n→+∞ vn = ` ∈]0,+∞[, then

lim sup
n→+∞ ζ(un, vn) < 0.

Under these hypotheses, T has a unique fixed point z ∈ X with ϕ(z) = 0.

Remark 2.10. If in Theorem 2.9 the t-norm is defined by a ∗ b = max{0,a+ b− 1} for all a,b ∈ [0, 1] and
M is a fuzzy metric, then the hypothesis that M is triangular ensures that (X,M, ∗) is a non-Archimedean
fuzzy metric space.

Our main existence result for unique fixed point in the non-triangular fuzzy metric case is as follows.

Theorem 2.11. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric space with 1 + a ∗ b > a+ b for all
a,b ∈ [0, 1] and let T : X → X be a self-mapping. Suppose that there exist a function ζ : [0,+∞[×[0,+∞[→ R

and a lower semi-continuous function ϕ : X→ [0,+∞[ such that

(ζ∗1 ) ζ (1 −M(Tx, Ty, t) +ϕ(Tx) +ϕ(Ty), 1 −M(x,y, t) +ϕ(x) +ϕ(y)) > 0, for all x,y ∈ X and for all t > 0;

also retaining (ζ2) and (ζ3) above. Under these hypotheses, T has a unique fixed point z ∈ X with ϕ(z) = 0.

We can easily produce examples where the hypotheses (ζ2) and (ζ3) are fulfilled. Indeed, let us
take: ζ(0, 0) = 1 and ζ(u, v) = 0.5v − u for all u, v > 0, see also Example 2.4 of [3]. Otherwise, take
ζ(u, v) = vφ(v) − u for all u, v > 0, where φ : [0,+∞[→ [0, 1[ is such that lim

u→l+
φ(u) < 1 for all l > 0.

Such a kind of functions is called simulation function in [13], and there are some papers discussing the
advantages in dealing with these functions, see also [3].

3. Proof of Theorem 2.9

By arguments of the same nature as in the proof of fixed point theorems in metric spaces, we obtain
constructively the existence of a fixed point for the self-mapping T : X → X, then the uniqueness follows
arguing by contradiction.

Proof of Theorem 2.9. We construct the so-called Picard sequence at starting point x0, where x0 is an arbi-
trary point in X and xn = Txn−1 for all n ∈ N. Trivially, we note that whenever there exists an index
m such that xm = xm+1, then the equalities xm = xm+1 = Txm lead to the occurrence that xm is a fixed
point of T . Therefore, to continue our proof, we assume that xn−1 6= xn for all n ∈ N and prove that

lim
n→+∞M(xn, xn+1, t) = 1 for all t > 0. Reasoning by contradiction, we assume that there exists some t0

such that lim
n→+∞M(xn, xn+1, t0) < 1. Now, by (jj) of Definition 2.3, we have that M(xn, xn+1, t0) < 1 for

all n ∈N. This implies that

S(xn−1, xn, t0;ϕ) :=
1

M(xn−1, xn, t0)
− 1 +ϕ(xn−1) +ϕ(xn) > 0, for all n ∈N,
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where the notation in the left hand side reminds the dependence on t0 and ϕ, but, at the same time, gives
us the possibility of simplifying notation in calculations. Then by using (ζ1) and (ζ2), with x = xn−1 and
y = xn, we have

0 6 ζ(S(xn, xn+1, t0;ϕ),S(xn−1, xn, t0;ϕ))
< S(xn−1, xn, t0;ϕ) − S(xn, xn+1, t0;ϕ),

for all n ∈N. The consequence of this inequality, also rewritable as

S(xn, xn+1, t0;ϕ) < S(xn−1, xn, t0;ϕ), for all n ∈N,

is that {S(xn−1, xn, t0;ϕ)} is a decreasing sequence of positive real numbers. Then we affirm that there
exists a limit point l > 0 such that

lim
n→+∞S(xn−1, xn, t0;ϕ) = l, (3.1)

and arguing for contradiction, show that l = 0. Therefore, we suppose l > 0 and use the condition (ζ3),
with

tn = S(xn, xn+1, t0;ϕ), and sn = S(xn−1, xn, t0;ϕ),

to conclude that
0 6 lim sup

n→+∞ ζ (S(xn, xn+1, t0;ϕ),S(xn−1, xn, t0;ϕ)) < 0.

But this inequality is not true and hence l = 0. Now, since the function ϕ has only non-negative values,
from (3.1) we get

lim
n→+∞M(xn−1, xn, t0) = 1 and lim

n→+∞ϕ(xn) = 0. (3.2)

The crucial point of the proof is in establishing that the sequence {xn} is Cauchy in X. Again, we
obtain the claim by contradiction. Therefore, we assume that the sequence is not Cauchy, that is,
lim inf
m,n→+∞M(xm, xn, t0) < 1 for some t0 > 0. We give a standard reasoning, in fact, we suppose there

exist 0 < ε < 1 and two subsequences {xmk
} and {xnk} of {xn} such that nk is the smallest index for which

nk > mk > k and
M(xmk

, xnk , t0) 6 1 − ε, (3.3)

and
M(xmk

, xnk−1, t0) > 1 − ε. (3.4)

With respect to the inequalities (3.3) and (3.4), by using the triangular inequality (vj), we have

1 − ε >M(xmk
, xnk , t0)

>M(xmk
, xnk−1, t0) ∗M(xnk−1, xnk , t0)

> (1 − ε) ∗M(xnk−1, xnk , t0).

We have just to recall the first limit in (3.2) and by letting k to infinity, we deduce

lim
k→+∞M(xmk

, xnk , t0) = 1 − ε. (3.5)

By the same reasoning as above, we obtain

1 − ε >M(xmk
, xnk , t0)

>M(xmk
, xmk−1, t0) ∗M(xmk−1, xnk−1, t0) ∗M(xnk−1, xnk , t0),

and

M(xmk−1, xnk−1, t0) >M(xmk−1, xmk
, t0) ∗M(xmk

, xnk , t0) ∗M(xnk , xnk−1, t0).
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From the last inequalities, by letting k to infinity, we get

lim
k→+∞M(xmk−1, xnk−1, t0) = 1 − ε. (3.6)

Moreover, by letting k to infinity and using (3.2), (3.5) and (3.6), we obtain

lim
k→+∞S(xmk

, xnk , t0;ϕ) =
ε

1 − ε
,

lim
k→+∞S(xmk−1, xnk−1, t0;ϕ) =

ε

1 − ε
.

Finally, we work with the condition (ζ3), with

tk = S(xmk
, xnk , t0;ϕ), and sk = S(xmk−1, xnk−1, t0;ϕ),

so that we deduce
0 6 lim sup

k→+∞ ζ(S(xmk
, xnk , t0;ϕ),S(xmk−1, xnk−1, t0;ϕ)) < 0.

Obviously, this inequality is not true and so {xn} is a Cauchy sequence in X.
Now, we use completeness of X to deduce the existence of a point z ∈ X such that lim

n→+∞M(xn, z, t) = 1

for all t > 0. Then we have just to recall the second limit in (3.2) and use lower semi-continuity of the
function ϕ to have

0 6 ϕ(z) 6 lim inf
n→+∞ϕ(xn) = 0,

that is, ϕ(z) = 0.
After this, it is not difficult to show that z is a fixed point of T . In particular, if there exists a subse-

quence {xnk} of {xn} such that Txnk = Tz, for all k ∈N, then the claim trivially holds. On the other hand,
if this situation does not occur, then we can assume that xn 6= z and Txn 6= Tz, for all n ∈ N∪ {0}. By (jj)
of Definition 2.3, this implies that M(xn, z, t) < 1 and M(xn, Tz, t) < 1, for all n ∈ N. In this context, by
using (ζ1) and (ζ2) with x = xn, y = z and t > 0, we deduce that

0 6 ζ(S(Txn, Tz, t;ϕ),S(xn, z, t;ϕ))
< S(xn, z, t;ϕ) − S(Txn, Tz, t;ϕ).

Starting from
S(Txn, Tz, t;ϕ) < S(xn, z, t;ϕ), for all n ∈N,

and expliciting the notation, one can write

1
M(z, Tz, t)

− 1 6
1

M(z, xn+1, t)
− 1 +

1
M(Txn, Tz, t)

− 1

6
1

M(z, xn+1, t)
− 1 + S(Txn, Tz, t;ϕ)

<
1

M(z, xn+1, t)
− 1 + S(xn, z, t;ϕ),

for all n ∈ N. We have to take the limit for n to infinity in the last inequality for concluding that
M(z, Tz, t) = 1, that is, z = Tz. Then, the existence part is established, but we have to prove the uniqueness
part. The proof of this claim is obtained by contradiction: if the fixed point z is not unique, then there
exists w ∈ X such that w = Tw and z 6= w. It follows by (jj) of Definition 2.3 that M(z,w, t) < 1. Trivially,
by using (ζ1) and (ζ2) with x = w, y = z and t > 0, we get that

0 6 ζ(S(Tw, Tz, t0;ϕ),S(w, z, t;ϕ)) < S(w, z, t;ϕ) − S(w, z, t;ϕ) = 0,

which is a contradiction and hence w = z.
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The just delineated proof and hence Theorem 2.9 are conservative in respect to the consolidated knowl-
edge in fixed point theory, but provide to the users some advantages: a more general main condition,
where naturally we can retrieve different contractive type conditions; the use of a lower semicontinuous
function to moderating the effect of the application of function ζ, for instance.

4. Proof of Theorem 2.11

Essentially we propose the same proof of Theorem 2.9, by a replacement of the contractive condition
satisfied from the self-mapping T . Precisely, we use condition (ζ∗1) instead of (ζ1). However, we give the
whole proof so that this section is more effective and clear.

Proof of Theorem 2.11. Let x0 be an arbitrary point in X and let {xn} be such that xn = Txn−1, for all n ∈N.
If there exists an index m such that xm = xm+1, then the equalities xm = xm+1 = Txm lead to the
occurrence that xm is a fixed point of T . Therefore, to continue our proof, we assume that xn−1 6= xn,
for all n ∈ N and prove that lim

n→+∞M(xn, xn+1, t) = 1, for all t > 0. Reasoning by contradiction, we

assume that there exists some t0 such that lim
n→+∞M(xn, xn+1, t0) < 1. Now, by (jj) of Definition 2.3, we

have M(xn, xn+1, t0) < 1, for all n ∈N. This implies that

S(xn−1, xn, t0;ϕ) := 1 −M(xn−1, xn, t0) +ϕ(xn−1) +ϕ(xn) > 0, for all n ∈N.

Then by using (ζ∗1 ) and (ζ2), with x = xn−1, y = xn and t = t0, we have

0 6 ζ(S(xn, xn+1, t0;ϕ),S(xn−1, xn, t0;ϕ))
< S(xn−1, xn, t0;ϕ) − S(xn, xn+1, t0;ϕ),

for all n ∈N. The above inequality shows that

S(xn, xn+1, t0;ϕ) < S(xn−1, xn, t0;ϕ), for all n ∈N,

which implies that {S(xn−1, xn, t0;ϕ)} is a decreasing sequence of positive real numbers. Thus, we affirm
that there exists a limit point l > 0 such that

lim
n→+∞S(xn−1, xn, t0;ϕ) = l, (4.1)

and arguing by contradiction, show that l = 0. Then, we suppose that l > 0. It follows from the condition
(ζ3) with

tn = S(xn, xn+1, t0;ϕ), and sn = S(xn−1, xn, t0;ϕ),

that
0 6 lim sup

n→+∞ ζ (S(xn, xn+1, t0;ϕ),S(xn−1, xn, t0;ϕ)) < 0,

which is a contradiction, therefore, we conclude that l = 0 and from (4.1), since the function ϕ has only
non-negative values, we get

lim
n→+∞M(xn−1, xn, t0) = 1, and lim

n→+∞ϕ(xn) = 0. (4.2)

Now, we show that {xn} is a Cauchy sequence in X. Assume to the contrary that {xn} is not a Cauchy
sequence, that is, lim inf

m,n→+∞M(xm, xn, t0) < 1, for some t0 > 0. We give a standard reasoning, in fact, we

suppose there exist 0 < ε < 1 and two subsequences {xmk
} and {xnk} of {xn} such that nk is the smallest

index for which nk > mk > k and
M(xmk

, xnk , t0) 6 1 − ε, (4.3)
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and
M(xmk

, xnk−1, t0) > 1 − ε. (4.4)

By using (4.3), (4.4) and the triangular inequality (vj), we have

1 − ε >M(xmk
, xnk , t0) >M(xmk

, xnk−1, t0) ∗M(xnk−1, xnk , t0)

> (1 − ε) ∗M(xnk−1, xnk , t0).

Now, using (4.2) and taking the limit as k to infinity, we get

lim
k→+∞M(xmk

, xnk , t0) = 1 − ε. (4.5)

Again, by using (vj), we write

1 − ε >M(xmk
, xnk , t0)

>M(xmk
, xmk−1, t0) ∗M(xmk−1, xnk−1, t0) ∗M(xnk−1, xnk , t0),

and

M(xmk−1, xnk−1, t0) >M(xmk−1, xmk
, t0) ∗M(xmk

, xnk , t0) ∗M(xnk , xnk−1, t0).

Taking the limit in the above inequalities, we get

lim
k→+∞M(xmk−1, xnk−1, t0) = 1 − ε. (4.6)

Letting k to infinity and by using (4.2), (4.5) and (4.6), we obtain

lim
k→+∞S(xmk

, xnk , t0;ϕ) = ε,

lim
k→+∞S(xmk−1, xnk−1, t0;ϕ) = ε.

By condition (ζ3), with tk = S(xmk
, xnk , t0;ϕ) and sk = S(xmk−1, xnk−1, t0;ϕ), we get

0 6 lim sup
k→+∞ ζ(S(xmk

, xnk , t0;ϕ),S(xmk−1, xnk−1, t0;ϕ)) < 0,

which is a contradiction. Therefore, the sequence {xn} is Cauchy in X. Since X is a complete fuzzy metric
space, there exists z ∈ X such that M(xn, z, t) → 1 as n to infinity, for all t > 0. The second limit in (4.2)
and lower semi-continuity of the function ϕ give us

0 6 ϕ(z) 6 lim inf
n→+∞ϕ(xn) = 0,

that is, ϕ(z) = 0.
We claim that z is a fixed point of T . Clearly, if there exists a subsequence {xnk} of {xn} such that

Txnk = Tz, for all k ∈N, then z is a fixed point for T . On the other hand, if this situation does not occur,
then we can assume that xn 6= z and Txn 6= Tz, for all n ∈N∪ {0}. By (jj) of Definitin 2.3, this implies that
M(xn, z, t) < 1 and M(Txn, Tz, t) < 1, for all n ∈ N. Hence, by using (ζ∗1) and (ζ2) with x = xn, y = z

and t > 0, we deduce that

0 6 ζ(S(Txn, Tz, t;ϕ),S(xn, z, t;ϕ))
< S(xn, z, t;ϕ) − S(Txn, Tz, t;ϕ).

This implies that
S(Txn, Tz, t;ϕ) < S(xn, z, t;ϕ), for all n ∈N,
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and since −M(z, xn+1, t) ∗M(Txn, Tz, t) 6 1 −M(z, xn+1, t) −M(Txn, Tz, t), we get

1 −M(z, Tz, t) 6 1 −M(z, xn+1, t) ∗M(Txn, Tz, t)
6 1 −M(z, xn+1, t) + S(Txn, Tz, t;ϕ)
< 1 −M(z, xn+1, t) + S(xn, z, t;ϕ),

for all n ∈ N. Finally, by letting n to infinity in the above inequality, we obtain that M(z, Tz, t) = 1, that
is, z = Tz.

The proof of the uniqueness of the fixed point follows exactly the same lines in the proof of Theorem
2.9 and hence, to avoid repetitions, we omit the details.

5. Extended approach to a modular metric

We start with the following example from [12].

Example 5.1 ([12]). Let (X,M, ∗) be a triangular fuzzy metric space. Define a function ω : ]0,+∞[×X×
X→ [0,+∞[ as

ω(λ, x,y) =
1

M(x,y, λ)
− 1,

for all x,y ∈ X and λ > 0. Then ωλ is a modular metric on X.

Before using this fact, we have to clarify what are a modular metric and a modular metric space.

Definition 5.2 ([5, 6]). Let ω : ]0,+∞[×X×X→ [0,+∞[ be a function satisfying the following conditions,
for all λ,µ > 0 and x,y, z ∈ X:

(i) x = y, if and only if ω(λ, x,y) = 0, for all λ > 0;

(ii) ω(λ, x,y) = ω(λ,y, x);

(iii) ω(λ+ µ, x,y) 6 ω(λ, x, z) +ω(µ, z,y).

Then, ω is called a modular metric on X. If we replace (i) by

(iv) ω(λ, x, x) = 0, for all λ > 0, x ∈ X,

then ω is called a pseudomodular metric on X. If we replace (iii) by

(v) ω(λ, x,y) 6 ω(λ, x, z) +ω(λ, z,y), for all λ > 0 and x,y, z ∈ X;

then ω is called non-Archimedean. Moreover, ω is called convex, if the following inequality is satisfied
for all λ,µ > 0 and x,y, z ∈ X

(vi) ω(λ+ µ, x,y) 6 λ
λ+µω(λ, x, z) + µ

λ+µω(µ, z,y).

The interest for this kind of function is due to the physical interpretation of a modular. A metric on
a set X is a way to compute nonnegative finite distances between any pair of points of X. Naturally, a
modular on the same set X is a way to consider a nonnegative “field of velocities”, precisely, an average
velocity ω(λ, x,y) is associated to each λ > 0, that is, one takes time λ to move from x to y.

Remark 5.3. Letω be a modular metric on a set X and x,y ∈ X. The function λ→ ω(λ, x,y) is nonincreasing
on ]0,+∞[. Indeed, if µ ∈]0, λ[, then

ω(λ, x,y) 6 ω(λ− µ, x, x) +ω(µ, x,y) = ω(µ, x,y).

We note that if ω is non-Archimedean and ω(·, x,y) is nonincreasing for all x,y ∈ X, then ω is a modular
metric.
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Definition 5.4 ([5, 6]). Let ω be a pseudomodular on X. Fix x0 ∈ X. The two sets

Xω = Xω(x0) = {x ∈ X : lim
λ→+∞ω(λ, x, x0) = 0},

and
X∗ω = X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0, such that ω(λ, x, x0) < +∞},

are called modular spaces around x0.

Of course, Xω ⊂ X∗ω. From [5, 6] we recall that, if ω is a modular on X, then Xω can be equipped with
a nontrivial metric defined by

dω(x,y) = inf{λ > 0 : ω(λ, x,y) 6 λ},

for all x,y ∈ Xω. Moreover, if ω is convex, then we have X∗ω = Xω, see again [5, 6]. This common set can
be endowed with the metric d∗ω defined by

d∗ω(x,y) = inf{λ > 0 : ω(λ, x,y) 6 1},

for all x,y ∈ Xω.

Definition 5.5. Let Xω be a modular metric space. Then

(i) {xn} in Xω is called ω-convergent to x ∈ Xω, if ω(λ, xn, x) → 0 as n → +∞, for all λ > 0. If this
happens, then x is said to be the ω-limit of {xn};

(ii) {xn} in Xω is called ω-Cauchy, if ω(λ, xm, xn)→ 0 as m,n→ +∞, for all λ > 0;

(iii) a subset Y of Xω is called ω-closed, if the ω-limit of a ω-convergent sequence of Y always is in Y;

(iv) a subset Y of Xω is called ω-complete, if any ω-Cauchy sequence in Y is a ω-convergent sequence
and its ω-limit is in Y.

Now, we consider a non-Archimedean modular metric ω : ]0,+∞[×X× X →]0,+∞[ such that, for all
x,y ∈ X, the function λ → ω(λ, x,y) is continuous. If ω(λ, x,y) > 0 for all λ > 0 whenever x 6= y, the
function M : ]0,+∞[×X×X→]0,+∞[ defined by

M(x,y, t) =
1

1 +ω(t, x,y)
, (5.1)

for all x,y ∈ X and t > 0, is a non-Archimedean and triangular fuzzy metric on X, if a ∗ b = ab for all
a,b ∈ [0, 1]. In fact, (j) and (v) of Definition 2.3 are obvious. Also, (jj) and (jjj) are consequences of (i) and
(ii) of Definition 5.2, respectively. For (vj) and triangular inequality, from ω(t, x,y) 6 ω(t, x, z)+ω(t, z,y),
we get

M(x,y, t) =
1

1 +ω(t, x,y)
>

1
1 +ω(t, x, z) +ω(t, z,y)

>
1

1 +ω(t, x, z)
1

1 +ω(t, z,y)
=M(t, x, z)M(t, z,y),

and

1
M(x,y, t)

− 1 = ω(t, x,y) 6 ω(t, x, z) +ω(t, z,y)

=
1

M(x, z, t)
− 1 +

1
M(z,y, t)

− 1.

On this basis, we state two existence results for unique fixed point in the setting of modular metric
spaces. Clearly, these results are modular counterparts of Theorems 2.9 and 2.11, respectively.
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Theorem 5.6. Let Xω be a complete non-Archimedean modular metric space and let T : Xω → Xω be a self-
mapping. Suppose that there exist a function ζ : [0,+∞[×[0,+∞[→ R and a lower semi-continuous function
ϕ : Xω → [0,+∞[ such that

(ζω1 ) ζ (ω(λ, Tx, Ty) +ϕ(Tx) +ϕ(Ty),ω(λ, x,y) +ϕ(x) +ϕ(y)) > 0, for all x,y ∈ Xω and for all λ > 0;

also retaining (ζ2) and (ζ3) above. In addition, assume that the following conditions hold:

(i) the function λ→ ω(λ, x,y) is continuous for all x,y ∈ X;

(ii) ω(λ, x,y) > 0, for all λ > 0 whenever x 6= y.

Then T has a unique fixed point z ∈ Xω with ϕ(z) = 0.

Theorem 5.7. Let Xω be a complete non-Archimedean modular metric space and let T : Xω → Xω be a self-
mapping. Suppose that there exist a function ζ : [0,+∞[×[0,+∞[→ R and a lower semi-continuous function
ϕ : Xω → [0,+∞[ such that

(ζω∗1 ) ζ
(

ω(λ, Tx, Ty)
1 +ω(λ, Tx, Ty)

+ϕ(Tx) +ϕ(Ty),
ω(λ, x,y)

1 +ω(λ, x,y)
+ϕ(x) +ϕ(y)

)
> 0, for all x,y ∈ Xω and for all

λ > 0.

also retaining (ζ2) and (ζ3) above. In addition, assume that the following conditions hold:

(i) the function λ→ ω(λ, x,y) is continuous for all x,y ∈ X;

(ii) ω(λ, x,y) > 0 for all λ > 0 whenever x 6= y.

Then T has a unique fixed point z ∈ Xω with ϕ(z) = 0.

Naturally, the proofs of Theorems 5.6 and 5.7 are established by applying Theorems 2.9 and 2.11. For
completeness sake we give an outline of the proof of Theorem 5.6.

Proof. Let M be the fuzzy metric induced by ω and defined by (5.1). It follows that the triple (X,M, ∗) is
a complete non-Archimedean fuzzy metric space with M triangular with a ∗ b = ab, for all a,b ∈ [0, 1].
Then, by using (ζω1 ), we get

ζ

(
1

M(Tx, Ty, λ)
− 1 +ϕ(Tx) +ϕ(Ty),

1
M(x,y, λ)

− 1 +ϕ(x) +ϕ(y)

)
> 0,

for all x,y ∈ Xω and for all λ > 0. Therefore, we apply Theorem 2.9 to conclude that T has a unique fixed
point z ∈ Xω with ϕ(z) = 0.

For other results concerning the existence of fixed points in modular metric spaces we refer to [1, 4].

6. Homotopy result

Motivated by [2] and following a similar argument, we apply Theorem 2.9 to get a homotopy result.

Theorem 6.1. Let (X,M, ∗) be a complete non-Archimedean fuzzy metric space with M triangular, F be a closed
subset of X and U be a non-empty open subset of X with U ⊂ F. Let α,β ∈ R and T : F× [α,β]→ X be an operator
satisfying the following conditions:

(i) x 6= T(x, s) for each x ∈ F \U and all s ∈ [α,β];
(ii) there exists k ∈]0, 1[ such that

1
M(T(x, s), T(y, s), t)

− 1 6 k

(
1

M(x,y, t)
− 1

)
,

for all x,y ∈ F, s ∈ [α,β] and t > 0;
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(iii) there exists K > 0 such that [M(T(x, s1), T(x, s2), t)]−1 6 1 + K|s1 − s2|, for all s1, s2 ∈ [α,β], t > 0 and
each x ∈ F.

If T(·, s1) has a fixed point in F for at least one s1 ∈ [α,β], then T(·, s) has a fixed point in U for all s ∈ [α,β].
Furthermore, for any fixed s ∈ [α,β], the fixed point of T(·, s) is unique.

Proof. Define the set
Q := {s ∈ [α,β] : x = T(x, s) for some x ∈ U}.

Since T(·, s1) has a fixed point in F for at least one s1 ∈ [α,β], that is there exists x ∈ F such that x = T(x, s1)
for at least one s1 ∈ [α,β], and (i) holds, therefore Q 6= ∅. We show that Q is both open and closed in [α,β]
and so by connectedness of [α,β], Q = [α,β].

Step I: Q is closed.

Let {sn} be a sequence in Q and lim
n→+∞ sn = l ∈ [α,β]. We must show that l ∈ Q. Since sn ∈ Q for all

n ∈ N, there exists xn ∈ U with xn = T(xn, sn) for all n ∈ N. Now, for n,m ∈ N with m > n, by using
the fact that M is triangular and (ii)-(iii), we obtain easily

1
M(xn, xm, t)

− 1 =
1

M(T(xn, sn), T(xm, sm), t)
− 1

6
1

M(T(xn, sn), T(xn, sm), t)
− 1 +

1
M(T(xn, sm), T(xm, sm), t)

− 1

6 K|sn − sm|+ k

[
1

M(xn, xm, t)
− 1

]
,

that is,
1

M(xn, xm, t)
− 1 6

K

1 − k
|sn − sm|.

Therefore the sequence {xn} is Cauchy in F, (X,M, ∗) is complete non-Archimedean and F is closed. This
implies that there exists z ∈ F such that

lim
n→+∞M(xn, z, t) = 1,

for all t > 0. Again, by using opportunely the fact that M is triangular and (ii)-(iii), we obtain

1
M(xn, T(z, l), t)

− 1 =
1

M(T(xn, sn), T(z, l), t)
− 1

6
1

M(T(xn, sn), T(xn, l), t)
− 1 +

1
M(T(xn, l), T(z, l), t)

− 1

6 K|sn − l|+ k

[
1

M(xn, z, t)
− 1

]
.

Therefore z = T(z, l) and from (i) we obtain z ∈ U. Thus l ∈ Q and hence Q is closed in [α,β].

Step II: Q is open.

Let s0 ∈ Q and x0 ∈ U with x0 = T(x0, s0). Since U is open, there exist r ∈]0, 1[ and t0 > 0 such that
B(x0, r, t0) = {x ∈ X : M(x0, x, t0) > 1 − r} ⊂ U. Let B(x0, r, t0) = {x ∈ X : M(x0, x, t0) > 1 − r} = {x ∈
X : 1

M(x0,x,t0)
− 1 6 r

1+r }. Clearly, B(x0, r, t0) is a closed subset of F. Now, assume ε = 1−k
K

r
1−r > 0.

Let s ∈]s0 − ε, s0 + ε[, then for all x ∈ B(x0, r, t0) we claim that T(x, s) ⊂ B(x0, r, t0) and hence
T(·, s) : B(x0, r, t0)→ B(x0, r, t0). Let x ∈ B(x0, r, t0), after routine calculations it is not difficult to obtain the
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following

1
M(x0, T(x, s), t0)

− 1 =
1

M(T(x0, s0), T(x, s), t0)
− 1

6
1

M(T(x0, s0), T(x, s0), t0)
− 1 +

1
M(T(x, s0), T(x, s), t0)

− 1

6 k

[
1

M(x0, x, t0)
− 1

]
+K|s0 − s|

6 k
r

1 − r
+ (1 − k)

r

1 − r

=
r

1 − r
.

Then, for each fixed s ∈]s0 − ε, s0 + ε[, we have T(·, s) : B(x0, r, t0) → B(x0, r, t0) and T(·, s) satisfies all the
conditions of Theorem 2.9. In fact, the function ζ : [0,+∞[×[0,+∞[→ R defined by ζ(u, v) = kv−u for all
u, v > 0 and k ∈]0, 1[ satisfies the conditions (ζ2)–(ζ3), moreover condition (ζ1) reduces to (ii) of Theorem
6.1, by putting ϕ : B(x0, r, t0) → [0,+∞[ identically null. We conclude that T(·, s) has a fixed point in
B(x0, r, t0) ⊂ F. By (i), this fixed point must be in U, therefore ]s0 − ε, s0 + ε[⊂ Q and hence Q is open.
Thus Q = [α,β] and T(·, s) has a fixed point in U for all s ∈ [α,β]. Of course, for any fixed s ∈ [α,β] the
fixed point of T(·, s) is unique.

By condition (iii) of Theorem 6.1, the fixed points’ curve s → zs is Lipschitzian. Moreover, we get a
continuous fixed points’ curve, if we use the following condition instead of (iii):

(iv) there exists a continuous function ψ : [α,β]→ R such that

[M(T(x, s1), T(x, s2), t)]−1 6 1 + |ψ(s1) −ψ(s2)|,

for all s1, s2 ∈ [α,β], t > 0 and each x ∈ F.

Conclusions

The fuzzy metric and modular metric spaces represent two interesting way of enlarging the mathe-
matical research in (classical) metric spaces, by focusing on vagueness and function spaces, respectively.
Here, we work with methods of fixed point theory to establishing an existence and uniqueness theorem
for a self-mapping in a complete non-Archimedean fuzzy metric space. Then, we extend our approach
to a modular metric space. This procedure may be useful to generalize and relate to each other various
results in the existing literature. A sample homotopy theorem completes the manuscript.
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