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Abstract

In this paper, based on the concept of cone b-metric space over Banach algebra, which was introduced by Huang and
Radenovic [H.-P. Huang, S. Radenović, J. Nonlinear Sci. Appl., 8 (2015), 787–799], we obtain some tripled common random
fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces. We consider
the obtained assertions without the assumption of normality of cones. The presented results generalize some coupled common
fixed point theorems in the existing literature. c©2017 all rights reserved.
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1. Introduction

Fixed point theory plays a basic role in applications of many branches of mathematics. Finding
the fixed point of contractive mapping becomes the center of strong research activity [3, 9, 10, 24, 32,
37]. Recently, Huang and Zhang [18] and Bakhtin [8] introduced cone metric space and b-metric space,
respectively, as some generalizations of usual metric spaces. They greatly expanded the famous Banach
contraction principle in such setting. Since then, a lot of papers have appeared on cone metric spaces
and b-metric spaces (see [1, 5, 11, 15, 21, 28, 33, 35]). Hussain and Shah [20] introduced cone b-metric
space and generalized both cone metric space and b-metric space. Aydi et al. [7] and Fadail and Ahmad
[14] introduced tripled fixed point of w-compatible mappings in abstract metric spaces and coupled
coincidence point and common coupled fixed point results in cone b-metric spaces, respectively. However,
latterly, some authors made a conclusion that fixed point results in cone metric spaces and cone b-metric
spaces are just equivalent to those in metric spaces and b-metric spaces, respectively (see [6, 13, 23]).
But fortunately, very recently, Liu and Xu [27] introduced the concept of cone metric space over Banach
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algebra and proved the non-equivalence of fixed point results in these new spaces and usual metric spaces.
Further, Huang and Radenović [17] introduced the notion of cone b-metric space over Banach algebra and
showed some fixed point results in such spaces are not some consequences of the corresponding b-metric
spaces. As a result, it is essentially necessary to investigate fixed point results in cone metric spaces
over Banach algebras. Random coincidence point theorems are stochastic generalizations of classical
coincidence point theorems, and play an important role in the theory of random differential and integral
equations. Random fixed point theorems for contractive mapping on complete separable metric space
have been proved by several authors (see [4, 12, 19, 25, 26, 36]). Ćirić [12] proved some coupled random
fixed point and coupled random coincidence results in partially ordered metric spaces. Afterwards, many
coupled random coincidence results in partially ordered metric spaces were considered (see [4, 19, 36]).
In this paper, by the concept of cone b-metric space over Banach algebra introduced by [17], we obtain
tripled common random fixed point and tripled random fixed point theorems with several generalized
Lipschitz constants in cone b-metric spaces over Banach algebras by omitting the normality of cones. The
presented results improve the main results of [7, 14] in a large extent.

2. Preliminaries

Let A be a Banach algebra with a unit e, and θ the zero element of A. A nonempty closed convex
subset P of A is called a cone if

(i) {θ, e} ⊂ P;
(ii) P2 = PP ⊂ P,P

⋂
(−P) = {θ};

(iii) λP+ µP ⊂ P for all λ,µ > 0.

On this basis, we define a partial ordering � with respect to P by x � y if and only if y− x ∈ P. We shall
write x ≺ y to indicate that x � y but x 6= y, while x� y will indicate that y− x ∈ intP, where intP stands
for the interior of P. Write ‖ · ‖ as the norm on A. A cone P is called normal if there is a number M > 0
such that for all x,y ∈ A,

θ � x � y⇒ ‖x‖ 6M‖y‖.

The least positive number satisfying above is called the normal constant of P.
In the following we always suppose that A is a Banach algebra with a unit e. P is a cone in A with

intP 6= ∅, and � is a partial ordering with respect to P.

Definition 2.1. Let X be a nonempty set and A a Banach algebra. Suppose that the mapping d : X×X→ A

satisfies:

(i) θ ≺ d(x,y) for all x,y ∈ X with x 6= y and d(x,y) = θ if and only if x = y;
(ii) d(x,y) = d(y, x) for all x,y ∈ X;

(iii) d(x,y) � s(d(x, z) + d(z,y)) for all x,y, z ∈ X,

where s > 1 is a constant. Then d is called a cone b-metric on X, and (X,d) is called a cone b-metric space
over Banach algebra A.

Example 2.2. Let A = R2 and P = {(x1, x2) ∈ A : x1, x2 > 0} be a cone in A. Let ‖x‖ = |x1|+ |x2| for
x = (x1, x2) ∈ A. Take y = (y1,y2). Define multiplication in A, xy = (x1y1, x1y2 + x2y1). Then A is a
Banach algebra with a unit e = (1, 0). Define X = [0, 1]× [0, 1], d : X×X→ A by d(x,y) = (|x1 − x2|

α, |y1 −
y2|
α) (α > 1). Since ap + bp 6 (a+ b)p for all a,b > 0,p > 1, we have d(x,y) � s[d(x, z) + d(z,y)], for

any x,y, z ∈ X, where s = 2α−1. Then it is not hard to verify that (X,d) is a complete cone b-metric space
over Banach algebra A.

Definition 2.3 ([20]). Let (X,d) be a cone b-metric space over Banach algebra, x ∈ X and {xn} a sequence
in X. Then
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(i) {xn} converges to x whenever, for every c ∈ E with θ � c there is a natural number N such that
d(xn, x)� c for all n > N. We denote this by lim

n→∞ xn = x or xn → x(n→∞).

(ii) {xn} is a Cauchy sequence whenever, for every c ∈ E with θ � c there is a natural number N such
that d(xn, xm)� c for all n,m > N.

(iii) (X,d) is complete if every Cauchy sequence is convergent.

The following lemmas are often used (in particular when dealing with cone b-metric spaces in which
the cones need not to be normal).

Lemma 2.4 ([20]). Let (X,d) be a cone b-metric space over Banach algebra A and P a cone in A. Then the following
properties are often used.

(1) If c ∈ intP and θ � an → θ (n→∞), then there exists N such that for all n > N, we have an � c;
(2) If x � y and y� z, then x� z;
(3) If θ � u� c for each c ∈ intP, then u = θ;
(4) If u ∈ P and u � ku for some 0 6 k < 1, then u = θ;
(5) If a � b+ c for each c ∈ intP, then a � b;
(6) Let θ � c. If θ � d(xn, x) � bn and bn → θ (n → ∞), then d(xn, x) � c, where {xn}, x are a sequence

and a given point in X, respectively.

Lemma 2.5 ([31]). Let A be a Banach algebra with a unit e and x ∈ A, then lim
n→∞ ‖xn‖ 1

n exists and the spectral
radius ρ(x) satisfies

ρ(x) = lim
n→∞ ‖xn‖ 1

n = inf ‖xn‖
1
n .

If ρ(x) < |λ|, then λe− x is invertible in A, moreover,

(λe− x)−1 =

∞∑
i=0

xi

λi+1 ,

where λ is a complex constant.

Lemma 2.6 ([31]). Let A be a Banach algebra with a unit e, and a,b ∈ A. If a commutes with b, then

ρ(a+ b) 6 ρ(a) + ρ(b), ρ(ab) 6 ρ(a)ρ(b).

Definition 2.7 ([34]). An element (x,y, z) ∈ X3 is said to be a tripled fixed point of the mapping F : X3 → X

if F(x,y, z) = x, F(y, z, x) = y, and F(z, x,y) = z.

Note that if (x,y, z) is a tripled fixed point of F, then (y, z, x) and (z, x,y) are tripled fixed points of F
too.

Definition 2.8 ([34]). An element (x,y, z) ∈ X3 is called

(1) a tripled coincidence point of the mappings F : X3 → X and g : X → X if F(x,y, z) = gx, F(y, z, x) =
gy, F(z, x,y) = gz, and (gx,gy,gz) is called a tripled point of coincidence;

(2) a common tripled fixed point of mappings F : X3 → X and g : X → X if F(x,y, z) = gx =
x, F(y, z, x) = gy = y, and F(z, x,y) = gz = z.

Definition 2.9 ([2]). The mappings F : X3 → X and g : X → X are called w-compatible provided that
gF(x,y, z) = F(gx,gy,gz) whenever F(x,y, z) = gx, F(y, z, x) = gy and F(z, x,y) = gz.

Let (Ω,Σ) be a measurable space with Σ a sigma algebra of subsets ofΩ and let (X,d) be a metric space.
A mapping T : Ω→ X is called Σ-measurable if for any open subset U of X, T−1(U) = {ω : T(ω) ∈ U} ∈ Σ
(see [16]). In what follows, when we speak of measurability we shall mean Σ-measurability. A mapping
T : Ω×X→ X is called a random operator if for any x ∈ X, T(·, x) is measurable. A measurable mapping
ξ : Ω → X is called a random fixed point of a random operator T : Ω× X → X, if ξ(ω) = T(ω, ξ(ω)) for
every ω ∈ Ω.
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Definition 2.10 ([19]). Let (X,d) be a separable metric space and (Ω,Σ) be a measurable space. Then
F : Ω×X3 → X and g : Ω×X→ X are said to be w-compatible random operators if

g(ω, F(ω, (x,y, z))) = F(ω, (g(ω, x),g(ω,y),g(ω, z))),

whenever F(ω, (x,y, z)) = g(ω, x), F(ω, (y, z, x)) = g(ω,y), F(ω, (z, x,y)) = g(ω, z) for all ω ∈ Ω and
x,y, z ∈ X are satisfied.

Lemma 2.11 ([39]). Let P be a cone in a Banach algebra A and k ∈ P be a given vector. Let {un} be a sequence in
P. If for each c1 � θ, there exists N1 such that un � c1 for all n > N1, then for each c2 � θ, there exists N2 such
that kun � c2 for all n > N2.

Now, we state our main results as follows.

3. Main results

In this section, we prove some tripled random coincidence and tripled random fixed point theorems
for contractive mappings with several generalized Lipschitz constants in the setting of cone b-metric
spaces over Banach algebras by deleting the normality of cones.

Lemma 3.1 ([39]). LetA be a Banach algebra and k ∈ A. If ρ(k) < 1, then lim
n→∞ ‖kn‖ = 0.

Remark 3.2. If ‖k‖ < 1, it is natural that ρ(k) < 1, yet, the converse is not true.

Lemma 3.3 ([39]). Let A be a Banach algebra with a unit e, {xn} a sequence in A. If {xn} converges to x in A , and
for any n > 1, {xn} commutes with x, then ρ(xn)→ ρ(x) as n→∞
Theorem 3.4. Let (X,d) be a separable cone b-metric space over Banach algebra A, P be a cone in A and (Ω,Σ)
be a measurable space. Suppose that the mappings F : Ω× X3 → X and g : Ω× X → X satisfy the following
contractive condition:

d(F(ω, (x,y, z)), F(ω, (u, v,w))) � [a1d(g(ω, x), F(ω, (x,y, z))) + a2d(g(ω,y), F(ω, (y, z, x)))
+ a3d(g(ω, z), F(ω, (z, x,y)))] + [a4d(g(ω,u), F(ω, (u, v,w)))
+ a5d(g(ω, v), F(ω, (v,w,u))) + a6d(g(ω,w), F(ω, (w,u, v)))]
+ [a7d(g(ω, x), F(ω, (u, v,w))) + a8d(g(ω,y), F(ω, (v,w,u)))
+ a9d(g(ω, z), F(ω, (w,u, v)))] + [a10d(g(ω,u), F(ω, (x,y, z)))
+ a11d(g(ω, v), F(ω, (y, z, x))) + a12d(g(ω,w), F(ω, (z, x,y)))]
+ [a13d(g(ω, x),g(ω,u)) + a14d(g(ω,y),g(ω, v))
+ a15d(g(ω, z),g(ω,w))],

(3.1)

for all x,y, z,u, v,w ∈ X, where ai ∈ P,aiaj = ajai (i, j = 1, . . . , 15), ai are generalized Lipschitz constants with
(s+ 1)ρ(a1 + · · ·+a6) + s(s+ 1)ρ(a7 + · · ·+a12) + 2sρ(a13 +a14 +a15) < 2 and ρ

(
sa1 + sa2 + sa3 + s

2a10 +
s2a11 + s

2a12
)
< 1, where s > 1 is a constant. Let F(·, v),g(·, x) be measurable for v ∈ X3 and x ∈ X, respectively.

Suppose that F(ω× X3) ⊆ g(ω× X) and g(ω× X) is a complete subspace of X for each ω ∈ Ω. Then there
exist mappings ξ,η, θ : Ω → X such that F(ω, (ξ(ω),η(ω), θ(ω))) = g(ω, ξ(ω)), F(ω, (η(ω), θ(ω), ξ(ω))) =
g(ω,η(ω)) and F(ω, (θ(ω), ξ(ω),η(ω))) = g(ω, θ(ω)) for all ω ∈ Ω, that is, F and g have a tripled random
coincidence point.

Proof. Let Θ = {η : Ω→ X} be a family of measurable mappings. We construct three sequences of measur-
able mappings {ξn}, {ηn}, {θn} in Θ and three sequences {g(ω, ξn(ω))}, {g(ω,ηn(ω))}, {g(ω, θn(ω))} in X
as follows.

Let ξ0,η0, θ0 ∈ Θ. Since F(ω, (ξ0(ω),η0(ω), θ0(ω))) ∈ F(ω × X3) ⊆ g(ω × X), by a sort of Fil-
ippov measurable implicit function theorems (see [37, 38]), there is ξ1 ∈ Θ such that g(ω, ξ1(ω)) =
F(ω, (ξ0(ω),η0(ω), θ0(ω))). Similarly as F(ω, (η0(ω), θ0(ω), ξ0(ω))) ∈ g(ω×X), there is η1 ∈ Θ such that
g(ω,η1(ω)) = F(ω, (η0(ω), θ0(ω), ξ0(ω))), F(ω, (θ0(ω), ξ0(ω),η0(ω))) ∈ g(ω× X), there is θ1 ∈ Θ such
that
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g(ω, θ1(ω)) = F(ω, (θ0(ω), ξ0(ω),η0(ω))).

Continuing this process we can construct sequences {ξn(ω)}, {ηn(ω)}, and {θn(ω)} in X such that

g(ω, ξn+1(ω)) = F(ω, (ξn(ω),ηn(ω), θn(ω))),
g(ω,ηn+1(ω)) = F(ω, (ηn(ω), θn(ω)ξn(ω))),
g(ω, θn+1(ω)) = F(ω, (θn(ω), ξn(ω),ηn(ω))),

for all n ∈N. According to (3.1), we have

d(g(ω, ξn(ω)),g(ω, ξn+1(ω))) = d(F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))), F(ω, (ξn(ω),ηn(ω), θn(ω))))

� [a1d(g(ω, ξn−1(ω)), F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))))

+ a2d(g(ω,ηn−1(ω)), F(ω, (ηn−1(ω), θn−1(ω), ξn−1(ω))))

+ a3d(g(ω, θn−1(ω)), F(ω, (θn−1(ω), ξn−1(ω),ηn−1(ω))))]

+ [a4d(g(ω, ξn(ω)), F(ω, (ξn(ω),ηn(ω), θn(ω))))

+ a5d(g(ω,ηn(ω)), F(ω, (ηn(ω), θn(ω), ξn(ω))))

+ a6d(g(ω, θn(ω)), F(ω, (θn(ω), ξn(ω),ηn(ω))))]

+ [a7d(g(ω, ξn−1(ω)), F(ω, (ξn(ω),ηn(ω), θn(ω))))

+ a8d(g(ω,ηn−1(ω)), F(ω, (ηn(ω), θn(ω), ξn(ω))))

+ a9d(g(ω, θn−1(ω)), F(ω, (θn(ω), ξn(ω),ηn(ω))))]

+ [a10d(g(ω, ξn(ω)), F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))))

+ a11d(g(ω,ηn(ω)), F(ω, (ηn−1(ω), θn−1(ω), ξn−1(ω))))

+ a12d(g(ω, θn(ω)), F(ω, (θn−1(ω), ξn−1(ω),ηn−1(ω))))]

+ [a13d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))

+ a14d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ a15d(g(ω, θn−1(ω)),g(ω, θn(ω)))].

Further, we have

d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

= d(F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))), F(ω, (ξn(ω),ηn(ω), θn(ω))))

� [a1d(g(ω, ξn−1(ω)),g(ω, ξn(ω))) + a2d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ a3d(g(ω, θn−1(ω)),g(ω, θn(ω)))] + [a4d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

+ a5d(g(ω,ηn(ω)),g(ω,ηn+1(ω))) + a6d(g(ω, θn(ω)),g(ω, θn+1(ω)))]

+ [a7d(g(ω, ξn−1(ω)),g(ω, ξn+1(ω))) + a8d(g(ω,ηn−1(ω)),g(ω,ηn+1(ω)))

+ a9d(g(ω, θn−1(ω)),g(ω, θn+1(ω)))] + [a10d(g(ω, ξn(ω)),g(ω, ξn(ω)))

+ a11d(g(ω,ηn(ω)),g(ω,ηn(ω))) + a12d(g(ω, θn(ω)),g(ω, θn(ω)))]

+ [a13d(g(ω, ξn−1(ω)),g(ω, ξn(ω))) + a14d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ a15d(g(ω, θn−1(ω)),g(ω, θn(ω)))]

� [a1d(g(ω, ξn−1(ω)),g(ω, ξn(ω))) + a2d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ a3d(g(ω, θn−1(ω)),g(ω, θn(ω)))] + [a4d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

+ a5d(g(ω,ηn(ω)),g(ω,ηn+1(ω))) + a6d(g(ω, θn(ω)),g(ω, θn+1(ω)))]

+ [sa7(d(g(ω, ξn−1(ω)),g(ω, ξn(ω))) + d(g(ω, ξn(ω)),g(ω, ξn+1(ω))))

+ sa8(d(g(ω,ηn−1(ω)),g(ω,ηn(ω))) + d(g(ω,ηn(ω)),g(ω,ηn+1(ω))))

+ sa9(d(g(ω, θn−1(ω)),g(ω, θn(ω))) + d(g(ω, θn(ω)),g(ω, θn+1(ω))))]
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+ [a13d(g(ω, ξn−1(ω)),g(ω, ξn(ω))) + a14d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ a15d(g(ω, θn−1(ω)),g(ω, θn(ω)))].

Hence, we obtain that

d(g(ω, ξn(ω)),g(ω, ξn+1(ω))) � [(a1 + sa7 + a13)d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))

+ (a2 + sa8 + a14)d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ (a3 + sa9 + a15)d(g(ω, θn−1(ω)),g(ω, θn(ω)))]

+ [(a4 + sa7)d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

+ (a5 + sa8)d(g(ω,ηn(ω)),g(ω,ηn+1(ω)))

+ (a6 + sa9)d(g(ω, θn(ω)),g(ω, θn+1(ω)))].

(3.2)

Similarly, we can prove that

d(g(ω,ηn(ω)),g(ω,ηn+1(ω))) � [(a1 + sa7 + a13)d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ (a2 + sa8 + a14)d(g(ω, θn−1(ω)),g(ω, θn(ω)))

+ (a3 + sa9 + a15)d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))]

+ [(a4 + sa7)d(g(ω,ηn(ω)),g(ω,ηn+1(ω)))

+ (a5 + sa8)d(g(ω, θn(ω)),d(g(ω, θn+1(ω)))

+ (a6 + sa9)d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))]

(3.3)

and

d(g(ω, θn(ω)),g(ω, θn+1(ω))) � [(a1 + sa7 + a13)d(g(ω, θn−1(ω)),g(ω, θn(ω)))

+ (a2 + sa8 + a14)d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))

+ (a3 + sa9 + a15)d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))]

+ [(a4 + sa7)d(g(ω, θn(ω)),g(ω, θn+1(ω)))

+ (a5 + sa8)d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

+ (a6 + sa9)d(g(ω,ηn(ω)),g(ω,ηn+1(ω))).

(3.4)

Put

dn = d(g(ω, ξn(ω)),g(ω, ξn+1(ω))) + d(g(ω,ηn(ω)),g(ω,ηn+1(ω))) + d(g(ω, θn(ω)),g(ω, θn+1(ω))).

Uniting (3.2)-(3.4), ones assert that

dn � (a1 + a2 + a3 + sa7 + sa8 + sa9 + a13 + a14 + a15)dn−1 + (a4 + a5 + a6 + sa7 + sa8 + sa9)dn. (3.5)

Furthermore,

d(g(ω, ξn+1(ω)),g(ω, ξn(ω))) = d(F(ω, (ξn(ω),ηn(ω), θn(ω))), F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))))

� [a1d(g(ω, ξn(ω)), F(ω, (ξn(ω),ηn(ω), θn(ω))))

+ a2d(g(ω,ηn(ω), F(ω, (ηn(ω), θn(ω), ξn(ω))))

+ a3d(g(ω, θn(ω)), F(ω, (θn(ω), ξn(ω),ηn(ω))))]

+ [a4d(g(ω, ξn−1(ω)), F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))))

+ a5d(g(ω,ηn−1(ω)), F(ω, (ηn−1(ω), θn−1(ω), ξn−1(ω))))

+ a6d(g(ω, θn−1(ω)), F(ω, (θn−1(ω), ξn−1(ω),ηn−1(ω))))]

+ [a7d(g(ω, ξn(ω)), F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))))
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+ a8d(g(ω,ηn(ω)), F(ω, (ηn−1(ω), θn−1(ω), ξn−1(ω))))

+ a9d(g(ω, θn(ω)), F(ω, (θn−1(ω), ξn−1(ω),ηn−1(ω))))]

+ [a10d(g(ω, ξn−1(ω)), F(ω, (ξn(ω),ηn(ω), θn(ω))))

+ a11d(g(ω,ηn−1(ω)), F(ω, (ηn(ω), θn(ω), ξn(ω))))

+ a12d(g(ω, θn−1(ω)), F(ω, (θn(ω), ξn(ω),ηn(ω))))]

+ [a13d(g(ω, ξn(ω)),g(ω, ξn−1(ω)))

+ a14d(g(ω,ηn(ω)),g(ω,ηn−1(ω)))

+ a15d(g(ω, θn(ω)),g(ω, θn−1(ω)))].

Then

d(g(ω, ξn+1(ω)),g(ω, ξn(ω)))

= d(F(ω, (ξn(ω),ηn(ω), θn(ω))), F(ω, (ξn−1(ω),ηn−1(ω), θn−1(ω))))

� [a1d(g(ω, ξn(ω)),g(ω, ξn+1(ω))) + a2d(g(ω,ηn(ω)),g(ω,ηn+1(ω)))

+ a3d(g(ω, θn(ω)),g(ω, θn+1(ω)))] + [a4d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))

+ a5d(g(ω,ηn−1(ω)),g(ω,ηn(ω))) + a6d(g(ω, θn−1(ω)),g(ω, θn(ω)))]

+ [a7d(g(ω, ξn(ω)),g(ω, ξn(ω))) + a8d(g(ω,ηn(ω)),g(ω,ηn(ω)))

+ a9d(g(ω, θn(ω)),g(ω, θn(ω)))] + [a10d(g(ω, ξn−1(ω)),g(ω, ξn+1(ω)))

+ a11d(g(ω,ηn−1(ω)),g(ω,ηn+1(ω))) + a12d(g(ω, θn−1(ω)),g(ω, θn+1(ω)))]

+ [a13d(g(ω, ξn(ω)),g(ω, ξn−1(ω))) + a14d(g(ω,ηn(ω)),g(ω,ηn−1(ω)))

+ a15d(g(ω, θn(ω)),g(ω, θn−1(ω)))]

� [a1d(g(ω, ξn(ω)),g(ω, ξn+1(ω))) + a2d(g(ω,ηn(ω)),g(ω,ηn+1(ω)))

+ a3d(g(ω, θn(ω)),g(ω, θn+1(ω)))] + [a4d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))

+ a5d(g(ω,ηn−1(ω)),g(ω,ηn(ω))) + a6d(g(ω, θn−1(ω)),g(ω, θn(ω)))]

+ [sa10(d(g(ω, ξn−1(ω)),g(ω, ξn(ω))) + d(g(ω, ξn(ω)),g(ω, ξn+1(ω))))

+ sa11(d(g(ω,ηn−1(ω)),g(ω,ηn(ω))) + d(g(ω,ηn(ω)),g(ω,ηn+1(ω))))

+ [sa12(d(g(ω, θn−1(ω)),g(ω, θn(ω))) + d(g(ω, θn(ω)),g(ω, θn+1(ω))))]

+ [a13d(g(ω, ξn−1(ω)),g(ω, ξn(ω))) + a14d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ a15d(g(ω, θn−1(ω)),g(ω, θn(ω)))].

Accordingly, it is clear that

d(g(ω, ξn+1(ω)),g(ω, ξn(ω))) � [(a4 + sa10 + a13)d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))

+ (a5 + sa11 + a14)d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ (a6 + sa12 + a15)d(g(ω, θn−1(ω)),g(ω, θn(ω)))]

+ [(a1 + sa10)d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

+ (a2 + sa11)d(g(ω,ηn(ω)),g(ω,ηn+1(ω)))

+ (a3 + sa12)d(g(ω, θn(ω)),g(ω, θn+1(ω)))].

(3.6)

Similarly, we can prove that

d(g(ω,ηn+1(ω)),g(ω,ηn(ω))) � [(a4 + sa10 + a13)d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))

+ (a5 + sa11 + a14)d(g(ω, θn−1(ω)),g(ω,ηn(ω)))

+ (a6 + sa12 + a15)d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))]

+ [(a1 + sa10)d(g(ω,ηn(ω)),g(ω,ηn+1(ω)))

+ (a2 + sa11)d(g(ω, θn(ω)),g(ω, θn+1(ω)))

+ (a3 + sa12)d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))]

(3.7)



B. Jiang, Z. Cai, J. Chen, H. Huang, J. Nonlinear Sci. Appl., 10 (2017), 465–482 472

and

d(g(ω, θn+1(ω)),g(ω, θn(ω))) � [(a4 + sa10 + a13)d(g(ω, θn−1(ω)),g(ω, θn(ω)))

+ (a5 + sa11 + a14)d(g(ω, ξn−1(ω)),g(ω, ξn(ω)))

+ (a6 + sa12 + a15)d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))]

+ [(a1 + sa10)d(g(ω, θn(ω)),g(ω, θn+1(ω)))

+ (a2 + sa11)d(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

+ (a3 + sa12)d(g(ω,ηn(ω)),g(ω,ηn+1(ω))).

(3.8)

Uniting (3.6)-(3.8), one gets that

dn � (a4 + a5 + a6 + sa10 + sa11 + sa12 + a13 + a14 + a15)dn−1

+ (a1 + a2 + a3 + sa10 + sa11 + sa12)dn.
(3.9)

By using (3.5) and (3.9), it is easy to see that

2dn � (a1 + a2 + a3 + a4 + a5 + a6 + sa7 + sa8 + sa9 + sa10 + sa11

+ sa12 + 2(a13 + a14 + a15))dn−1 + (a1 + a2 + a3 + a4

+ a5 + a6 + sa7 + sa8 + sa9 + sa10 + sa11 + sa12)dn.

Put k1 = a13 + a14 + a15 and k =
∑6
i=1 ai +

∑12
i=7 sai, then

(2e− k)dn � (2k1 + k)dn−1. (3.10)

Because of (s+ 1)ρ
(∑6

i=1 ai

)
+ s(s+ 1)ρ

(∑12
i=7 sai

)
+ 2sρ(k1) < 2 and s > 1, it is clear that

ρ
( 6∑
i=1

ai +

12∑
i=7

sai

)
6 ρ

( 6∑
i=1

ai
)
+ sρ

( 12∑
i=7

ai
)
< 2.

Then by Lemma 2.5 and Lemma 2.6, it follows that 2e−k is invertible. Furthermore, (2e−k)−1 =
∞∑
i=0

ki

2i+1 .

Multiplying in both side of (3.10) by (2e− k)−1, we obtain

dn � (2e− k)−1(2k1 + k)dn−1. (3.11)

Denote h = (2e− k)−1(2k1 + k), then by (3.11) we get

dn � hdn−1 � · · · � hnd0. (3.12)

Note by Lemma 2.6 that

ρ
( n∑
i=0

ki

2i+1

)
6

n∑
i=0

ρ
( ki

2i+1

)
6

n∑
i=0

[ρ(k)]i

2i+1 ,

so by Lemma 3.3 it leads to

ρ
( ∞∑
i=0

ki

2i+1

)
6

∞∑
i=0

[ρ(k)]i

2i+1 .

Because aiaj = ajai (i, j = 1, . . . , 15) implies k1 commutes k, we have

(2e− k)−1(2k1 + k) =
( ∞∑
i=0

ki

2i+1

)
(2k1 + k)

= 2
( ∞∑
i=0

ki

2i+1

)
k1 +

∞∑
i=0

ki

2i+1



B. Jiang, Z. Cai, J. Chen, H. Huang, J. Nonlinear Sci. Appl., 10 (2017), 465–482 473

= 2k1

( ∞∑
i=0

ki

2i+1

)
+ k
( ∞∑
i=0

ki

2i+1

)
= (2k1 + k)

( ∞∑
i=0

ki

2i+1

)
= (2k1 + k)(2e− k)−1,

that is to say, (2e − k)−1 commutes with 2k1 + k. Note that (s + 1)ρ
( 6∑
i=1

ai

)
+ s(s + 1)ρ

( 12∑
i=7

sai

)
+

2sρ(k1) < 2 means 2sρ(k1) + (s+ 1)ρ(k) < 2, then by Lemma 2.6 we gain

ρ(h) = ρ
(
(2e− k)−1(2k1 + k)

)
6 ρ

(
(2e− k)−1)ρ(2k1 + k) 6 ρ

( ∞∑
i=0

ki

2i+1

)(
2ρ(k1) + ρ(k)

)
6
( ∞∑
i=0

[ρ(k)]i

2i+1

)(
2ρ(k1) + ρ(k)

)
6

1
2 − ρ(k)

(
2ρ(k1) + ρ(k)

)
<

1
s
6 1,

which establishes that e− h is invertible and ‖hn‖ → 0 as n→∞. Thus for all m > n > 1, ones have

d(g(ω, ξn(ω)),g(ω, ξm(ω))) � sd(g(ω, ξn(ω)),g(ω, ξn+1(ω)))

+ s2d(g(ω, ξn+1(ω)),g(ω, ξn+2(ω)))

...
+ sm−nd(g(ω, ξm−1(ω)),g(ω, ξm(ω))),

d(g(ω,ηn(ω)),g(ω,ηm(ω))) � sd(g(ω,ηn(ω)),g(ω,ηn+1(ω)))

+ s2d(g(ω,ηn+1(ω)),g(ω,ηn+2(ω)))

...
+ sm−nd(g(ω,ηm−1(ω)),g(ω,ηm(ω))),

d(g(ω, θn(ω)),g(ω, θm(ω))) � sd(g(ω, θn(ω)),g(ω, θn+1(ω)))

+ s2d(g(ω, θn+1(ω)),g(ω, θn+2(ω)))

...
+ sm−nd(g(ω, θm−1(ω)),g(ω, θm(ω))).

Now, by (3.12) and sρ(h) < 1, it follows that

d(g(ω, ξn(ω)),g(ω, ξm(ω))) + d(g(ω,ηn(ω)),g(ω,ηm(ω))) + d(g(ω, θn(ω)),g(ω, θm(ω)))

� sdn + s2dn+1 + · · ·+ sm−ndm−1

� shnd0 + s
2hn+1d0 + · · ·+ sm−nhm−1d0

= (shn + s2hn+1 + · · ·+ sm−nhm−1)d0

= shn(e+ sh+ (sh)2 + · · ·+ (sh)m−n−1)d0 � (e− sh)−1shnd0.

(3.13)

Owing to
‖(e− sh)−1shnd0‖ 6 ‖(e− sh)−1‖s‖hn‖‖d0‖ → 0 (n→∞),

we have (e− sh)−1shnd0 → θ (n→∞).
According to Lemma 2.4, and for any c�θ, there existsN0 such that for all n > N0, (e− sh)−1shnd0 �

c. Furthermore, from (3.13) and for any m > n > N0, it follows that

(g(ω, ξn(ω)),g(ω, ξm(ω))) + d(g(ω,ηn(ω)),g(ω,ηm(ω))) + d(g(ω, θn(ω)),g(ω, θm(ω)))� c,
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which implies that

d(g(ω, ξn(ω)),g(ω, ξm(ω)))� c,d(g(ω,ηn(ω)),g(ω,ηm(ω)))� c,d(g(ω, θn(ω)),g(ω, θm(ω)))� c.

Hence, {g(ω, ξn(ω))}, {g(ω,ηn(ω))}, {g(ω, θn(ω))} are Cauchy sequences in g(X). Since g(X) is com-
plete, there exist ξ∗(ω),η∗(ω), and θ∗(ω) ∈ X for all ω ∈ Ω such that

g(ω, ξn(ω))→ g(ω, ξ∗(ω)),g(ω,ηn(ω))→ g(ω,η∗(ω)),g(ω, θn(ω))→ g(ω, θ∗(ω)) as n→∞.

Moreover, note that

d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω)))

� s(d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξn+1(ω))) + d(g(ω, ξn+1(ω)),g(ω, ξ∗(ω))))

= sd(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))), F(ω, (ξn(ω),ηn(ω), θn(ω)))) + d(g(ω, ξn+1(ω)),g(ω, ξ∗(ω))))

� s[a1d(g(ω, ξ∗(ω)), F(ω, (ξ∗(ω),η∗(ω), θ∗(ω)))) + a2d(g(ω,η∗(ω)), F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))))

+ a3d(g(ω, θ∗(ω)), F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))))] + s[a4d(g(ω, ξn(ω)), F(ω, (ξn(ω),ηn(ω), θn(ω))))

+ a5d(g(ω,ηn(ω)), F(ω, (ηn(ω), θn(ω), ξn(ω)))) + a6d(g(ω, θn(ω)), F(ω, (θn(ω), ξn(ω),ηn(ω))))]

+ s[a7d(g(ω, ξ∗(ω)), F(ω, (ξn(ω),ηn(ω), θn(ω)))) + a8d(g(ω,η∗(ω)), F(ω, (ηn(ω), θn(ω), ξn(ω))))

+ a9d(g(ω, θ∗(ω)), F(ω, (θn(ω), ξn(ω),ηn(ω))))] + s[a10(g(ω, ξn(ω)), F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))))

+ a11d(g(ω,ηn(ω)), F(ω, (η∗(ω), θ∗(ω), ξ∗(ω)))) + a12d(g(ω, θn(ω)), F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))))]

+ s[a13d(g(ω, ξ∗(ω)),g(ω, ξn(ω))) + a14d(g(ω,η∗(ω)),g(ω,ηn(ω)))

+ a15d(g(ω, θ∗(ω)),g(ω, θn(ω)))] + sd(g(ω, ξn+1(ω)),g(ω, ξ∗(ω)))

� s[a1d(g(ω, ξ∗(ω)), F(ω, (ξ∗(ω),η∗(ω), θ∗(ω)))) + a2d(g(ω,η∗(ω)), F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))))

+ a3d(g(ω, θ∗(ω)), F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))))] + s[sa4d(g(ω, ξn(ω)),g(ω, ξ∗(ω)))

+ sa4d(g(ω, ξ∗(ω))),g(ω, ξn+1(ω))) + sa5d(g(ω,ηn(ω)),g(ω,η∗(ω)))

+ sa5d(g(ω,η∗(ω))),g(ω,ηn+1(ω))) + sa6d(g(ω, θn(ω)),g(ω, θ∗(ω)))

+ sa6d(g(ω, θ∗(ω))),g(ω, θn+1(ω)))] + s[a7d(g(ω, ξ∗(ω)),g(ω, ξn+1(ω)))

+ a8d(g(ω,η∗(ω))),g(ω,ηn+1(ω))) + a9d(g(ω, θ∗(ω))),g(ω, θn+1(ω)))]

+ s[sa10g(ω, ξn(ω)),g(ω, ξ∗(ω))) + sa10g(ω, ξ∗(ω)), F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))))

+ sa11g(ω,ηn(ω)),g(ω,η∗(ω))) + sa11g(ω,η∗(ω)), F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))))

+ sa12g(ω, θn(ω)),g(ω, θ∗(ω))) + sa12g(ω, θ∗(ω)), F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))))]

+ s[a13d(g(ω, ξ∗(ω)),g(ω, ξn(ω))) + a14d(g(ω,η∗(ω)),g(ω,ηn(ω)))

+ a15d(g(ω, θ∗(ω)),g(ω, θn(ω)))] + sd(g(ω, ξn+1(ω)),g(ω, ξ∗(ω))).

Hence, ones acquire that

d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω)))

� (sa1 + s
2a10)d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω)))

+ (sa2 + s
2a11)d(F(ω,η∗(ω), θ∗(ω), ξ∗(ω))),g(ω,η∗(ω)))

+ (sa3 + s
2a12)d(F(ω, θ∗(ω), ξ ∗ (ω),η∗(ω))),g(ω, θ∗(ω)))

+ (s2a4 + s
2a10 + sa13)d(g(ω, ξn(ω)),g(ω, ξ∗(ω)))

+ (s2a4 + sa7 + s)d(g(ω, ξn+1(ω)),g(ω, ξ∗(ω)))

+ (s2a5 + s
2a11 + sa14)d(g(ω,ηn(ω)),g(ω,η∗(ω)))

+ (s2a6 + s
2a12 + sa15)d(g(ω, θn(ω)),g(ω, θ∗(ω)))

+ (s2a5 + sa8)d(g(ω,ηn+1(ω)),g(ω,η∗(ω)))

+ (s2a6 + sa9)d(g(ω, θn+1(ω)),g(ω, θ∗(ω))).

(3.14)
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Similarly, it is easily obtain that

d(F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))),g(ω,η∗(ω)))

� (sa1 + s
2a10)d(F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))),g(ω,η∗(ω)))

+ (sa2 + s
2a11)d(F(ω, θ∗(ω), ξ∗(ω),η∗(ω))),g(ω, θ∗(ω)))

+ (sa3 + s
2a12)d(F(ω, ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω)))

+ (s2a4 + s
2a10 + sa13)d(g(ω,ηn(ω)),g(ω,η∗(ω)))

+ (s2a4 + sa7 + s)d(g(ω,ηn+1(ω)),g(ω,η∗(ω)))

+ (s2a5 + s
2a11 + sa14)d(g(ω, θn(ω)),g(ω, θ∗(ω)))

+ (s2a6 + s
2a12 + sa15)d(g(ω, ξn(ω)),g(ω, ξ∗(ω)))

+ (s2a5 + sa8)d(g(ω, θn+1(ω)),g(ω, θ∗(ω)))

+ (s2a6 + sa9)d(g(ω, ξn+1(ω)),g(ω, ξ∗(ω))),

(3.15)

and

d(F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))),g(ω, θ∗(ω)))

� (sa1 + s
2a10)d(F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))),g(ω, θ∗(ω)))

+ (sa2 + s
2a11)d(F(ω, ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω)))

+ (sa3 + s
2a12)d(F(ω,η∗(ω), θ∗(ω), ξ∗(ω))),g(ω,η∗(ω)))

+ (s2a4 + s
2a10 + sa13)d(g(ω, θn(ω)),g(ω, θ∗(ω)))

+ (s2a4 + sa7 + s)d(g(ω, θn+1(ω)),g(ω, θ∗(ω)))

+ (s2a5 + s
2a11 + sa14)d(g(ω, ξn(ω)),g(ω, ξ∗(ω)))

+ (s2a6 + s
2a12 + sa15)d(g(ω,ηn(ω)),g(ω,η∗(ω)))

+ (s2a5 + sa8)d(g(ω, ξn+1(ω)),g(ω, ξ∗(ω)))

+ (s2a6 + sa9)d(g(ω,ηn+1(ω)),g(ω,η∗(ω))).

(3.16)

Put

δ = d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω))) + d(F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))),g(ω,η∗(ω)))

+ d(F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))),g(ω, θ∗(ω))).

On view of (3.14)-(3.16), we get

δ � (sa1 + sa2 + sa3 + s
2a10 + s

2a11 + s
2a12)δ

+ (s2a4 + s
2a5 + s

2a6 + s
2a10 + s

2a11 + s
2a12 + sa13 + sa14 + sa15)d(g(ω, ξn(ω)),g(ω, ξ∗(ω)))

+ (s2a4 + s
2a5 + s

2a6 + s
2a10 + s

2a11 + s
2a12 + sa13 + sa14 + sa15)d(g(ω,ηn(ω)),g(ω,η∗(ω)))

+ (s2a4 + s
2a5 + s

2a6 + s
2a10 + s

2a11 + s
2a12 + sa13 + sa14 + sa15)d(g(ω, θn(ω)),g(ω, θ∗(ω)))

+ (s2a4 + s
2a5 + s

2a6 + s+ sa7 + sa8 + sa9)d(g(ω, ξn+1(ω)),g(ω, ξ∗(ω)))

+ (s2a4 + s
2a5 + s

2a6 + s+ sa7 + sa8 + sa9)d(g(ω,ηn+1(ω)),g(ω,η∗(ω)))

+ (s2a4 + s
2a5 + s

2a6 + s+ sa7 + sa8 + sa9)d(g(ω, θn+1(ω)),g(ω, θ∗(ω))).

Then

δ � (e−A)−1Bd(g(ω, ξn(ω)),g(ω, ξ∗(ω))) + (e−A)−1Bd(g(ω,ηn(ω)),g(ω,η∗(ω)))



B. Jiang, Z. Cai, J. Chen, H. Huang, J. Nonlinear Sci. Appl., 10 (2017), 465–482 476

+ (e−A)−1Bd(g(ω, θn(ω)),g(ω, θ∗(ω))) + (e−A)−1Cd(g(ω, ξn+1(ω)),g(ω, ξ∗(ω)))

+ (e−A)−1Cd(g(ω,ηn+1(ω)),g(ω,η∗(ω))) + (e−A)−1Cd(g(ω, θn+1(ω)),g(ω, θ∗(ω))),

where A = sa1 + sa2 + sa3 + s
2a10 + s

2a11 + s
2a12, B = s2a4 + s

2a5 + s
2a6 + s

2a10 + s
2a11 + s

2a12 + sa13 +
sa14 + sa15, C = s2a4 + s

2a5 + s
2a6 + s+ sa7 + sa8 + sa9, ρ(A) < 1. Since g(ω, ξn(ω)) → g(ω, ξ∗(ω)),

g(ω,ηn(ω)) → g(ω,η∗(ω)), g(ω, θn(ω)) → g(ω, θ∗(ω)), then by Lemma 2.11, it follows that for any
c� θ, there exists N0 such that for n > N0, we have

(e−A)−1Bd(g(ω, ξn(ω)),g(ω, ξ∗(ω)))� c

6
,

(e−A)−1Bd(g(ω,ηn(ω)),g(ω,η∗(ω)))� c

6
,

(e−A)−1Bd(g(ω, θn(ω)),g(ω, θ∗(ω)))� c

6
,

(e−A)−1Cd(g(ω, ξn+1(ω)),g(ω, ξ∗(ω)))� c

6
,

(e−A)−1Cd(g(ω,ηn+1(ω)),g(ω,η∗(ω)))� c

6
,

(e−A)−1Cd(g(ω, θn+1(ω)),g(ω, θ∗(ω)))� c

6
.

Hence,
δ� c

6
+
c

6
+
c

6
+
c

6
+
c

6
+
c

6
= c.

Now, according to Lemma 2.4, it follows that δ = θ, that is,

d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω))) + d(F(ω, (η∗(ω),η∗(ω), θ∗(ω))),g(ω,η∗(ω)))

+ d(F(ω, (θ∗(ω),η∗(ω), θ∗(ω))),g(ω, θ∗(ω))) = θ,

which implies that

d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),g(ω, ξ∗(ω))) = θ,
d(F(ω, (η∗(ω),η∗(ω), θ∗(ω))),g(ω,η∗(ω))) = θ,
d(F(ω, (θ∗(ω),η∗(ω), θ∗(ω))),g(ω, θ∗(ω))) = θ.

Thus,

g(ω, ξ∗(ω)) = F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),
g(ω,η∗(ω)) = F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))),
g(ω, θ∗(ω)) = F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))).

Therefore (ξ∗(ω),η∗(ω), θ∗(ω)) is a tripled coincidence point of F and g for all ω ∈ Ω.

Corollary 3.5. Let (X,d) be a separable cone b-metric space over Banach algebra A and P be a cone in A, s > 1 be
a constant, and (Ω,Σ) be a measurable space. Suppose that the mappings F : Ω× X3 → X,g : Ω× X → X satisfy
the following contractive condition:

d(F(ω, (x,y, z)), F(ω, (u, v,w))) � kd(g(ω, x),g(ω,u)) + ld(g(ω,y),g(ω, v)) + td(g(ω, z),g(ω,w)),

for all x,y, z,u, v,w ∈ X, where k, l, t ∈ P are generalized Lipschitz constants with ρ(k+ l+ t) < 1
s , F(., v),g(., x)

are measurable for v ∈ X3 and x ∈ X, respectively, F(ω× X3) ⊆ g(ω× X) and g(ω× X) is complete subspace of
X for each ω ∈ Ω, then there are mappings ξ,η, θ : Ω → X, such that F(ω, (ξ(ω),η(ω), θ(ω))) = g(ω, ξ(ω)),
F(ω, (η(ω), θ(ω), ξ(ω))) = g(ω,η(ω)), F(ω, (θ(ω), ξ(ω),η(ω))) = g(ω, θ(ω)) for all ω ∈ Ω, that is F and g
have a tripled random coincidence point.
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Corollary 3.6. Let (X,d) be a separable cone b-metric space over Banach algebra A, P be a cone in A and (Ω,Σ) be
a measurable space. Suppose that the mappings F : Ω× X3 → X,g : Ω× X → X satisfy the following contractive
condition:

d(F(ω, (x,y, z)), F(ω, (u, v,w))) � kd(g(ω, x), F(ω, (u, v,w))) + ld(g(ω,u), F(ω, (x,y, z))),

for all x,y, z,u, v,w ∈ X, where k, l ∈ P are generalized Lipschitz constants with ρ(k+ l) < 2
s(s+1) and ρ(l) < 1

s2 ,
F(·, v),g(·, x) are measurable for v ∈ X3 and x ∈ X, respectively, F(ω×X3) ⊆ g(ω×X) and g(ω×X) is complete
subspace of X for each ω ∈ Ω, then there are mappings ξ,η, θ : Ω → X, such that F(ω, (ξ(ω),η(ω), θ(ω))) =
g(ω, ξ(ω)), F(ω, (η(ω), θ(ω), ξ(ω))) = g(ω,η(ω)), F(ω, (θ(ω), ξ(ω),η(ω))) = g(ω, θ(ω)) for all ω ∈ Ω,
that is, F and g have a tripled random coincidence point.

The conditions of Theorem 3.4 are not enough to prove the existence of a common tripled fixed point
for the mappings F and g. By restricting to w-compatibility for F and g, we obtain the following theorem.

Theorem 3.7. In addition to hypotheses of Theorem 3.4, if F and g are w-compatible, then F and g have a
unique tripled common fixed point. Moreover, a tripled common random fixed point of F and g is of the form
(ξ∗(ω), ξ∗(ω), ξ∗(ω)) ∈ X for all ω ∈ Ω.

Proof. By Theorem 3.4, F and g have tripled random coincidence point (ξ∗(ω),η∗(ω), θ∗(ω)). Then (g(ω,
ξ∗(ω)),g(ω,η∗(ω)),g(ω, θ∗(ω))) is a tripled random point of coincidence of F and g such that

g(ω, ξ∗(ω)) = F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))),
g(ω,η∗(ω)) = F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))),
g(ω, θ∗(ω)) = F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))).

First, we shall show that the tripled random point of coincidence is unique. Suppose that F and g have
another tripled random point of coincidence (g(ω, ξ∗∗(ω)),g(ω,η∗∗(ω)),g(ω, θ∗∗(ω))) such that

g(ω, ξ∗∗(ω)) = F(ω, (ξ∗∗(ω),η∗∗(ω), θ∗∗(ω))),
g(ω,η∗∗(ω)) = F(ω, (η∗∗(ω), θ∗∗(ω), ξ∗∗(ω))),
g(ω, θ∗∗(ω)) = F(ω, (θ∗∗(ω), ξ∗∗(ω),η∗∗(ω))),

where (ξ∗∗(ω),η∗∗(ω), θ∗∗(ω)) ∈ X3 for all ω ∈ Ω. Then we have

d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) = d(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))), F(ω, (ξ∗∗(ω),η∗∗(ω), θ∗∗(ω))))

� [a1d(g(ω, ξ∗(ω)), F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))))

+ a2d(g(ω,η∗(ω)), F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))))

+ a3d(g(ω, θ∗(ω)), F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))))]

+ [a4d(g(ω, ξ∗∗(ω)), F(ω, (ξ∗∗(ω),η∗∗(ω), θ∗∗(ω))))

+ a5d(g(ω,η∗∗(ω)), F(ω, (η∗∗(ω), θ∗∗(ω), ξ∗∗(ω))))

+ a6d(g(ω, θ∗∗(ω)), F(ω, (θ∗∗(ω), ξ∗∗(ω),η∗∗(ω))))]

+ [a7d(g(ω, ξ∗(ω)), F(ω, (ξ∗∗(ω),η∗∗(ω), θ∗∗(ω))))

+ a8d(g(ω,η∗(ω)), F(ω, (η∗∗(ω), θ∗∗(ω), ξ∗∗(ω))))

+ a9d(g(ω, θ∗(ω)), F(ω, (θ∗∗(ω), ξ∗∗(ω),η∗∗(ω))))]

+ [a10d(g(ω, ξ∗∗(ω)), F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))))

+ a11d(g(ω,η∗∗(ω)), F(ω, (η∗(ω), θ∗(ω), ξ∗(ω))))

+ a12d(g(ω, θ∗∗(ω)), F(ω, (θ∗(ω), ξ∗(ω),η∗(ω))))]

+ [a13d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) + a14d(g(ω,η∗(ω)),g(ω,η∗∗(ω)))
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+ a15d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω)))]

= [a1d(g(ω, ξ∗(ω)),g(ω, ξ∗(ω))) + a2d(g(ω,η∗(ω)),g(ω,η∗(ω)))

+ a3d(g(ω, θ∗(ω)),g(ω, θ∗(ω)))] + [a4d(g(ω, ξ∗∗(ω)),g(ω, ξ∗∗(ω)))

+ a5d(g(ω,η∗∗(ω)),g(ω,η∗∗(ω))) + a6d(g(ω, θ∗∗(ω)),g(ω, θ∗∗(ω)))]

+ [a7d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) + a8d(g(ω,η∗(ω)),g(ω,η∗∗(ω)))

+ a9d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω)))] + [a10d(g(ω, ξ∗∗(ω)),g(ω, ξ∗(ω)))

+ a11d(g(ω,η∗∗(ω)),g(ω,η∗(ω))) + a12d(g(ω, θ∗∗(ω)),g(ω, θ∗(ω)))

+ [a13d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) + a14d(g(ω,η∗(ω)),g(ω,η∗∗(ω)))

+ a15d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω)))].

Hence,

d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) � (a7 + a10 + a13)d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω)))

+ (a8 + a11 + a14)d(g(ω,η∗(ω)),g(ω,η∗∗(ω)))

+ (a9 + a12 + a15)d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω))).
(3.17)

Similarly, we have

d(g(ω,η∗(ω)),g(ω,η∗∗(ω))) � (a7 + a10 + a13)d(g(ω,η∗(ω)),g(ω,η∗∗(ω)))

+ (a8 + a11 + a14)d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω)))

+ (a9 + a12 + a15)d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))),
(3.18)

and

d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω))) � (a7 + a10 + a13)d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω)))

+ (a8 + a11 + a14)d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω)))

+ (a9 + a12 + a15)d(g(ω,η∗(ω)),g(ω,η∗∗(ω))).
(3.19)

By combining (3.17)-(3.19), we get

d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) + d(g(ω,η∗(ω)),g(ω,η∗∗(ω))) + d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω)))

� (a7 + · · ·+ a15)(d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) + d(g(ω,η∗(ω)),g(ω,η∗∗(ω)))

+ d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω)))).

Set α = a7 + · · ·+ a15, and

γ = d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) + d(g(ω,η∗(ω)),g(ω,η∗∗(ω))) + d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω))),

we have γ � αγ � · · · � αnγ. Now that

ρ(α) 6 ρ(a7 + · · ·+ a12) + ρ(a13 + a14 + a15) < 1,

which leads to αn → θ (n→∞), we claim that, for each c� θ, there exists n0(c) such that αn � c (n >
n0(c)). Consequently by Lemma 2.11,

d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) + d(g(ω,η∗(ω)),g(ω,η∗∗(ω))) + d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω))) = θ.

Hence,

d(g(ω, ξ∗(ω)),g(ω, ξ∗∗(ω))) = θ,
d(g(ω,η∗(ω)),g(ω,η∗∗(ω))) = θ,
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d(g(ω, θ∗(ω)),g(ω, θ∗∗(ω))) = θ,

that is,

g(ω, ξ∗(ω)) = g(ω, ξ∗∗(ω)), g(ω,η∗(ω)) = g(ω,η∗∗(ω)), g(ω, θ∗(ω)) = g(ω, θ∗∗(ω)), (3.20)

which implies the uniqueness of the tripled random point of coincidence of F and g. By a similar way,
someone can prove that

g(ω, ξ∗(ω)) = g(ω,η∗∗(ω)),
g(ω,η∗(ω)) = g(ω, θ∗∗(ω)),
g(ω, θ∗(ω)) = g(ω, ξ∗∗(ω)),

(3.21)

g(ω, ξ∗(ω)) = g(ω, θ∗∗(ω)),
g(ω,η∗(ω)) = g(ω, ξ∗∗(ω)),
g(ω, θ∗(ω)) = g(ω,η∗∗(ω)).

(3.22)

In view of (3.20)-(3.22), one can assert

g(ω, ξ∗(ω)) = g(ω,η∗(ω)) = g(ω, θ∗(ω)).

In other words, the unique tripled random point of coincidence of F and g is (g(ω, ξ∗(ω)),g(ω,η∗(ω)),
g(ω, θ∗(ω))). Let u(ω) = g(ω, ξ∗(ω)) = F(ω, (ξ∗(ω),η∗(ω), θ∗(ω))). Since F and g are w-compatible,
then we have

g(ω,u(ω)) = g(g(ω, ξ∗(ω))) = g(F(ω, (ξ∗(ω),η∗(ω), θ∗(ω)))

= F(ω, (g(ω, ξ∗(ω)),g(ω,η∗(ω)),g(ω, θ∗(ω))))

= F(ω, (u(ω),u(ω),u(ω))).

Thus (g(ω,u(ω)),g(ω,u(ω)),g(ω,u(ω))) is a tripled random point of coincidence. We also have (u(ω),
u(ω),u(ω)) is a tripled random point of coincidence. Note that the uniqueness of the tripled random
point of coincidence implies that g(ω,u(ω)) = u(ω). Therefore

u(ω) = g(ω,u(ω)) = F(ω, (u(ω),u(ω),u(ω))).

Hence (u(ω),u(ω),u(ω)) is the unique tripled common random fixed point of F and g for all ω ∈ Ω.
This completes the proof.
Putting g(ω, ·) = I(ω, ·) (identity mapping ) in Theorem 3.4, we obtain the following result.

Theorem 3.8. Let (X,d) be a complete separable cone b-metric space over Banach algebra A, P be a cone in A,
and (Ω,Σ) be a measurable space. Suppose that the mapping F : Ω× X3 → X satisfies the following contractive
condition:

d(F(ω, (x,y, z)), F(ω, (u, v,w))) � [a1d(x(ω), F(ω, (x,y, z))) + a2d(y(ω), F(ω, (y, z, x)))
+ a3d(z(ω), F(ω, (z, x,y)))] + [a4d(u(ω), F(ω, (u, v,w)))
+ a5d(v(ω), F(ω, (v,w,u))) + a6d(w(ω), F(ω, (w,u, v)))]
+ [a7d(x(ω), F(ω, (u, v,w))) + a8d(y(ω), F(ω, (v,w,u)))
+ a9d(z(ω), F(ω, (w,u, v)))] + [a10d(u(ω), F(ω, (x,y, z)))
+ a11d(v(ω), F(ω, (y, z, x))) + a12d(w(ω), F(ω, (z, x,y)))]
+ [a13d(x(ω),u(ω)) + a14d(y(ω), v(ω))

+ a15d(z(ω),w(ω))],
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where ai ∈ P,aiaj = ajai (i, j = 1, . . . , 15), ai are generalized Lipschitz constants with (s + 1)ρ(a1 + · · · +
a6) + s(s+ 1)ρ(a7 + · · ·+ a12) + 2sρ(a13 + a14 + a15) < 2 and ρ

(
sa1 + sa2 + sa3 + s

2a10 + s
2a11 + s

2a12
)
<

1, F(·, v),g(·, x) are measurable for all v ∈ X3 and x ∈ X, then F has a unique tripled random fixed point
(ξ(ω), ξ(ω), ξ(ω)) ∈ Ω×X3.

Remark 3.9. Our main results mainly generalize the recent results. In fact, they never consider the normal-
ity of cones, which may offer us more applications since there exist lots of non-normal cones (see [30]).
Moreover, we establish the contractive mappings with several generalized Lipschitz constants, where the
constants are all vectors but not usual real constants. Thus they are different from some ordinary results
and more interesting.

Remark 3.10. Our results refer to the setting of cone b-metric space over Banach algebra and quite mean-
ingful, since there exist many cone b-metric spaces over Banach algebras but they are not cone metric
spaces over Banach algebras. Hence, our spaces are more valuable than some previous results.

Remark 3.11. Our theorems deal not only with common fixed point results with random process, but also
with them from usual coupled fixed point to tripled fixed point. Therefore, our results greatly improve
and extend some results in the literature (see [7, 14]).

Remark 3.12. Our results are mainly related to tripled random coincidence point and common fixed point
results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras. Our tripled
random coincidence point and common fixed point results cannot reduce to the counterparts of the
results with one variable. In other words, the method of [29] cannot be utilized to our main results. This
is because the generalized Lipschitz constants from our results are vectors. Moreover, the multiplication
of the vectors do not satisfy the combinative law. Hence we cannot use a method of reducing our tripled
results to the respective results for mappings with one variable.

Remark 3.13. According to [22], some fixed point results in C∗-algebra-valued metric spaces are direct
consequences of their standard metric counterparts. However, our results are never the corresponding
results from the usual metric spaces. In fact, it is well-known that C∗-algebras are the special Banach
algebra. Hence, C∗-algebra-valued metric space is the special cone metric space over Banach algebra.
Because of the more general character, many results from C∗-algebra-valued metric spaces cannot be
extended to cone metric spaces over Banach algebras. Further, based on [27], we claim that the fixed
point results in cone metric spaces over Banach algebras cannot reduce to the cases of metric spaces.
In addition, the results from this paper are established on cone b-metric spaces over Banach algebras,
whereas, b-metric has no continuity regarding their variables. That is, when xn → x, yn → y, but
d(xn,yn) 9 d(x,y) as n → ∞. However, the usual metric has the continuity. Accordingly, regardless
of some fixed point results in C∗-algebra-valued metric spaces can be obtained from the counterpart of
the usual metric spaces (see [22]), but our results in cone b-metric spaces over Banach algebras cannot be
gotten from the respective metric cases based on the discontinuity problems.
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[23] Z. Kadelburg, S. Radenović, V. Rakočević, A note on the equivalence of some metric and cone metric fixed point results,

Appl. Math. Lett., 24 (2011), 370–374. 1
[24] E. Karapınar, Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory Appl., 2011 (2011),

7 pages. 1
[25] E. Karapınar, N. Van Luong, N. X. Thuan, Coupled coincidence points for mixed monotone operators in partially ordered

metric spaces, Arab. J. Math. (Springer), 1 (2012), 329–339. 1
[26] T.-C. Lin, Random approximations and random fixed point theorems for non-self-maps, Proc. Amer. Math. Soc., 103

(1988), 1129–1135. 1
[27] H. Liu, S.-Y. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings,

Fixed Point Theory Appl., 2013 (2013), 10 pages. 1, 3.13
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