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Abstract

The authors derive the matrix elements of the linear operators which appear under the representation of the group SO(2, 1)
and correspond to some diagonal or block-diagonal matrices belonging to the above group. Then, by applying these matrix
elements, that is, from a group theoretical point of view, the authors show how certain interesting integral and series represen-
tations of the Whittaker function of the second kind and some formulas for the (basic and modified) Bessel functions can be
obtained. A special case of one of the results presented here is indicated to be also a special one of a known formula. c©2017 All
rights reserved.
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1. Introduction and preliminaries

Throughout this paper, we denote the sets of integers, real numbers, and complex numbers by Z, R,
and C, respectively. It is well-known that the irreducible representations of the three-dimensional Lorentz
group SO(2, 1) can be constructed in the space of σ-homogeneous infinitely differentiable functions (σ ∈
C \ Z) defined on the cone

Λ :=
{
(x1, x2, x3) ∈ R3

∣∣∣ x2
1 − x

2
2 − x

2
3 = 0

}
.

For the fixed σ with −1 < <(σ) < 0, we denote this space by D and the analogous space consisting of
σ-homogeneous functions when σ := −σ− 1 by D•. The linear operator of the space D, arising in this case
and corresponding to the Lorentz group element g, can be written in the form T(g)[f(x)] = f(g−1x). Since
the functions belonging to D are homogeneous, we can realize the representation Tσ in the space of the
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restrictions f̂ of functions f ∈ D to any conic section γ, because f̂(ξ) = t−σ f(tξ) = t(x) for ξ ∈ γ. Vilenkin
and Shleinikova [8] considered the following three sections of Λ: The circle γ1 : x1 = 1; the hyperbola
γ2 : x2 = ±1; and the parabola γ3 : x1 + x2 = 1. They introduced three bases in D, which consist of the
eigenfunctions of the restrictions of the representation T to the subgroups acting transitively on the above
conic sections, respectively, and obtained formulas for ‘matrix elements’ of the linear operator, which
transforms the ‘circle’ basis into the ‘parabolic’ basis, and some ‘matrix elements’ of the linear operator,
which transforms the ‘parabolic’ basis into the ‘hyperbolic’ basis. We denote these bases by B1, B2, and
B3, respectively. Namely,

B1 := {fk(x) := x
σ−k
1 (x1 + ix2)

k | k ∈ Z},

B2 := {f∗ρ,±(x) := (x1)
σ−iρ
± (x1 + x2)

iρ | ρ ∈ R},

B3 :=

{
f∗∗λ (x) := (x1 + x2)

σ exp
(

i λx3

x1 + x2

) ∣∣∣ λ ∈ R

}
,

where (x1)
λ
± is equal to (±x1)

λ in case of sign x1 = ±1 and equal to zero otherwise.
Shilin [3] determined the bilinear functionals Di : D2 −→ C by formula

(u, v) 7−→
∫∫
γ2
i

k(x, x̂)u(x) v(x̂)dxdx̂, (i = 1, 2, 3),

where (dx)γi is the Hi-invariant measure and Hi denotes the subgroup acting transitively on γi. Shilin
[3] found (up to the constant multiplier Ci, respectively) the restrictions of the kernel k(x, x̂) to the above
sections such that D1 = D2 = D3. By using the equality Di(u, v) = Dj(u, v) (i 6= j) for u ∈ Bp and v ∈ Bq
(p 6= q), Shilin [3] obtained some formulas for the Whittaker functions, which were able to compute the
fractions CiCj from some simple initial conditions.

Shilin and Choi [4–6] have considered two spaces D and D ′ for groups SO(3, 1) and SO(2, 2) and
determined the bilinear functional Fi : D×D ′ by the rule

(u, v) 7−→
∫
γi

u(x) v(x) (dx)γi ,

where γi denote the spherical, parabolic and hyperbolic sections of the corresponding cones. Shilin and
Choi [4–6] have computed the matrix elements of the basis transform operators which together with the
generalized Mehler-Fock transform, have been used to obtain some formulas for Legendre functions in
case of SO(3, 1) and Whittaker functions in case of SO(2, 2).

In this paper we return to consider the group SO(2, 1) and compute the matrix elements of the opera-
tors T•(g) for some fixed group elements g. We apply these matrix elements to present some integral and
series representations of the Whittaker function of the second kind and certain formulas for the Bessel
functions and single- and double-variable formulas for the Macdonald functions.

Lemma 1.1. In case of D ′ = D•, the functionals F1, F2, and F3 coincide. For any g ∈ SO(2, 1), the functional
Fi is invariant with respect to the pair (T(g), T•(g)) of operators arising in the corresponding spaces, that is,
Fi(T(g)[u], T•(g)[v]) = Fi(u, v).

Proof. We can describe the above conic sections by using a single parameter. In particular,

γ1 = {(1, cosϕ, sinϕ) | ϕ ∈ [−π, π)},

and
γ2 = {(cosh s,±1, sinh s) | s ∈ R}.
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It is obvious that (dx)γ1 = dϕ and (dx)γ2 = ds. Then we have

F1(u, v) =

π∫
−π

u(ϕ) v(ϕ)dϕ

=

π∫
−π

u

(
|secϕ|,±1,

sinϕ
| cosϕ|

)
v

(
|secϕ|,±1,

sinϕ
| cosϕ|

)
dϕ

|secϕ|
.

Setting ϕ = arccos 1
| coshs| , we acquire dϕ = ds

| coshs| . We therefore have F1(u, v) = F2(u, v). A similar
argument can show that F1(u, v) = F3(u, v).

The group SO(2, 1), as a semisimple Lie group, admits the Cartan decomposition SO(2, 1) = KAK,
where K is a maximal compact subgroup and A is a maximal Abelian group. These groups consist of
matrices

g1(ψ) :=

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 , and g2(t) :=

 cosh t sinh t 0
sinh t cosh t 0

0 0 1

,

respectively. Then g−1
1 (ψ) = g1(−ψ), g−1

2 (t) = g2(−t) and

Fi(T(g1(ψ))[u], T•(g1(ψ))[v]) = F1(T(g1(ψ))[u], T•(g1(ψ))[v])

=

π∫
−π

u(ϕ−ψ)u(ϕ−ψ)dϕ =

π−ψ∫
−π−ψ

u(z)u(z)d(z+ψ) = F1(u, v),

Fi(T(g2(t))[u], T•(g2(t))[v]) = F1(T(g2(t))[u], T•(g2(t))[v])

=

π∫
−π

u

(
1,

cosh t cosϕ− sinh t
cosh t− sinh t cosϕ

,
sinϕ

cosh t− sinh t cosϕ

)

× v
(

1,
cosh t cosϕ− sinh t
cosh t− sinh t cosϕ

,
sinϕ

cosh t− sinh t cosϕ

)
dϕ

cosh t− sinh t cosϕ
.

Choosing here the new variable θ := arctan sinϕ
cosh t cosϕ−sin t , we obtain

F1(T(g2(t))[u], T•(g2(t))[v]) = F1(u, v).

2. Formulas related to the matrix diag(1,−1,−1)

Let us consider the matrix elements tλλ̂(g) of the representation T• with respect to the basis B2. Since

T•(g)[f∗∗λ (x)] =

+∞∫
−∞

tλλ̂(g)f
∗∗
λ̂
(x)dλ̂,

we have

Fi (T•(g)[f∗∗λ ], f∗∗τ ) =

+∞∫
−∞

tλµ(g)Fj(f∗∗λ̂ , f∗∗τ )dλ̂,

for any i and j. Taking

F3(f
∗∗
λ̂

, f∗∗τ ) =

+∞∫
−∞

exp(i[µ+ τ]y)dy = δ(µ+ τ),
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where δ(µ+ τ) is the (−τ)-delayed Dirac delta function, we obtain

Fi (T•(g)[f∗∗λ ], f∗∗τ ) =

+∞∫
−∞

tλµ(g) δ(µ+ τ)dλ̂ = 2π tλ̂,−τ(g).

Thus we have
tλλ̂(g) =

1
2π

Fi(T•(g)[f∗∗λ ], f∗∗
−λ̂

).

Let us note that the matrix (aij) belongs to SO(s, t), if and only if

t∑
j=1

aijaîj −

s+t∑
j=t+1

aijaîj =


0, if i 6= î,
1, if i = î 6 t,
−1, if i = î > t.

In particular, diag(1,−1,−1) ∈ SO(2, 1). In the next lemma we obtain the matrix elements

tλλ̂ (diag(1,−1,−1))

of which the case λλ̂ 6= 0 can be expressed in terms of (basic and modified) Bessel functions.

Lemma 2.1. The matrix elements tλλ̂ (diag(1,−1,−1)) are given as follows:

� λλ̂ 6= 0.

tλλ̂ (diag(1,−1,−1)) =


cos(πσ)

2

(
λ̂
λ

)σ+ 1
2
[
J−2σ−1(2

√
λλ̂) − J2σ+1(2

√
λλ̂)
]

, if λλ̂ > 0,

−
sin(πσ)
π

∣∣∣ λ̂λ ∣∣∣σ+ 1
2
K2σ+1(2

√
−λλ̂), if λλ̂ < 0.

� λλ̂ = 0, 1
2δλ̂,0 − 1 < <(σ) < −1

2δλ,0.

tλλ̂ (diag(1,−1,−1)) =

{
−|λ|2σ−1 π−1 sin(πσ) Γ(2σ+ 1), if λ 6= 0,
−|λ̂|2σ+1 π−1 sin(πσ) Γ(−2σ− 1), if λ̂ 6= 0.

Here δp,q is the Kronecker symbol.

Proof. Indeed, we have γ3 =
{(

1+y2

2 , 1−y2

2 ,y
) ∣∣∣y ∈ R

}
and (dx)γ3 = dy (see [3, 8]).

Since T• is a group homomorphism, in view of Lemma 1.1, we have

tλλ̂(g) =
1

2π
Fi(Tσ(g)[f∗∗λ ], f∗∗

−λ̂
)

=
1

2π
Fi(Tσ(g−1)Tσ(g)[f

∗∗
λ ], Tσ(g−1)[f∗∗

−λ̂
])

=
1

2π
Fi(f∗∗λ , Tσ(g−1)[f∗∗

−λ̂
]).

Since
[diag(1,−1,−1)]−1 = diag(1,−1,−1),

and

f∗∗
−λ̂

|γ3 (diag(1,−1,−1)x) = y2σ exp
(

iλ̂
y

)
,

we have
tλλ̂ (diag(1,−1,−1)) =

1
2π

F3(f
∗∗
λ , Tσ(diag(1,−1,−1))[f∗∗

−λ̂
])

=
1
π

+∞∫
0

y2σ cos
(
λy+

λ̂

y

)
dy.
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The following formulas may be used:

� λλ̂ > 0. (See, e.g., [2, Entry 2.5.24.4]).

+∞∫
0

xα−1 cos
(
ax+

b

x

)
dx =

π

2

(
b

a

)α
2

× sin
(απ

2

) [
J−α(2

√
ab) − Jα(2

√
ab)

]
,

(a, b > 0; |<(α)| < 1).

� λλ̂ < 0. (See, e.g., [2, Entry 2.5.24.7]).

+∞∫
0

xα−1 cos
(
ax−

b

x

)
dx = 2

(
b

a

)α
2

cos
(απ

2

)
Kα(2

√
ab), (a, b > 0; |<(α)| < 1).

� λ 6= 0 and λ̂ = 0. (See, e.g., [2, Entry 2.5.3.10]).

+∞∫
0

xα−1 cos(bx)dx = b−α cos
(απ

2

)
Γ(α), (b > 0; 0 < <(α) < 1). (2.1)

� λ = 0 and λ̂ 6= 0.

Substitute y = z−1 and use the formula (2.1).

We obtain two similar integral representations of the Whittaker function Wµ,ν asserted by Theorem
2.2.

Theorem 2.2. The following integral representations for Wµ,ν hold true:

� λ > 0.
cos(πσ)

2

+∞∫
0

λ̂−
1
2 W−k,σ+ 1

2
(2λ̂)

[
J−2σ−1

(
2
√
λλ̂
)
− J2σ+1

(
2
√
λλ̂
)]

dλ̂

−
π Γ(−k− σ) sin(πσ)

Γ(k− σ)

+∞∫
0

λ̂−
1
2 Wk,σ+ 1

2
(2λ̂)K2σ+1

(
2
√
λλ̂
)

dλ̂

= (−1)k λ−
1
2 W−k,σ+ 1

2
(2λ).

(2.2)

� λ < 0.
cos(πσ)

2

+∞∫
0

λ̂−
1
2 Wk,σ+ 1

2
(2λ̂)

[
J−2σ−1

(
2
√

−2λλ̂
)
− J2σ+1

(
2
√

−2λλ̂
)]

dλ̂

−
sin(πσ) Γ(k− σ)
π Γ(−k− σ)

+∞∫
0

λ̂−
1
2 K2σ+1

(
2
√

−λλ̂
)
W−k,σ+ 1

2
(2λ̂)dλ̂

= (−1)k |λ|−
1
2 Wk,σ+ 1

2
(2|λ|).

(2.3)
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� λ = 0, −1 < <(σ) < −1
2 .

π−1 sin(πσ) Γ(−2σ− 1)

{Γ(−σ− k)}−1

+∞∫
0

λ̂σW−k,σ+ 1
2
(2λ̂)dλ̂

+{Γ(−σ+ k)}−1

+∞∫
0

λ̂σWk,σ+ 1
2
(2λ̂)dλ̂


= (−1)k 22σ+1 (−2σ− 1)−1 {B(k− σ,−k− σ)}−1.

(2.4)

Proof. By using the connection f∗∗λ (x) =
∑
k∈Z

cλk fk(x) between the bases B1 and B3, we have

T• (diag(1,−1,−1)) [f∗∗λ (x)] =

+∞∫
−∞

tλλ̂ (diag(1,−1,−1)) f∗∗
λ̂
(x)dλ̂

=
∑
k∈Z

+∞∫
−∞

tλλ̂ (diag(1,−1,−1)) cλ̂k dλ̂

 fk(x).

(2.5)

It is noted here that the ‘matrix elements’ of the linear operator that transforms B1 into B2 were
computed for λ 6= 0 in [8]:

cλk = |λ|−σ−1 {Γ(−σ− k sign λ)}−1 W−k signλ,σ+ 1
2
(2|λ|).

It is easy to see that

c0k =
1

2σ+1 π
F3(f

∗∗
0 , f−k) =

1
2σ+1 π

+∞∫
−∞

(1 − iy)σ−k (1 + iy)σ+k dy

= 2σ+1 (−2σ− 1)−1 {B(k− σ,−k− σ)}−1, (see, e.g., [2,Entry 2.2.6.31]).

Let V±1 be the linear subspace in D• and consist of the zero function and the eigenfunctions of the
operator T• (diag(1,−1,−1)) whose corresponding eigenvalues are ±1. It is easy to see that fk ∈ V(−1)k ,
the ‘infinite matrix’ (tkk̂ (diag(1,−1,−1)) of the operator T• (diag(1,−1,−1)) with respect to the basis B1
is diagonal and moreover, tkk̂ (diag(1,−1,−1)) = (−1)k. Then we have

T• (diag(1,−1,−1)) [f∗∗λ ] = T• (diag(1,−1,−1))

[∑
k∈Z

cλk fk

]
=
∑
k∈Z

T• (diag(1,−1,−1)) [fk] =
∑
k∈Z

(−1)k cλk fk.
(2.6)

From (2.5) and (2.6) we have

0∫
−∞

tλλ̂ (diag(1,−1,−1)) cλ̂k dλ̂+

+∞∫
0

tλλ̂ (diag(1,−1,−1)) cλ̂k dλ̂ = (−1)k cλk,

which immediately yields (2.2).
A similar argument can establish (2.3) and (2.4) whose proof details are omitted.
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Theorem 2.2 allows to obtain the following representation of the Macdonald function of double-
variable as a linear combination of the Macdonald and modified Struve functions.

Corollary 2.3. The following double-variable formulas hold true: For λ > 0,

Kσ+ 1
2
(2λ) =

(
sin(2πσ)

4
+ 1
)
Kσ+ 1

2
(λ)

+

(
π cos(πσ)

4
−

π

8 cos(πσ)

) [
Lσ+ 1

2
(λ) − L−σ− 1

2
(λ)
]

,

where

Kν(x) :=

√
π

2x
W0,ν(2x), and Wµ,ν(x) =Wµ,−ν(x).

Proof. The special case of (2.2) when k = 0 can be rewritten as follows:

cos(πσ)
2

+∞∫
0

Kσ+ 1
2
(λ̂)

[
J−2σ−1(2

√
λλ̂) − J2σ+1(2

√
λλ̂)
]

dλ̂

−
sin(πσ)
π

+∞∫
0

Kσ+ 1
2
(λ̂)K2σ+1(2

√
λλ̂)dλ̂ = Kσ+ 1

2
(λ).

Use the following known formulas (see, e.g., [1, Entry 6.516.3] and [1, Entry 6.516.9], respectively):

+∞∫
0

J2ν(a
√
x)Kν(bx)dx =

π

2

[
Iν

(
a2

4b

)
− Lν

(
a2

4b

)]
,
(
<(b) > 0; <(ν) > −

1
2

)
,

and
+∞∫

0

K2ν(a
√
x)Kν(bx)dx =

π

4b cos(νπ)
×
(
Kν

(
a2

4b

)
+

π

2 sin(νπ)

×
[

L−ν

(
a2

4b

)
− Lν

(
a2

4b

)])
,
(
<(b) > 0; |<(ν)| <

1
2

)
.

Finally use the formula

Kν(z) =
π

2
· I−ν(z) − Iν(z)

sin(πν)
.

Then the proof is seen to be complete.

Remark 2.4. Other similar formulas as in corollary can be obtained from (2.3).

Further, setting k = 0 in (2.4) and replacing the Whittaker function W0,σ+ 1
2

by Macdonald function
Kσ+ 1

2
, we acquire an interesting integral formula

+∞∫
0

λ̂σ+
1
2 Kσ+ 1

2
(λ̂)dλ̂ = −

2σ−
1
2 π

3
2

sin(πσ) Γ(−σ)
. (2.7)

It happens to be seen that, using the following well-known relation (see, e.g., [7, p. 3]):

Γ(σ) Γ(1 − σ) =
π

sin(πσ)
, (σ ∈ C \ Z),
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equation (2.7) is a special case of the following known formula (see, e.g., [1, Entry 6.516.16]):

+∞∫
0

xµ Kν(ax)dx = 2µ−1 a−µ−1 Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
, (<(µ+ 1± ν); <(a) > 0).

Yet it is emphasized that the formula (2.7) here is obtained from a group theoretical point of view.

3. Formulas related to some block-diagonal matrices

The matrix considered in the previous section can be expressed in terms of g1 matrices:

diag(1,−1,−1) = g1(π).

Here we deal with the matrix

g1

(π
2

)
=

 1 0 0
0 0 −1
0 1 0

 .

Denote the eigenspace of the operator T•
(
g1
(
π
2

))
associated with the eigenvalue µ by Lµ. Since fk ∈ Lik ,

the following equality is valid for the matrix elements of the operator T•
(
g1
(
π
2

))
with respect to the basis

B1:

t̃kk̂

(
g1

(π
2

))
=

{
ik, if k = k̂,
0, if k 6= k̂,

which gives
T•
(
g1

(π
2

))
[f∗∗λ ] =

∑
k∈Z

ik cλk fk.

On the other hand, choosing k = 0 and repeating the reasoning used in the previous section, we have for
λ > 0,

T•
(
g1

(π
2

))
[f∗∗λ ] =

∑
k∈Z

+∞∫
−∞

tλλ̂

(
g1

(π
2

))
cλ̂k dλ̂

 fk,

where

tλλ̂

(
g1

(π
2

))
=

exp(−(λ+ λ̂)i)
2σ π

+∞∫
−∞

z2σ exp
(
λz+

2λ̂
z

)
dz

=
cos(πσ)

√
2πλσ+

1
2 exp(iλ)

+∞∫
0

exp(−iλ̂)K−σ− 1
2
(λ̂) J−2σ−1(2

√
2λλ̂)dλ̂

−
cos(πσ)

√
2πλσ+

1
2 exp(iλ)

+∞∫
0

exp(−iλ̂)Kσ+ 1
2
(λ̂) J2σ+1(2

√
2λλ̂)dλ̂

+
sin(πσ)

21.5 π1.5 λσ+
1
2 exp(iλ)

+∞∫
0

exp(−iλ̂)Kσ+ 1
2
(λ̂)K2σ+1(2

√
2λλ̂)dλ̂.

Expressing the function Kσ+ 1
2
(λ̂) ≡ K−σ− 1

2
(λ̂) which appears at the integrand of the last formula (2.7) as

a series and using the known formulas (see, e.g., [1, Entry 6.643.1 and Entry 6.643.3], respectively): For
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<
(
µ+ ν+ 1

2

)
> 0,

+∞∫
0

xµ−
1
2 exp(−αx) J2ν(2β

√
x)dx =

Γ
(
µ+ ν+ 1

2

)
αµ β Γ(2ν+ 1)

exp
(
−
β2

2α

)
Mµ,ν

(
β2

α

)
,

and
+∞∫

0

xµ−
1
2 exp(−αx)K2ν(2β

√
x)dx =

Γ
(
µ+ ν+ 1

2

)
Γ
(
µ− ν+ 1

2

)
2αµ β

exp
(
−
β2

2α

)
W−µ,ν

(
β2

α

)
,

we obtain the series
∑
n∈Z

containing a linear combination of Whittaker functions

M2n−σ,−σ− 1
2
(−2iλ), M2n−σ,σ+ 1

2
(−2iλ), M2n+σ+1,−σ− 1

2
(−2iλ),

M2n+σ+1,σ+ 1
2
(−2iλ), Wσ−2n,σ+ 1

2
(−2iλ), W−2n−σ−1,σ+ 1

2
(−2iλ),

and converging to the function Kσ+ 1
2
(λ). In the linear combination, we express the Whittaker functions of

the first kind in terms of the Whittaker functions of the second kind:

Γ(2n+ 2σ+ 2)
Γ(2σ+ 2)

M2n+σ+1,σ+ 1
2
(−2iλ) −

Γ(2n+ 1)
Γ(−2σ)

M2n+σ+1,−σ− 1
2
(−2iλ)

=
(2n)! sin(2σπ) Γ(2n+ 2σ+ 2)

π

×

[
Γ(−2σ− 1)M2n+σ+1,σ+ 1

2
(−2iλ)

Γ(2n+ 1)
+
Γ(2σ+ 1)M2n+σ+1,−σ− 1

2
(−2iλ)

Γ(2n+ 2σ+ 1)

]

=
(2n)! sin(2σπ) Γ(2n+ 2σ+ 2)

π
W2n+σ+1,σ+ 1

2
(−2iλ),

and

Γ(2n− 2σ)
Γ(−2σ)

M2n−σ,−σ− 1
2
(−2iλ) −

Γ(2n+ 1)
Γ(2σ+ 2)

M2n−σ,σ+ 1
2
(−2iλ)

= −
(2n)! sin(2σπ) Γ(2n− 2σ)

π

×

[
Γ(2σ+ 1)M2n−σ,−σ− 1

2
(−2iλ)

Γ(2n+ 1)
+
Γ(−2σ− 1)M2n−σ,σ+ 1

2
(−2iλ)

Γ(2n− 2σ)

]

= −
(2n)! sin(2σπ) Γ(2n− 2σ)

π
W2n−σ,σ+ 1

2
(−2iλ).

Summarizing the argument we have just given, we derive an interesting series representation for
Kσ+ 1

2
(λ) asserted by Theorem 3.1.

Theorem 3.1. For λ > 0,

Kσ+ 1
2
(λ) =

π2

2 Γ(−σ)

∞∑
n=0

(−1)n (2n)!
n!

×

[
2−σ−2n− 1

2 i−σ−1

Γ
(
σ+n+ 3

2

) (
sin(2σπ)

2
W2n+σ+1,σ+ 1

2
(−2iλ) −

sin(σπ)
π2 W−2n−σ−1,σ+ 1

2
(−2iλ)

)

+
2

1
2+σ−2n iσ

Γ
(1

2 − σ+n
) (sin(σπ)

π2 Wσ−2n,σ+ 1
2
(−2iλ) −

sin(2σπ)
2

W2n−σ,σ+ 1
2
(−2iλ)

)]
.
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Remark 3.2. Another similar relation as in Theorem 3.1 can be obtained if the matrix g1
(
π
2

)
is replaced by

the block-diagonal matrix

g3 :=

1 0 0
0 0 1
0 1 0

 .

It is clear that, first g3 ∈ SO(2, 1) and second for any k, the span of the functions fk and f−k is an invariant
linear subspace of D• with respect to the operator T(g3) since T(g3)

•[f±k] = i±k f∓k. By applying the
reasoning used here to T(g3)

•[f∗∗λ ], we can obtain a similar result as in Theorem 3.1 whose exact formula
and the corresponding details of proof are left to the interested reader.

4. A series related to the rotation subgroup

We begin by presenting the matrix elements of the restrictions of the representation to the subgroup
of rotations in the plane x2x3 asserted by Lemma 4.1. Our result may be a generalization of the cases
considered in Sections 2 and 3.

Lemma 4.1. For π < ψ < 3π
4 , or 3π

2 < ψ < 7π
4 ,

tλλ̂(g1(ψ)) =2σ+1 π−
1
2 exp

(
−iλ̂ tan

[
ψ−

π

4

])
×
∞∑
n=0

(−i λ̂)n |λ|n−σ−
1
2
[
tan
(
ψ− π

4

)]σ−n
2 + 1

4

n!
[
cos
(
ψ− π

4

)]2n+1
Γ(n− σ)

×K 1
2+σ−n

(√
tan
(
ψ−

π

4

)
|λ|

)
.

Proof. We have

tλλ̂(g1(ψ)) = Fi
(
T(g1(ψ))[f

∗∗
λ ], f∗∗

−λ̂

)
= F1

(
f∗∗λ , T•(g1(−ψ))[f

∗∗
−λ̂

]
)

=
exp

(
iλ̂ tan

[
π
4 −ψ

])
22.5 π

×
+∞∫
−∞

exp(iλy)
(
y2 + tan

[π
4
−ψ

])σ
exp

−iλ̂
[
sec
(
ψ− π

4

)]2
y2 + tan

[
π
4 −ψ

] dy.

Then expand the function

exp
−iλ̂

[
sec
(
ψ− π

4

)]2
y2 + tan

[
π
4 −ψ

] ,

as the Taylor series and use the following known formula (see, e.g., [2, Entry 2.5.6.4]):

+∞∫
0

cos(bx)dx
(x2 + z2)ρ

=

(
2z
b

) 1
2−ρ

√
π

Γ(ρ)
K 1

2−ρ
(bz), (min{b, <(ρ), <(z) > 0} > 0).

Lemma 4.2. For π < ψ < 3π
4 , or 3π

2 < ψ < 7π
4 ,

2σ+
1
2

√
π

∞∑
n=0

(−i)n |λ|n+
1
2
[
tan
(
ψ− π

4

)]σ−n
2 + 1

4

n!
[
cos
(
ψ− π

4

)]2n+1
Γ(n− σ)

K 1
2+σ−n

(√
tan
(
ψ−

π

4

)
|λ|

)
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×

+∞∫
0

λ̂n−σ−1 exp
(
−iλ̂ tan

[
ψ−

π

4

])
W−k,σ+ 1

2
(2λ̂)dλ̂

+(−1)n
+∞∫

0

λ̂n−σ−1 exp
(

iλ̂ tan
[
ψ−

π

4

])
W−k,σ+ 1

2
(2λ̂)dλ̂


= exp(−iψk) [Γ(−k sign λ− σ)]−1W−k signλ,σ+ 1

2
(2|λ|).

Proof. Let A(k) denote the coefficient of the distribution of the function T• (g1(ψ)) [f
∗∗
λ (x)] with respect to

the basis B1 in the equality

T• (g1(ψ)) [f
∗∗
λ (x)] =

+∞∫
−∞

tλλ̂ (g1(ψ)) f
∗∗
λ̂
(x)dλ̂

=
∑
k∈Z

+∞∫
−∞

tλλ̂ (g1(ψ)) cλ̂k dλ̂

 fk(x).

Let Uexp(−iψk) be the eigenspace of T•(g3) associated with the eigenvalue exp(−iψk). It is easy to see that
fk ∈ Uexp(−iψk) and therefore, the ‘matrix’ of T•(g3) with respect to the basis B1 is diagonal. From the
equality

T• (g1(ψ)) [f
∗∗
λ ] = T• (g1(ψ))

[∑
k∈Z

cλk fk

]
=
∑
k∈Z

cλk T
• (g1(ψ)) [fk] =

∑
k∈Z

exp(−iψk) cλk fk,

we have A(k) = exp(−iψk) cλk and use the result in Lemma 2.1.

Putting k = 0 in Lemma 4.1 and expressing the Whittaker function in terms of Macdonald function
and using the known formula (see, e.g., [1, Entry 6.621.3]):

+∞∫
0

xµ−1 exp(−αx)Kν(βx)dx =
√
π (2β)ν

(α+β)ν+µ
Γ(µ+ ν) Γ(ν− µ)

Γ
(
µ+ 1

2

)
× 2F1

(
µ+ ν,ν+

1
2

;µ+
1
2

;
α−β

α+β

)
, (<(µ) > |<(ν)|; <(α+β) > 0),

we obtain the following interesting representation for Kσ+ 1
2
(2λ) given in Theorem 4.3.

Theorem 4.3. For λ > 0 and π4 < ψ < π, or 5π
4 < ψ < 3π

2 ,

2σ+
1
2

∞∑
n=0

(−i)n λn [tanψ]
σ−n

2 + 1
4 Γ(n+ 1) Γ(n− 2σ)

n! [cosψ]2n+1 (−σ)n (−σ)n+1

×K 1
2+σ−n

(√
tanψλ

)  2F1

(
n+ 1, σ+ 1; 1 +n− σ; i tanψ−1

i tanψ+1

)
(1 + i tanψ)n+1

+
2F1

(
n+ 1, σ+ 1; 1 +n− σ; i tanψ+1

i tanψ−1

)
(1 − i tanψ)n+1

 = Kσ+ 1
2
(2λ).
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5. Some relations between Bessel and Struve functions related to the matrix diag(1,−1, 1)

Let us express the function f∗∗λ ∈ D• as an ‘infinite continuous linear combination’ of the functions
belonging to the basis B2 in D•:

f∗∗λ (x) =

+∞∫
−∞

dλ,ρ,+ f
∗
ρ,+(x)dρ+

+∞∫
−∞

dλ,ρ,− f
∗
ρ,−(x)dρ.

Then we find
1

2π
Fi(f∗∗λ , f∗τ,±) =

1
2π

+∞∫
−∞

dλ,ρ,± F2(f
∗
ρ,±, f∗τ,±)dρ

=
1

2π

+∞∫
−∞

dλ,ρ,±

+∞∫
−∞

exp(i[ρ+ τ]s)dsdρ = dλ,−τ,±.

We therefore get dλ,ρ,± = 1
2π Fi(f∗∗λ , f∗−ρ,±).

Lemma 5.1.

dλ,0,+ =
22σ+ 1

2 Γ
(
σ+ 3

2

)
B(σ+ 1,σ+ 1)

πλσ+
1
2

Jσ+ 1
2
(λ),

and

dλ,0,− = −
Γ(σ+ 1)
√

2πλσ+
1
2
Y−σ− 1

2
(λ).

Proof. We have

dλ,ρ,+ =
1

2π
F2(f

∗∗
λ , f−ρ,+) =

2−σ−1

π

1∫
−1

(1 − y)σ+iρ (1 + y)σ−iρ exp(iλy)dy

=
exp(iλ)
2σ+1 π

2∫
0

tσ+iρ (2 − t)σ−iρ exp(−iλt)dt,

which can be computed by recalling the following known formula (see, e.g., [2, Entry 2.3.6.1]):∫a
0
xα−1 (a− x)β−1 exp(−px)dx = aα+β−1 B(α,β) 1F1(α; α+β; −ap), (<(α) > 0; <(β) > 0).

Applying the following relations:

1F1

(
α−β+

1
2

; 2α+ 1; x
)

= x−α−
1
2 exp

(x
2

)
Mβ,α(x),

M0,ν(x) = 22ν Γ(ν+ 1)
√
x Iν

(x
2

)
,

and

Jν(x) = exp
(

iπν
2

)
Iν(−ix),

to the resulting identity, we are led to the first one of the two formulas in this lemma.
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On the other hand, starting with the following expression:

dλ,0,− =
2−σ−1

π

+∞∫
1

(y2 − 1)σ exp(iλy)dy+

−1∫
−∞

(y2 − 1)σ exp(iλy)dy


=

2−σ

π

+∞∫
1

(y2 − 1)σ cos(λy)dy,

and using a known formula (see, e.g., [2, Entry 2.5.6.2]):

+∞∫
a

(x2 − a2)β−1 cos(bx)dx = −

√
π

2

(
2a
b

)β− 1
2

Γ(β) Y 1
2−β

(ab), (min{a, b} > 0; 0 < <(β) < 1) ,

similarly as above, we prove the second formula.

Remark 5.2. The span of the functions f∗ρ,+ and f∗ρ,− in the linear space D• is invariant with respect to the
linear operator T•(diag(1,−1, 1)), because its image of any linear combination αf∗ρ,+ + βf∗ρ,− is the linear
combination βf∗ρ,+ +αf∗ρ,−. It implies that

T•(diag(1,−1, 1))[f∗∗λ ] = T•(diag(1,−1, 1))

+∞∫
−∞

dλ,ρ,+ f
∗
ρ,+ dρ+

+∞∫
−∞

dλ,ρ,− f
∗
ρ,− dρ


=

+∞∫
−∞

dλ,ρ,+ f
∗
ρ,− dρ+

+∞∫
−∞

dλ,ρ,− f
∗
ρ,+ dρ.

On the other hand, we have

T•(diag(1,−1, 1))[f∗∗λ ] =

+∞∫
−∞

tλλ̂(diag(1,−1, 1)) f∗∗
λ̂

dλ̂

=

+∞∫
−∞

+∞∫
−∞

tλλ̂(diag(1,−1, 1))dλ̂,ρ,+ dλ̂

 f∗ρ,+ dρ

+

+∞∫
−∞

+∞∫
−∞

tλλ̂(diag(1,−1, 1))dλ̂,ρ,− dλ̂

 f∗ρ,− dρ.

It implies that, in particular,

dλ,0,± =

+∞∫
−∞

tλλ̂(diag(1,−1, 1))dλ̂,ρ,∓ dλ̂. (5.1)

Lemma 5.3. The following relations hold true:

� λλ̂ > 0.

tλλ̂(diag(1,−1, 1)) = −
2 sin(πσ)

π

(
λ̂

λ

)σ+ 1
2

K2σ+1

(
2
√
λλ̂
)

.

� λλ̂ < 0.

tλλ̂(diag(1,−1, 1)) =
cos(πσ)

2

(
−λ̂

λ

)σ+ 1
2 [
J−2σ−1

(
2
√

−λλ̂
)
− J2σ+1

(
2
√

−λλ̂
)]

.
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From a group theoretical point of view, the upper part of the equality (5.1) allows to write an interest-
ing relation asserted by the following theorem.

Theorem 5.4. The following relation holds true:

Jσ+ 1
2
(λ) =

1
1 − sin(πσ)

[(
2−2σ√π Γ(2σ+ 2)
Γ(σ+ 1) Γ

(
σ+ 3

2

) + 2 cot(πσ) + (−1)σ+
1
2

)
Y−σ− 1

2
(λ)

− cos(πσ) Y−σ+ 1
2
(λ) +

(
(−1)σ+

1
2 − 2 tan(πσ)

)
H−σ− 1

2
(λ)

]
, (λ > 0).

Proof. For the integral
+∞∫

0
tλλ̂(diag(1,−1, 1))dλ̂,ρ,+ dλ̂, we use the following formula (see, e.g., [1, Entry

6.516.7]):
+∞∫

0

K2ν
(
a
√
x
)
Jν(bx)dx =

π sec(νπ)
4b

×
[

H−ν

(
a2

4b

)
− Y−ν

(
a2

4b

)]
,

(min{<(a), <(b)} > 0; <(ν) > −1/2) .

For the integral
0∫

−∞ tλλ̂(diag(1,−1, 1))dλ̂,ρ,+ dλ̂, we use the following formulas (see, e.g., [1, Entry

6.516.1] and [1, 6.516.4], respectively):

+∞∫
0

J2ν
(
a
√
x
)
Jν(bx)dx = b−1 Jν

(
a2

4b

)
, (min{<(a), <(b)} > 0; <(ν) > −1/2) ,

and
+∞∫

0

Y2ν
(
a
√
x
)
Jν(bx)dx =

2 sec(νπ)
b

[
cos(νπ)

2
Yν

(
a2

4b

)
− Y−ν

(
a2

4b

)
+ H−ν

(
a2

4b

)]
,

(min{<(a), <(b)} > 0; <(ν) > −1/2) .

Finally using
J−ν(x) = cos(πν) Jν(x) − sin(πν) Yν(x),

we are led to the desired result.

It is also remarked that a similar argument applied to the lower part of (5.1) can establish another
relation as in Theorem 5.4.

6. Concluding Remarks

It seems to be obvious that some other interesting formulas can be obtained by considering the similar
construction for special orthogonal groups of higher dimension. For instance, very recently we have
expressed some matrix elements of the representation operators for SO(3, 1) in terms of the modified
hyper Bessel functions of the first kind, which is a multi-index generalization of classical eponymous
functions. In particular, it yielded a formula for integral of the product an ordinary Macdonald function
and its multi-index analogue. The real presentation of further related results may be left to the interested
researcher. It is emphasized again that we have shown how certain interesting formulas for some classical
and useful special functions can be nicely obtained from a group theoretical point of view.
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