Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (2017), 575–582 Research Article

ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Contraction principles in M_s-metric spaces

N. Mlaiki^{a,*}, N. Souayah^b, K. Abodayeh^a, T. Abdeljawad^a

Communicated by W. Shatanawi

Abstract

In this paper, we give an interesting extension of the partial S-metric space which was introduced [N. Mlaiki, Univers. J. Math. Appl., 5 (2014), 109–119] to the M_s -metric space. Also, we prove the existence and uniqueness of a fixed point for a self-mapping on an M_s -metric space under different contraction principles. ©2017 all rights reserved.

Keywords: Functional analysis, M_s-metric space, fixed point.

2010 MSC: 47H10, 54H25.

1. Introduction

Many researchers over the years proved many interesting results on the existence of a fixed point for a self-mapping on different types of metric spaces, for example, see [1, 2, 4, 8, 10–12, 14–16]. The idea behind this paper was inspired by the work of Asadi et al. in [7]. He gave a more general extension of almost any metric space with two dimensions, and that is not just by defining the self "distance" in a metric as in partial metric spaces [3, 5, 6, 13, 17], but he assumed that is not necessary that the self "distance" is less than the value of the metric between two different elements.

In [9], an extension of S-metric spaces to a partial S-metric spaces was introduced. Also, it was shown that every S-metric space is a partial S-metric space, but not every partial S-metric space is an S-metric space. In our paper, we introduce the concept of M_s -metric spaces which is an extension of the partial S-metric spaces in which we will prove some fixed point results.

First, we remind the reader definition of a partial S-metric space.

Definition 1.1. [9] Let X be a nonempty set. A partial S-metric on X is a function $S_p: X^3 \to [0, \infty)$ that satisfies the following conditions for all $x, y, z, t \in X$:

(i)
$$x = y$$
 if and only if $S_p(x, x, x) = S_p(y, y, y) = S_p(x, x, y)$;

Email addresses: nmlaiki@psu.edu.sa (N. Mlaiki), nsouayah@ksu.edu.sa (N. Souayah), kamal@psu.edu.sa (K. Abodayeh), tabdeljawad@psu.edu.sa (T. Abdeljawad)

doi:10.22436/jnsa.010.02.21

^aDepartment of Mathematical Sciences, Prince Sultan University.

^bDepartment of Natural Sciences, Community College, King Saud University.

^{*}Corresponding author

- (ii) $S_{p}(x, y, z) \leq S_{p}(x, x, t) + S_{p}(y, y, t) + S_{p}(z, z, t) S_{p}(t, t, t)$;
- (iii) $S_{\mathfrak{p}}(x, x, x) \leq S_{\mathfrak{p}}(x, y, z);$
- (iv) $S_{p}(x, x, y) = S_{p}(y, y, x)$.

The pair (X, S_p) is called a partial S-metric space.

Next, we give the definition of an M_s-metric space, but first we introduce the following notations.

Notations.

- 1. $m_{s_{x,y,z}} := \min\{m_s(x,x,x), m_s(y,y,y), m_s(z,z,z)\};$
- 2. $M_{s_{x,y,z}} := \max\{m_s(x, x, x), m_s(y, y, y), m_s(z, z, z)\}.$

Definition 1.2. An M_s -metric on a nonempty set X is a function $\mathfrak{m}_s: X^3 \to \mathbb{R}^+$ such that for all $x, y, z, t \in X$, the following conditions are satisfied:

- 1. $m_s(x,x,x) = m_s(y,y,y) = m_s(x,x,y)$ if and only if x = y;
- 2. $m_{s_{x,y,z}} \leq m_s(x,y,z);$
- 3. $m_s(x, x, y) = m_s(y, y, x);$
- $4. \ (m_s(x,y,z) m_{s_{x,y,z}}) \leqslant (m_s(x,x,t) m_{s_{x,x,t}}) + (m_s(y,y,t) m_{s_{y,y,t}}) + (m_s(z,z,t) m_{s_{z,z,t}}).$

The pair (X, m_s) is called an M_s -metric space. Notice that the condition $m_s(x, x, x) = m_s(y, y, y) = m_s(z, z, z) = m_s(x, y, z) \Leftrightarrow x = y = z$ implies (1) above.

It is straightforward to verify that every partial S-metric space is an M_s -metric space but the converse is not true. The following example is an M_s -metric which is not a partial S-metric space.

Example 1.3. Let $X = \{1,2,3\}$ and define the M_s -metric space m_s on X by $m_s(1,2,3) = 6$, $m_s(1,1,2) = m_s(2,2,1) = m_s(1,1,1) = 8$, $m_s(1,1,3) = m_s(3,3,1) = m_s(3,3,2) = m_s(2,2,3) = 7$, $m_s(2,2,2) = 9$, and $m_s(3,3,3) = 5$. It is not difficult to see that (X, m_s) is an M_s -metric space, but since $m_s(1,1,1) \nleq m_s(1,2,3)$ we deduce that m_s is not a partial S-metric space.

Definition 1.4. Let (X, m_s) be an M_s -metric space. Then:

1. A sequence $\{x_n\}$ in X converges to a point x if and only if

$$\lim_{n\to\infty}(m_s(x_n,x_n,x)-m_{sx_n,x_n,x})=0.$$

2. A sequence $\{x_n\}$ in X is said to be M_s -Cauchy sequence if and only if

$$\lim_{n,m\to\infty}(m_s(x_n,x_n,x_m)-m_{sx_n,x_n,x_m})\text{, and }\lim_{n,m\to\infty}(M_{sx_n,x_n,x_m}-m_{sx_n,x_n,x_m})$$

exist and are finite.

3. An M_s -metric space is said to be complete if every M_s -Cauchy sequence $\{x_n\}$ converges to a point x such that

$$\lim_{n \to \infty} (m_s(x_n, x_n, x) - m_{sx_n, x_n, x}) = 0 \text{ and } \lim_{n \to \infty} (M_{sx_n, x_n, x} - m_{sx_n, x_n, x}) = 0.$$

A ball in the M_s -metric (X, m_s) space with center $x \in X$ and radius $\eta > 0$ is defined by

$$B_s[x,\eta] = \{ y \in X \mid m_s(x,x,y) - m_{sx,x,y} \leq \eta \}.$$

The topology of (X, M_s) is generated by means of the basis $\beta = \{B_s[x, \eta] : \eta > 0\}$.

Lemma 1.5. Assume $x_n \to x$ and $y_n \to y$ as $n \to \infty$ in an M_s -metric space (X, m_s) . Then,

$$\lim_{n \to \infty} (m_s(x_n, x_n, y_n) - m_{sx_n, x_n, y_n}) = m_s(x, x, y) - m_{sx, x, y}.$$

Proof. The proof follows by the inequality (4) in Definition 1.2. Indeed, we have

$$\begin{aligned} |(\mathfrak{m}_{s}(x_{n},x_{n},y_{n})-\mathfrak{m}_{sx_{n},x_{n},y_{n}})-(\mathfrak{m}_{s}(x,x,y)-\mathfrak{m}_{sx,x,y})| &\leqslant 2[(\mathfrak{m}_{s}(x_{n},x_{n},x)-\mathfrak{m}_{sx_{n},x_{n},x})\\ &+(\mathfrak{m}_{s}(y_{n},y_{n},y)-\mathfrak{m}_{sy_{n},y_{n},y})]. \end{aligned}$$

2. Fixed point theorems

In this section, we consider some results about the existence and the uniqueness of fixed point for self-mappings on an M_s -metric space, under different contraction principles.

Theorem 2.1. Let (X, m_s) be a complete M_s -metric space and T be a self-mapping on X satisfying the following condition:

$$m_s(Tx, Tx, Ty) \leq km_s(x, x, y),$$
 (2.1)

for all $x, y \in X$, where $k \in [0, 1)$. Then T has a unique fixed point u. Moreover, $m_s(u, u, u) = 0$.

Proof. Since $k \in [0,1)$, we can choose a natural number n_0 such that for a given $0 < \varepsilon < 1$, we have $k^{n_0} < \frac{\varepsilon}{8}$. Let $T^{n_0} \equiv F$ and $F^i x_0 = x_i$ for all natural numbers i, where x_0 is arbitrary. Hence, for all $x, y \in X$, we have

$$\mathfrak{m}_s(\mathsf{Fx},\mathsf{Fx},\mathsf{Fy})=\mathfrak{m}_s(\mathsf{T}^{\mathfrak{n}_0}x,\mathsf{T}^{\mathfrak{n}_0}x,\mathsf{T}^{\mathfrak{n}_0}y)\leqslant k^{\mathfrak{n}_0}\mathfrak{m}_s(x,x,y).$$

For any i, we have

$$\begin{split} m_s(x_{i+1}, x_{i+1}, x_i) &= m_s(Fx_i, Fx_i, Fx_{i-1}) \\ &\leqslant k^{n_0} m_s(x_i, x_i, x_{i-1}) \\ &\leqslant k^{n_0+i} m_s(x_1, x_1, x_0) \to 0 \text{ as } i \to \infty. \end{split}$$

Similarly, by (2.1) we have $m_s(x_i, x_i, x_i) \to 0$ as $i \to \infty$. Thus, we choose l such that

$$m_s(x_{l+1},x_{l+1},x_l)<\frac{\varepsilon}{8} \text{ and } m_s(x_l,x_l,x_l)<\frac{\varepsilon}{4}.$$

Now, let $\eta = \frac{\epsilon}{2} + m_s(x_l, x_l, x_l)$. Define the set

$$B_s[x_l, \eta] = \{ y \in X \mid m_s(x_l, x_l, y) - m_{sx_l, x_l, y} \leq \eta \}.$$

Note that, $x_1 \in B_s[x_1, \eta]$. Therefore $B_s[x_1, \eta] \neq \emptyset$. Let $z \in B_s[x_1, \eta]$ be arbitrary. Hence,

$$\begin{split} \mathbf{m}_s(\mathbf{F}z,\mathbf{F}z,\mathbf{F}x_l) &\leqslant \mathbf{k}^{\mathbf{n}_0}\mathbf{m}_s(z,z,\mathbf{x}_l) \\ &\leqslant \frac{\epsilon}{8}[\frac{\epsilon}{2} + \mathbf{m}_{sz,z,\mathbf{x}_l} + \mathbf{m}_s(\mathbf{x}_l,\mathbf{x}_l,\mathbf{x}_l)] \\ &< \frac{\epsilon}{8}[1 + 2\mathbf{m}_s(\mathbf{x}_l,\mathbf{x}_l,\mathbf{x}_l)]. \end{split}$$

Also, we know that $m_s(Fx_l, Fx_l, x_l) = m_s(x_{l+1}, x_{l+1}, x_l) < \frac{\epsilon}{8}$. Therefore,

$$m_s(\mathsf{Fz},\mathsf{Fz},\mathsf{x_l}) - m_{s\mathsf{Fz},\mathsf{Fz},\mathsf{x_l}} \leqslant 2[(m_s(\mathsf{Fz},\mathsf{Fz},\mathsf{Fx_l}) - m_{s\mathsf{Fz},\mathsf{Fz},\mathsf{Fx_l}})] + (m_s(\mathsf{Fx_l},\mathsf{Fx_l},\mathsf{x_l}) - m_{s\mathsf{Fx_l},\mathsf{Fx_l},\mathsf{x_l}})$$

$$\begin{split} &\leqslant 2 m_s(\mathsf{F}z,\mathsf{F}z,\mathsf{F}x_l) + m_s(\mathsf{F}x_l,\mathsf{F}x_l,x_l)] \\ &\leqslant 2 \frac{\varepsilon}{8} (1 + 2 m_s(x_l,x_l,x_l)) + \frac{\varepsilon}{8} \\ &= \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \frac{\varepsilon}{2} m_s(x_l,x_l,x_l) \\ &< \frac{\varepsilon}{2} + m_s(x_l,x_l,x_l). \end{split}$$

Thus, $Fz \in B_b[x_l, \eta]$ which implies that F maps $B_b[x_l, \eta]$ into itself. Thus, by repeating this process we deduce that for all $n \ge 1$ we have $F^n x_l \in B_b[x_l, \eta]$ and that is $x_m \in B_b[x_l, \eta]$ for all $m \ge l$. Therefore, for all $m > n \ge l$ where n = l + i for some i

$$\begin{split} m_s(x_n, x_n, x_m) &= m_s(\mathsf{F} x_{n-1}, \mathsf{F} x_{n-1}, \mathsf{F} x_{m-1}) \\ &\leqslant k^{n_0} m_s(x_{n-1}, x_{n-1}, x_{m-1}) \\ &\leqslant k^{2n_0} m_s(x_{n-2}, x_{n-2}, x_{m-2}) \\ &\vdots \\ &\leqslant k^{in_0} m_s(x_l, x_l, x_{m-i}) \\ &\leqslant m_s(x_l, x_l, x_{m-i}) \\ &\leqslant \frac{\varepsilon}{2} + m_{sx_l, x_l, x_{m-i}} + m_s(x_l, x_l, x_l) \\ &\leqslant \frac{\varepsilon}{2} + 2m_s(x_l, x_l, x_l). \end{split}$$

Also, we have $m_s(x_l,x_l,x_l)<\frac{\varepsilon}{4}$, which implies that $m_s(x_n,x_n,x_m)<\varepsilon$ for all m>n>l, and thus $m_s(x_n,x_n,x_m)-m_{sx_n,x_n,x_m}<\varepsilon$ for all m>n>l. By the contraction condition (2.1) we see that the sequence $\{m_s(x_n,x_n,x_n)\}$ is decreasing and hence, for all m>n>l, we have

$$\begin{split} M_{sx_n,x_n,x_m} - m_{sx_n,x_n,x_m} &\leqslant M_{sx_n,x_n,x_m} \\ &= m_s(x_n,x_n,x_n) \\ &\leqslant km_s(x_{n-1},x_{n-1},x_{n-1}) \\ &\vdots \\ &\leqslant k^n m_s(x_0,x_0,x_0) \to 0 \text{ as } n \to \infty. \end{split}$$

Thus, we deduce that

$$\lim_{n,m\to\infty} (m_s(x_n,x_n,x_m) - m_{sx_n,x_n,x_m}) = 0, \text{ and } \lim_{n\to\infty} (M_{sx_n,x_n,x_m} - m_{sx_n,x_n,x_m}) = 0.$$

Hence, the sequence $\{x_n\}$ is an M_s -Cauchy. Since X is complete, there exists $u \in X$ such that

$$\lim_{n\to\infty} m_s(x_n,x_n,u) - m_{sx_n,x_n,u} = 0, \quad \lim_{n\to\infty} M_{sx_n,x_n,u} - m_{sx_n,x_n,u} = 0.$$

The contraction condition (2.1) implies that $m_s(x_n, x_n, x_n) \to 0$ as $n \to \infty$. Moreover, notice that

$$\lim_{n\to\infty} M_{sx_n,x_n,u} - m_{sx_n,x_n,u} = \lim_{n\to\infty} |m_s(x_n,x_n,x_n) - m_s(u,u,u)| = 0,$$

and hence $\mathfrak{m}_s(\mathfrak{u},\mathfrak{u},\mathfrak{u})=0$. Since $x_n\to\mathfrak{u}$, $\mathfrak{m}_s(\mathfrak{u},\mathfrak{u},\mathfrak{u})=0$ and $\mathfrak{m}_s(x_n,x_n,x_n)\to 0$ as $n\to\infty$, then $\lim_{n\to\infty}\mathfrak{m}_s(x_n,x_n,\mathfrak{u})=\lim_{n\to\infty}\mathfrak{m}_{sx_n,x_n,\mathfrak{u}}=0$. Since $\mathfrak{m}_s(\mathsf{T}x_n,\mathsf{T}x_n,\mathsf{T}\mathfrak{u})\leqslant k\mathfrak{m}_s(x_n,x_n,\mathfrak{u})\to 0$ as $n\to\infty$, then $\mathsf{T}x_n\to\mathsf{T}\mathfrak{u}$.

Now, we show that Tu = u. By Lemma 1.5 and that $Tx_n \to Tu$ and $x_{n+1} = Tx_n \to u$, we have

$$\lim_{n \to \infty} m_s(x_n, x_n, u) - m_{sx_n, x_n, u} = 0 = \lim_{n \to \infty} m_s(x_{n+1}, x_{n+1}, u) - m_{sx_{n+1}, x_{n+1}, u}$$

$$\begin{split} &= \lim_{n \to \infty} m_s(Tx_n, Tx_n, u) - m_{sTx_n, Tx_n, u} \\ &= m_s(u, u, u) - m_{sTu, Tu, u} \\ &= m_s(Tu, Tu, u) - m_{sTu, Tu, u}. \end{split}$$

Hence, $m_s(Tu, Tu, u) = m_{sTu, Tu, u} = m_s(u, u, u)$, but also by the contraction condition (2.1) we see that $m_{sTu, Tu, u} = m_s(Tu, Tu, Tu)$. Therefore, (2) in Definition 1.2 implies that Tu = u.

To prove the uniqueness of the fixed point u, assume that T has two fixed points $u, v \in X$; that is, Tu = u and Tv = v. Thus,

$$\begin{split} &m_s(u,u,\nu)=m_s(Tu,Tu,T\nu)\leqslant km_s(u,u,\nu)< m_s(u,u,\nu),\\ &m_s(u,u,u)=m_s(Tu,Tu,Tu)\leqslant km_s(u,u,u)< m_s(u,u,u), \end{split}$$

and

$$m_s(\nu,\nu,\nu) = m_s(T\nu,T\nu,T\nu) \leqslant km_s(\nu,\nu,\nu) < m_s(\nu,\nu,\nu),$$

which implies that $m_s(u,u,\nu)=0=m_s(u,u,u)=m_s(\nu,\nu,\nu)$, and hence $u=\nu$ as desired. Finally, assume that u is a fixed point of T. Then applying the contraction condition (2.1) with $k\in[0,1)$, implies that

$$\begin{split} m_s(u,u,u) &= m_s(Tu,Tu,Tu) \\ &\leqslant km_s(u,u,u) \\ &\vdots \\ &\leqslant k^n m_s(u,u,u). \end{split}$$

Taking the limit as n tends to infinity, implies that $m_s(u, u, u) = 0$.

In the following result, we prove the existence and uniqueness of a fixed point for a self-mapping in M_s -metric space, but under a more general contraction.

Theorem 2.2. Let (X, m_s) be a complete M_s -metric space and T be a self-mapping on X satisfying the following condition:

$$m_s(Tx, Tx, Ty) \leq \lambda[m_s(x, x, Tx) + m_s(y, y, Ty)], \tag{2.2}$$

for all $x,y\in X$, where $\lambda\in[0,\frac{1}{2}).$ Then T has a unique fixed point u, where $m_s(u,u,u)=0.$

Proof. Let $x_0 \in X$ be arbitrary. Consider the sequence $\{x_n\}$ is defined by $x_n = T^n x_0$ and $m_{s_n} = m_s(x_n, x_n, x_{n+1})$. Note that if there exists a natural number n such that $m_{s_n} = 0$, then x_n is a fixed point of T and we are done. So, we may assume that $m_{s_n} > 0$ for $n \ge 0$. By (2.2), we obtain for any $n \ge 0$,

$$\begin{split} m_{s_n} &= m_s(x_n, x_n, x_{n+1}) = m_s(Tx_{n-1}, Tx_{n-1}, Tx_n) \\ &\leqslant \lambda[m_s(x_{n-1}, x_{n-1}, Tx_{n-1}) + m_s(x_n, x_n, Tx_n)] \\ &= \lambda[m_s(x_{n-1}, x_{n-1}, x_n) + m_s(x_n, x_n, x_{n+1})] \\ &= \lambda[m_{s_{n-1}} + m_{s_n}]. \end{split}$$

Hence, $\mathfrak{m}_{s_n} \leqslant \lambda \mathfrak{m}_{s_{n-1}} + \lambda \mathfrak{m}_{s_n}$, which implies $\mathfrak{m}_{s_n} \leqslant \mu \mathfrak{m}_{s_{n-1}}$, where $\mu = \frac{\lambda}{1-\lambda} < 1$ as $\lambda \in [0,\frac{1}{2})$. By repeating this process we get

$$m_{s_n} \leqslant \mu^n m_{s_0}$$
.

Thus, $\lim_{n\to\infty} \mathfrak{m}_{s_n} = 0$. By (2.2), for all natural numbers n, m, we have

$$\begin{split} m_s(x_n,x_n,x_m) &= m_s(T^nx_0,T^nx_0,T^mx_0) = m_s(Tx_{n-1},Tx_{n-1},Tx_{m-1}) \\ &\leqslant \lambda[m_s(x_{n-1},x_{n-1},Tx_{n-1}) + m_s(x_{m-1},x_{m-1},Tx_{m-1})] \end{split}$$

$$= \lambda[m_s(x_{n-1}, x_{n-1}, x_n) + m_s(x_{m-1}, x_{m-1}, x_m)]$$

= $\lambda[m_{s_{n-1}} + m_{s_{m-1}}].$

Since $\lim_{n\to\infty}\mathfrak{m}_{s_n}=0$, for every $\varepsilon>0$, we can find a natural number \mathfrak{n}_0 such that $\mathfrak{m}_{s_n}<\frac{\varepsilon}{2}$ and $\mathfrak{m}_{s_m}<\frac{\varepsilon}{2}$ for all $\mathfrak{m},\mathfrak{n}>\mathfrak{n}_0$. Therefore, it follows that

$$m_s(x_n,x_n,x_m)\leqslant \lambda[m_{s_{n-1}}+m_{s_{m-1}}]<\lambda[\frac{\varepsilon}{2}+\frac{\varepsilon}{2}]<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\ \ \text{for all }n,m>n_0.$$

This implies that

$$m_s(x_n,x_n,x_m)-m_{sx_n,x_n,x_m}<\varepsilon \ \ \text{for all } n,m>n_0.$$

Now, for all natural numbers n, m we have

$$\begin{split} M_{sx_{n},x_{n},x_{n}} &= m_{s}(Tx_{n-1},Tx_{n-1},Tx_{n-1}) \\ &\leqslant \lambda[m_{s}(x_{n-1},x_{n-1},Tx_{n-1}) + m_{s}(x_{n-1},x_{n-1},Tx_{n-1})] \\ &= \lambda[m_{s}(x_{n-1},x_{n-1},x_{n}) + m_{s}(x_{n-1},x_{n-1},x_{n})] \\ &= \lambda[m_{s_{n-1}} + m_{s_{n-1}}] \\ &= 2\lambda m_{s_{n-1}}. \end{split}$$

As $\lim_{n\to\infty}\mathfrak{m}_{s_{n-1}}=0$, for every $\varepsilon>0$ we can find a natural number \mathfrak{n}_0 such that $\mathfrak{m}_{s_n}<\frac{\varepsilon}{2}$ and for all $\mathfrak{m},\mathfrak{n}>\mathfrak{n}_0$. Therefore, it follows that

$$M_{s\kappa_n,\kappa_n,\kappa_m}\leqslant \lambda[m_{s_{n-1}}+m_{s_{n-1}}]<\lambda[\frac{\varepsilon}{2}+\frac{\varepsilon}{2}]<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\ \ \text{for all } n,m>n_0,$$

which implies that

$$M_{sx_n,x_n,x_m}-m_{sx_n,x_n,x_m}<\varepsilon \ \ \text{for all } n,m>n_0.$$

Thus, $\{x_n\}$ is an M_s -Cauchy sequence in X. Since X is complete, there exists $u \in X$ such that

$$\lim_{n\to\infty} m_s(x_n, x_n, u) - m_{sx_n, x_n, u} = 0.$$

Now, we show that u is a fixed point of T in X. For any natural number n we have,

$$\begin{split} \lim_{n \to \infty} m_s(x_n, x_n, u) - m_{sx_n, x_n, u} &= 0 = \lim_{n \to \infty} m_s(x_{n+1}, x_{n+1}, u) - m_{sx_{n+1}, x_{n+1}, u} \\ &= \lim_{n \to \infty} m_s(Tx_n, Tx_n, u) - m_{sTx_n, Tx_n, u} \\ &= m_s(Tu, Tu, u) - m_{sTu, Tu, u}. \end{split}$$

This implies that $m_s(Tu, Tu, u) - m_{su,u,Tu} = 0$, and that is $m_s(Tu, Tu, u) = m_{su,u,Tu}$. Now, assume that

$$m_s(Tu, Tu, u) = m_s(Tu, Tu, Tu) \leqslant 2\lambda m_s(u, u, Tu) = 2\lambda m_s(Tu, Tu, u) < m_s(u, u, Tu).$$

Thus,

$$\mathfrak{m}_s(\mathsf{T}\mathfrak{u},\mathsf{T}\mathfrak{u},\mathfrak{u})=\mathfrak{m}_s(\mathfrak{u},\mathfrak{u},\mathfrak{u})\leqslant \mathfrak{m}_s(\mathsf{T}\mathfrak{u},\mathsf{T}\mathfrak{u},\mathsf{T}\mathfrak{u})\leqslant 2\lambda\mathfrak{m}_s(\mathfrak{u},\mathfrak{u},\mathsf{T}\mathfrak{u})<\mathfrak{m}_s(\mathfrak{u},\mathfrak{u},\mathsf{T}\mathfrak{u}).$$

Therefore, Tu = u and thus u is a fixed point of T.

Next, we show that if u is a fixed point, then $m_s(u, u, u) = 0$. Assume that u is a fixed point of T, then using the contraction (2.2), we have

$$\begin{split} m_s(u,u,u) &= m_s(\mathsf{T} u,\mathsf{T} u,\mathsf{T} u) \\ &\leqslant \lambda[m_s(u,u,\mathsf{T} u) + m_s(u,u,\mathsf{T} u)] \\ &= 2\lambda m_s(u,u,\mathsf{T} u) \\ &= 2\lambda m_s(u,u,u) \\ &< m_s(u,u,u) \ \ \text{since} \ \lambda \in [0,\frac{1}{2}), \end{split}$$

that is, $m_s(u, u, u) = 0$.

Finally, to prove the uniqueness, assume that T has two fixed points, say $u, v \in X$. Hence,

$$m_s(u, u, v) = m_s(Tu, Tu, Tv) \le \lambda[m_s(u, u, Tu) + m_s(v, v, Tv)] = \lambda[m_s(u, u, u) + m_s(v, v, v)] = 0,$$

which implies that $m_s(u, u, v) = 0 = m_s(u, u, u) = m_s(v, v, v)$, and hence u = v as required.

In closing, the authors would like to bring to the reader's attention that in this interesting M_s -metric space it is possible to add some control functions in both contractions of Theorems 2.1 and 2.2.

Theorem 2.3. Let (X, m_s) be a complete M_s -metric space and T be a self mapping on X satisfying the following condition: for all $x, y, z \in X$

$$m_s(Tx, Ty, Tz) \leqslant m_s(x, y, z) - \phi(m_s(x, y, z)), \tag{2.3}$$

where $\phi:[0,\infty)\to[0,\infty)$ is a continuous and non-decreasing function and $\phi^{-1}(0)=0$ and $\phi(t)>0$ for all t>0. Then T has a unique fixed point in X.

Proof. Let $x_0 \in X$. Define the sequence $\{x_n\}$ in X such that $x_n = T^{n-1}x_0 = Tx_{n-1}$ for all $n \in \mathbb{N}$. Note that if there exists an $n \in \mathbb{N}$ such that $x_{n+1} = x_n$, then x_n is a fixed point for T. Without loss of generality, assume that $x_{n+1} \neq x_n$ for all $n \in \mathbb{N}$. Now

$$m_{s}(x_{n}, x_{n+1}, x_{n+1}) = m_{s}(Tx_{n-1}, Tx_{n}, Tx_{n})$$

$$\leq m_{s}(x_{n-1}, x_{n}, x_{n}) - \phi(m_{s}(x_{n-1}, x_{n}, x_{n}))$$

$$\leq m_{s}(x_{n-1}, x_{n}, x_{n}).$$
(2.4)

Similarly, we can prove that $\mathfrak{m}_s(x_{n-1},x_n,x_n) \leq \mathfrak{m}_s(x_{n-2},x_{n-1},x_{n-1})$. Hence, $\mathfrak{m}_s(x_n,x_{n+1},x_{n+1})$ is a monotone decreasing sequence. Hence there exists $r \geq 0$ such that

$$\lim_{n\to\infty} m_s(x_n, x_{n+1}, x_{n+1}) = r.$$

Now, by taking the limit as $n \to \infty$ in the inequality (2.4), we get $r \leqslant r - \varphi(r)$ which leads to a contradiction unless r = 0. Therefore,

$$\lim_{n\to\infty} m_s(x_n,x_{n+1},x_{n+1}) = 0.$$

Suppose that $\{x_n\}$ is not an M_s -Cauchy sequence. Then there exists an $\varepsilon>0$ such that we can find subsequences x_{m_k} and x_{n_k} of $\{x_n\}$ such that

$$m_s(x_{n_k}, x_{m_k}, x_{m_k}) - m_{sx_{n_k}, x_{m_k}, x_{m_k}} \geqslant \epsilon.$$
 (2.5)

Choose n_k to be the smallest integer with $n_k > m_k$ and satisfies the inequality (2.5).

Hence, $m_s(x_{m_k}, x_{m_{k-1}}, x_{m_{k-1}}) - m_{sx_{n_k}, x_{m_{k-1}}, x_{m_{k-1}}} < \epsilon$. Now,

$$\begin{split} \varepsilon &\leqslant m_s(x_{m_k}, x_{n_k}, x_{n_k}) - m_{sx_{m_k}, x_{n_k}} \\ &\leqslant m_s(x_{m_k}, x_{n_{k-1}}, x_{n_{k-1}}) + 2m_s(x_{n_{k-1}}, x_{n_{k-1}}, x_{n_{k-1}}) - m_{sx_{m_k}, x_{n_{k-1}}, x_{n_{k-1}}} \\ &\leqslant \varepsilon + 2m_s(x_{n_{k-1}}, x_{n_{k-1}}, x_{n_{k-1}}) \\ &\leqslant \varepsilon, \end{split}$$

as $n \to \infty$. Hence, we have a contradiction. Without loss of generality, assume that $m_{sx_n,x_n,x_m} = m_s(x_n,x_n,x_n)$. Then we have

$$\begin{split} 0 \leqslant m_{sx_n,x_n,x_m} - m_{sx_n,x_n,x_m} &\leqslant M_{sx_n,x_n,x_m} \\ &= m_s(x_n,x_n,x_n) \\ &= m_s(Tx_{n-1},Tx_{n-1},Tx_{n-1}) \end{split}$$

$$\leq \mathfrak{m}_{s}(x_{n-1}, x_{n-1}, x_{n-1}) - \phi(\mathfrak{m}_{s}(x_{n-1}, x_{n-1}, x_{n-1}))
\leq \mathfrak{m}_{s}(x_{n-1}, x_{n-1}, x_{n-1})
\vdots
\leq \mathfrak{m}_{s}(x_{0}, x_{0}, x_{0}).$$

Hence, $\lim_{n\to\infty} m_{sx_n,x_n,x_m} - m_{sx_n,x_n,x_m}$ exists and finite. Therefore, $\{x_n\}$ is an M_s -Cauchy sequence. Since X is complete, the sequence $\{x_n\}$ converges to an element $x\in X$; that is,

$$\begin{split} 0 &= \lim_{n \to \infty} m_s(x_n, x_n, x) - m_{sx_n, x_n, x} \\ &= \lim_{n \to \infty} m_s(x_{n+1}, x_{n+1}, x) - m_{sx_{n+1}, x_{n+1}, x} \\ &= \lim_{n \to \infty} m_s(Tx_n, Tx_n, x) - m_{sTx_n, Tx_n, x} \\ &= m_s(Tx, Tx, x) - m_{sTx, Tx, x}. \end{split}$$

Similar to the proof of Theorem 2.2, it is not difficult to show that this implies that, Tx = x and so x is a fixed point.

Finally, we show that T has a unique fixed point. Assume that there are two fixed points $u, v \in X$ of T. If we have $m_s(u, u, v) > 0$, then condition (2.3) implies that

$$m_s(u,u,v) = m_s(Tu,Tu,Tv) \leqslant m_s(u,u,v) - \varphi(m_s(u,u,v)) < m_s(u,u,v),$$

and that is a contradiction. Therefore, $\mathfrak{m}_s(\mathfrak{u},\mathfrak{u},\nu)=0$ and similarly $\mathfrak{m}_s(\mathfrak{u},\mathfrak{u},\mathfrak{u})=M_s(\nu,\nu,\nu)=0$ and thus $\mathfrak{u}=\nu$ as desired.

In closing, is it possible to define the same space but without the symmetry condition, (i.e., $m_s(x, x, y) \neq m_s(y, y, x)$)? If possible, what kind of results can be obtained in such space?

References

- [1] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comput. Modelling, 54 (2011), 2923–2927. 1
- [2] T. Abdeljawad, Meir-Keeler α -contractive fixed and common fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 10 pages. 1
- [3] T. Abdeljawad, H. Aydi, E. Karapınar, Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces, Math. Probl. Eng., 2012 (2012), 20 pages. 1
- [4] T. Abdeljawad, E. Karapınar, K. Taş, *A generalized contraction principle with control functions on partial metric spaces*, Comput. Math. Appl., **63** (2012), 716–719. 1
- [5] I. Altun, A. Erduran, *Fixed point theorems for monotone mappings on partial metric spaces*, Fixed Point Theory Appl., **2011** (2011), 10 pages. 1
- [6] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl., 157 (2010), 2778–2785.
- [7] M. Asadi, E. Karapınar, P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., **2014** (2014), 9 pages. 1
- [8] S. G. Matthews, *Partial metric topology*, Papers on general topology and applications, Flushing, NY, (1992), 183–197, Ann. New York Acad. Sci., **728** (1994). 1
- [9] N. Mlaiki, A contraction principle in partial S-metric spaces, Univers. J. Math. Math. Appl., 5 (2014), 109–119. 1, 1.1
- [10] N. Mlaiki, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4 (2014), 509-524. 1
- [11] N. Mlaiki, α-ψ-contractive mapping on S-metric space, Math. Sci. Lett., 4 (2015), 9–12.
- [12] N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawad, *Fixed point theorems in M*_b-metric spaces, J. Math. Anal., 7 (2016), 1–9. 1
- [13] A. Shoaib, M. Arshad, J. Ahmad, Fixed point results of locally contractive mappings in ordered quasi-partial metric spaces, Sci. World J., 2013 (2013), 8 pages. 1
- [14] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703-711. 1
- [15] N. Souayah, A fixed point in partial S_b-metric spaces, An. Şt. Univ. Ovidius Constanţa, 24 (2016), 351–362.
- [16] N. Souayah, N. Mlaiki, A fixed point in S_b-metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139. 1
- [17] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229-240. 1