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Abstract
In this paper, firstly by utilizing the theory of operators semigroup, probability density functions via impulsive conditions,

we establish a new PC1−ν-mild solution for impulsive Hilfer fractional differential inclusions. Secondly we prove the existence
of mild solutions for the impulsive Hilfer fractional differential inclusions by using fractional calculus, multi-valued analysis and
the fixed-point technique. Then under some assumptions, the approximate controllability of associated system are formulated
and proved. An example is provided to illustrate the application of the obtained theory. c©2017 All rights reserved.
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1. Introduction

The theory of fractional differential equations has emerged as an important area of investigation since
it describes the property of memory and heredity of various materials and processes in comparison with
corresponding theory of classical differential equations. It has been found that the differential equations
involving fractional time derivatives are more realistic to describe many phenomena in practical cases than
those of integer order time derivatives. In recent years, more and more mathematicians, physicists, and
engineers are attracted to this area and notable contributions have been made to both theory and applica-
tions of fractional differential equations. For example, for fractional derivative operators with non-locality,
one can see the monographs of Baleanu et al. [4], Diethelm [9], Kilbas et al. [16], Lakshmikantham et
al. [17], Miller and Ross [22], Podlubny [24] and Tarasov [28]. For local fractional derivative operators
that describe non-differentiable problems from fractal physical phenomena, we can see the monograph
of Yang et al. [31]. Another new operator called conformable fractional derivative has some properties
that are distinct from those usual in other formulations [2]. Fractional differential equations involving
the Riemann-Liouville fractional derivative or the Caputo fractional derivative have many results (see for
example [3, 7, 19, 26, 32–35]). On the other hand, Hilfer [13] proposed a generalized Riemann-Liouville
fractional derivative, for short, Hilfer fractional derivative, which includes Riemann-Liouville fractional
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derivative and Caputo fractional derivative. This operator appeared in the theoretical simulation of di-
electric relaxation in glass forming materials. It seems that Hilfer et al. [14] have initially proposed linear
differential equations with the new fractional operator: Hilfer fractional derivative and applied opera-
tional calculus to solve such simple fractional differential equtions. Thereafter, Furati et al. [11], Gu and
Trujillo [12] extended the study nonlinear problems and presented the existence, nonexistence and sta-
bility results for initial value problems of nonlinear fractional differential equations with Hilfer fractional
derivative in a suitable weighted space of continuous functions.

The theory of impulsive differential equations and inclusions of integer order has found its extensive
applications in realistic mathematical modeling of a wide variety of practical situations and has emerged
as an important area of investigation in recent years. During the last ten years, impulsive differential
equations and inclusions with different conditions have been intensely studied by many mathematicians,
see [1, 10, 20]. At present, the foundations of the general theory are already laid, and many of them are
formulated in detail in Benchohra et al. [6]. However, impulsive differential equations and inclusions of
fractional order have not been much investigated and many aspects of them are yet to be explored. For
some recent works on impulsive fractional differential equations and inclusions, see [18, 23, 27, 29, 30]
and the references therein.

Control theory is an interdisciplinary branch of engineering and mathematics that deals with influence
behavior of dynamical systems. Controllability is one of the fundamental concepts in mathematical con-
trol theory. This is a qualitative property of dynamical control systems and it is of particular importance
in control theory. Many fundamental problems of control theory such as pole assignment, stabilization
and optimal control may be solved under the assumption that the system is controllable. From the mathe-
matical point of view, the problems of exact and approximate controllability are to be distinguished. Exact
controllability enables to steer the system to arbitrary final state (see for example [1, 5, 18, 20]) while ap-
proximate controllability means that system can be steered an arbitrary small neighborhood of final state.
Approximately controllability systems are more prevalent and very often approximate controllability is
completely adequate in applications. Therefore, it is important, in fact necessary to study the weaker
concept of controllability, namely approximate controllability for nonlinear systems. In recent years, there
are some papers on the approximate controllability of the nonlinear evolution systems under different
conditions [7, 19, 21, 25, 26, 32]. The conditions are established with the help of semigroup theory and
fixed point theorem under the assumption that the associated linear system is approximately controllable.
However, it should be emphasized that to the best of our knowledge, the approximate controllability of
impulsive Hilfer fractional differential inclusions in Banach spaces has not been investigated yet and it is
also the motivation of this paper. In order to fill this gap, in this paper, we study the approximate con-
trollability of Hilfer fractional differential inclusions with impulsive using fixed point theorem, fractional
calculus and the assumption that the associated linear system is approximately controllable. At last, an
example is given to illustrate the abstract results.

The objective of this paper is to investigate the approximate controllability of the following impulsive
fractional differential inclusions involving Hilfer fractional derivative:

D
q,p
0+ x(t) ∈ Ax(t) + F(t, x(t)) +Bu(t), t ∈ (0,b], t 6= tk,

∆I1−ν0+ x(t) |t=tk= Gk(tk, x(t−k )), k = 1, 2, · · · ,m,
I1−ν0+ x(t) |t=0= x0 ∈ X,

(1.1)

where Dq,p
0+ is the Hilfer derivative of order q and type p which will be given in next section, 0 6

p 6 1, 1
2 < q 6 1, and ν = p + q − pq; x(·) takes values in Banach space X with norm ‖ · ‖; A :

D(A) ⊆ X → X is the infinitesimal generator of a C0-semigroup {S(t), t > 0} on X. Let J = [0,b], U is
a Banach space, the control function u takes its values in L2(J,U); B is a linear bounded operator from
U to X; F : J × X → P(X) := 2X\{∅} is a multivalued map satisfying some assumptions and x0 ∈ X;
Gk : J × X → X are given functions that will be specified later. 0 = t0 < t1 < · · · < tm < tm+1 =
b, ∆I1−ν0+ x(tk) = I1−ν0+ x(t+k ) − I

1−ν
0+ x(t−k ) = Γ(ν)

[
limt→t+k (t− tk)

1−νx(t) − limt→t−k (t− tk)
1−νx(t)

]
([16],
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Lemma 3.2, Chapter 3). Furthermore, since x(t−k ) is bounded (see the definition of PC1−ν(J,X) in Section
2), we can also have ∆I1−ν0+ x(tk) = Γ(ν) limt→t+k (t− tk)

1−νx(t). I1−ν0+ x(t+k ) and I1−ν0+ x(t−k ) denote the right
and the left limits of I1−ν0+ x(t) at t = tk,k = 1, 2, · · · ,m, respectively.

2. Preliminaries

Let C(J,X) denote the Banach space of all X-valued continuous functions from J = [0,b] to X with the
norm ‖x‖C = supt∈J ‖x(t)‖X. Let J ′ = (0,b], C1−ν(J,X) = {x ∈ C(J ′,X) : t1−νx(t) ∈ C(J,X)} with the norm
‖x‖C1−ν = sup{t1−ν‖x(t)‖X, t ∈ J ′}. Obviously, the space C1−ν(J,X) is a Banach space.

In order to define the mild solutions of problem (1.1), we also consider the Banach space PC1−ν(J,X) =
{x : (t− tk)

1−νx(t) ∈ C((tk, tk+1],X) and limt→t+k (t− tk)
1−νx(t) exists, k = 1, 2, · · · ,m} with the norm

‖x‖PC1−ν = max
{

sup
t∈(tk,tk+1]

(t− tk)
1−ν‖x(t)‖X : k = 1, 2, · · · ,m

}
.

We need some basic definitions and properties about fractional calculus, essential principles of multi-
valued analysis, primary facts in semigroup theory and some lemmas.

The following definitions concerning with the fractional calculus can be found in the books [9, 16, 22,
24].

Definition 2.1. The fractional integral for a function g from lower limit 0 and order α can be defined as

Iα0+g(t) =
1
Γ(α)

∫t
0

g(s)

(t− s)1−αds, α > 0, t > 0,

where Γ is the gamma function, and right hand side of upper equality is defined point-wise on R+.

Definition 2.2. Riemann-Liouville derivative of order α with the lower limit 0 for a function f : [0,∞)→ R

can be defined as

R−LDα0+f(t) =
1

Γ(n−α)

dn

dtn

∫t
0

f(s)

(t− s)α+1−nds, t > 0, 0 6 n− 1 < α < n.

Definition 2.3. The Caputo derivative of order α for a function f : [0,∞)→ R can be denoted by

CDα0+f(t) =
R−L Dα

(
f(t) −

n−1∑
k=0

tk

k!
f(k)(0)

)
, t > 0, 0 6 n− 1 < α < n.

Definition 2.4. The left Hilfer derivative of order 0 < q 6 1 and type 0 6 p 6 1 of function f(t) is defined
by

D
q,p
0+ f(t) = (I

p(1−q)
0+ D(I

(1−p)(1−q)
0+ f))(t),

where D := d
dt .

Remark 2.5.

(i) When p = 0 and 0 < q < 1, the Hilfer derivative corresponds to the Riemann-Liouville fractional
derivative:

D
q,0
0+ f(t) =

d

dt

(
I

1−q
0+ f

)
(t) =R−L Dq0+f(t).

(ii) When p = 1 and 0 < q < 1, the Hilfer derivative corresponds to the classical Caputo fractional
derivative:

D
q,1
0+ f(t) = I

1−q
0+

d

dt
f(t) =C Dq0+f(t).
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Let P(X) be the set of all nonempty subsets of X. We will use the following notations:
Pcl(X) := {Y ∈ P(X) | Y is closed}, Pb(X) := {Y ∈ P(X) | Y is bounded}, Pcv(X) := {Y ∈ P(X) |

Y is convex}, Pcp(X) := {Y ∈ P(X) | Y is compact}.

Proposition 2.6 ([8]).

(i) A measurable function u : J→ X is Bochner integrable, if and only if ‖u‖ is Lebesgue integrable.
(ii) A multi-valued map F : X → 2X is said to be convex-valued (closed-valued), if F(u) is convex (closed) for all

u ∈ X, is said to be bounded on bounded sets, if F(B) = ∪u∈B is bounded in X for all B ∈ Pb(X).
(iii) A map F is said to be upper semi-continuous (u.s.c.) on X, if for each u0 ∈ X, the set F(u0) is a nonempty

closed subset of X and if for each open subset Ω of X containing F(u0), there exists an open neighborhood ∇ of
u0 such that F(∇) ⊆ Ω.

(iv) A map F is said to be completely continuous, if F(B) is relatively compact for every B ∈ Pb(X). If the multi-
valued map F is completely continuous with nonempty compact values, then F is u.s.c. if and only if F has a
closed graph, i.e., un → u, yn → y, yn ∈ F(u0) imply y ∈ F(u). We say that F has a fixed point if there is
u ∈ X such that u ∈ F(u).

(v) A multi-valued map F : J→ Pcl(X) is said to be measurable, if for each u ∈ X the function y : J→ R defined
by y(t) = d(u, F(t)) = inf{‖u− z‖, z ∈ F(t)} is measurable.

(vi) A multi-valued map F : X → 2X is said to be condensing, if for any bounded subset B ⊂ X with α(B) 6= 0
we have α(F(B)) < α(B), where α(·) denotes the Kuratowski measure of non-compactness defined as follows:
α(B) := inf{d > 0 : B can be covered by a finite number of balls of radius d}.

Lemma 2.7 ([29]). For σ ∈ (0, 1] and 0 < a < b, we have |bσ − aσ| 6 (b− a)σ .

Lemma 2.8 (Lasota and Opial [26]). Let J be a compact real interval and let X be a Banach space. The multivalued
map F : J×X→ Pb,cl,cv(X) is measurable to t for each fixed x ∈ X, u.s.c. to x for each t ∈ J and for each x ∈ C(J,X)
the set SF,x = {f ∈ L1(J,X) : f(t) ∈ F(t, x(t)), for a.e. t ∈ J} is nonempty. Let Γ be a linear continuous mapping
from L1(J,X) to C(J,X), then the operator

Γ ◦ SF : C(J,X)→ Pb,cl,cv(C(J,X)),

x 7→ (Γ ◦ SF)(x) = Γ(SF,x),

is a closed graph operator in C(J,X)×C(J,X).

Lemma 2.9 ([8]). Let D be a nonempty subset of X which is bounded, closed and convex. Suppose G : D→ 2X\{∅}
is u.s.c. with closed, convex values such that G(D) ⊂ D and G(D) is compact. Then G has a fixed point.

Lemma 2.10 ([29]). Let 0 < ν 6 1 and let x1−ν(t) = I1−ν0+ x(t) be the fractional integral of order 1 − ν. If
x(t) ∈ PC1−ν(J,X) and x1−ν(t) ∈ PC(J,X), then one has the following equality:

Iν0+D
ν
0+x(t) =


x(t) − x1−ν(t) |t=0

tν−1

Γ(ν) , t ∈ (0, t1],

x(t) −
∑k
i=1

∆x1−ν(ti)
Γ(ν) (t− ti)

ν−1

− x1−ν(t) |t=0
tν−1

Γ(ν) , t ∈ (tk, tk+1],

where ∆x1−ν(tk) = x1−ν(t
+
k ) − x1−ν(t

−
k ),k = 1, 2, · · · ,m.

We first consider a nonhomogeneous impulsive linear fractional system of the form
D
q,p
0+ x(t) = Ax(t) + h(t), t ∈ J ′, t 6= tk

∆I1−ν0+ x(t) |t=tk= yk, k = 1, 2, · · · ,m,
I1−ν0+ x(t) |t=0= x0 ∈ X,

(2.1)
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where h ∈ PC(J,X). We suppose that x(·) = v(·) +w(·), where v is the continuous mild solution for{
D
q,p
0+ v(t) = Av(t) + h(t), t ∈ J ′,

I1−ν0+ v(t) |t=0= x0 ∈ X,
(2.2)

on J, and w is the PC-mild solution for
D
q,p
0+ w(t) = Aw(t), t ∈ J ′, t 6= tk,

∆I1−ν0+ w(t) |t=tk= yk, k = 1, 2, · · · ,m,
I1−ν0+ w(t) |t=0= 0 ∈ X.

(2.3)

Indeed, by adding together (2.2) and (2.3), it follows (2.1). Note v is continuous, so v(t+k ) = v(t−k ),
k = 1, 2, · · · ,m. On the other hand, any solution of (2.1) can be decomposed to (2.2) and (2.3).

Firstly, from [12] we know that a mild solution of (2.2) is given by

v(t) = Sp,q(t)x0 +

∫t
0
Kq(t− s)h(s)ds, t ∈ J ′,

where Sp,q(t) = I
p(1−q)
0+ Kq(t), Kq(t) = tq−1Pq(t), Pq(t) =

∫∞
0 qθMq(θ)S(t

qθ)dθ and

Mq(θ) =
1
qθ

−1− 1
qρq(θ

− 1
q ), ρq(θ) = 1

π

∑∞
n=1(−1)n−1θ−nq−1 Γ(nq+1)

n! sin(nπq).
Now we can obtain the PC-mild solution of system (2.3) using Lemma 2.10:

w(t) =


1

Γ(q)

∫t
0(t− s)

q−1Aw(s)ds, t ∈ (0, t1],∑k
i=1

∆w1−ν(ti)
Γ(ν) (t− ti)

ν−1

+ 1
Γ(q)

∫t
0(t− s)

q−1Aw(s)ds, t ∈ (tk, tk+1], k = 1, 2, · · · ,m.

(2.4)

Obviously, equation (2.4) can be written as

w(t) =

k∑
i=1

yi
Γ(ν)

(t− ti)
ν−1χi(t) +

1
Γ(q)

∫t
0
(t− s)q−1Aw(s)ds, t ∈ J, (2.5)

where

χi(t) =

{
0, t ∈ (0, ti],
1, t ∈ (ti,b].

Let λ > 0. Taking the Laplace transformation to the equation (2.5), we obtain

W(λ) =

k∑
i=1

yie
−λti

λν
+

1
λq
AW(λ),

i.e.,

W(λ) =

k∑
i=1

(λqI−A)−1yie
−λti .

Thus, one can obtain the PC-mild solution of (2.3) as

w(t) =

k∑
i=1

χi(t)Sp,q(t− ti)yi.

By the above arguments, the PC-mild solution of (2.1) is given by

x(t) = Sp,q(t)x0 +

k∑
i=1

χi(t)Sp,q(t− ti)yi +

∫t
0
Kq(t− s)h(s)ds.



J. Du, W. Jiang, A. U. K. Niazi, J. Nonlinear Sci. Appl., 10 (2017), 595–611 600

According to the above result, we can introduce the following definition of the PC-mild solution for
system (1.1).

Definition 2.11. A function x ∈ PC1−ν(J,X) is called a mild solution of problem (1.1), if it satisfies the
following fractional integral equations:

(i) I1−ν0+ x(t) |t=0= x0 ∈ X;
(ii) there exists f ∈ SF,x such that f(t) ∈ F(t, x(t)) and

x(t) =


Sp,q(t)x0 +

∫t
0 Kq(t− s)[Bu(s) + f(s)]ds, t ∈ (0, t1],

Sp,q(t)x0 +
∫t

0 Kq(t− s)[Bu(s) + f(s)]ds

+
∑k
i=1 Sp,q(t− ti)Gi(ti, x(t−i )), t ∈ (tk, tk+1],k = 1, 2, · · · ,m.

We need the following assumption:

(H0) S(t) is continuous in the uniform operator topology for t > 0 and {S(t), t > 0} is uniformly bounded,
i.e., there exists M > 1 such that supt∈[0,∞) |S(t)| < M.

The following essential propositions can be found in the paper [12, 33].

Proposition 2.12. Under assumption (H0), Pq(t) is continuous in the uniform operator topology for t > 0.

Proposition 2.13. Under assumption (H0) for any fixed t > 0, {Kq(t), t > 0} and {Sp,q(t), t > 0} are linear
operators and for any x ∈ X,

‖Kq(t)x‖ 6
Mtq−1

Γ(q)
‖x‖, ‖Sp,q(t)x‖ 6

Mtν−1

Γ(ν))
‖x‖.

Proposition 2.14. Under assumption (H0), {Kq(t), t > 0} and {Sp,q(t), t > 0} are strongly continuous, which
means that for any x ∈ X and 0 < t ′ < t ′′ 6 b, we have

‖Kq(t ′)x−Kq(t ′′)x‖ → 0, ‖Sp,q(t
′)x− Sp,q(t

′′)x‖ → 0, as t ′′ → t ′.

Definition 2.15. Let x(·,u) be a mild solution of system (1.1) corresponding to the control u ∈ L2(J,U) and
the initial value x0 ∈ X. The set R(b, x0) = {x(b;u) : u ∈ L2(J,U), x(0;u) = x0} is reachable set of system
(1.1) at terminal time b. If R(b, x0) = X, then system (1.1) is said to be approximately controllable on the
interval J.

It is convenient at this point to introduce two relevant operators:

Γb0 =

∫b
0
Kq(b− s)BB

∗K∗q(b− s)ds,
1
2
< q 6 1,

and
R(a, Γb0 ) = (aI+ Γb0 )−1, a > 0.

In order to study the approximate controllability for the nonlinear impulsive system (1.1), we first
consider the approximate controllability of its linear part:

D
p,q
0+ x(t) ∈ Ax(t) + (Bv)(t), t ∈ J ′, t 6= tk, 1

2 < q 6 1,
∆I1−ν0+ x(t) |t=tk= yk, k = 1, 2, · · · ,m,
I1−ν0+ x(t) |t=0= x0 ∈ X,

(2.6)

where B : U→ X is a linear bounded operator, v ∈ L2(J,U).

Lemma 2.16 ([5]). The linear fractional differential system (2.6) is approximately controllable on J, if and only if
aR(a, Γb0 )→ 0 as a→ 0+ in the strong operator topology.
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3. Main results

In this part, we establish the existence of PC-mild solution and some sufficient conditions of the
approximately controllability for system (1.1).

For convenient, let us introduce some notations:

MB = ‖B‖, b1 =
( 1 −β

q−β

)1−β, Θ = b1b
q−β.

Firstly, we introduce the following hypotheses:

(H1) Semigroup S(t) is compact for each t > 0 and ‖aR(a, Γb0 )‖ 6 1, ∀a > 0.

(H2) The multivalued map F : J×X→ Pb,cl,cv(X) satisfies the following:

(2a) F(t, ·) : X → X is u.s.c. for each t ∈ J and for each x ∈ X, the function F(t, ·) : J → X is strongly
measurable to t, and for each x ∈ X, the set SF,x = {f ∈ L1(J,X) : f(t) ∈ F(t, x(t)), for a.e. t ∈ J}
is nonempty;

(2b) there exist a function H(t) ∈ L
1
β (J),β ∈ (0,q) and a continuous nondecreasing function ψ :

[0,∞) → (0,∞), such that for any (t, x) ∈ J× X, we have ‖F(t, x(t))‖X = sup{‖f(t)‖X : f(t) ∈
F(t, x(t))} 6 H(t)×ψ(‖x‖PC1−ν), limr→∞ infψ(r)

r = Λ <∞.

(H3) There exist positive constants dk(k = 1, 2, · · · ,m), satisfy: M
∑m
k=1 dk(tk − tk−1)

ν−1 < Γ(p(1 − q) +
q) such that

‖Gk(tk, x) −Gk(tk,y)‖ 6 dk‖x− y‖X, ∀ x,y ∈ X.

(H4)
Mb1−νΘ
Γ(q) ‖P‖

L
1
β
Λ
[
1 +

M2M2
Bb

2q−1

aΓ 2(q)(2q−1)

]
< 1.

Now we are in a position to prove the main result of this section.

Theorem 3.1. Suppose that the hypotheses (H0)-(H4) are satisfied. Then for each given control function u(·) ∈
L2(J,U), the initial problem (1.1) has a mild solution on PC1−ν(J,X).

Proof. Define Br = {x ∈ PC1−ν(J,X), ‖x‖PC1−ν 6 r, r > 0}, obviously, Br is a bounded, closed, convex set
in PC1−ν(J,X). For a > 0, for all x(·) ∈ PC1−ν, x1 ∈ X, we take the control function as

u(t) = B∗K∗q(b− t)R(a, Γb0 )P(x(·)),

where

P(x(·)) = x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i )), f ∈ SF,x.

According to this control, we define the operator Φ : PC1−ν(J,X)→ P(PC1−ν(J,X)) as follows:

Φ(x) =
{
ω ∈ PC1−ν(J,X) : ω = Sp,q(t)x0 +

∫t
0
Kq(t− s)[Bu(s) + f(s)]ds, f ∈ SF,x, t ∈ (0, t1],

or ω = Sp,q(t)x0 +

∫t
0
Kq(t− s)[Bu(s) + f(s)]ds +

k∑
i=1

Sp,q(t− ti)Gi(ti, x(t−i )),

f ∈ SF,x, t ∈ (tk, tk+1], k = 1, 2, · · · ,m
}

.

We will show that for all a > 0, the operator Φ : PC1−ν → P(PC1−ν) has a fixed point. Now we divide
the proof into five steps.
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Step 1. For every x ∈ Br the operator Φ is convex.
Let ω1,ω2 ∈ Φ(x), then for each t ∈ (tk, tk+1],k = 1, 2, · · · ,m, there exist f1, f2 ∈ SF,x such that

ωj(t) = Sp,q(t)x0 +

∫t
0
Kq(t− s)fj(s)ds+

k∑
i=1

Sp,q(t− ti)Gi(ti, x(t−i ))

+

∫t
0
Kq(t− s)BB

∗K∗q(b− s)R(a, Γb0 )

×
[
x1 −

∫b
0
Kq(b− s)fj(s)ds− Sp,q(b)x0 −

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds, j = 1, 2.

Let η ∈ [0, 1], then for each t ∈ (tk, tk+1],k = 1, 2, · · · ,m, we have

ηω1(t) + (1 − η)ω2(t) = Sp,q(t)x0 +

k∑
i=1

Sp,q(t− ti)Gi(ti, x(t−i )) +
∫t

0
Kq(t− s)[ηf1(s) + (1 − η)f2(s)]ds

+

∫t
0
Kq(t− s)BB

∗K∗q(b− s)R(a, Γb0 ) ·
{
x1 − Sp,q(b)x0 −

k∑
i=1

Sp,q(b− ti)

×Gi(ti, x(t−i )) −
∫b

0
Kq(b− s) · [ηf1(s) + (1 − η)f2(s)]ds

}
ds, j = 1, 2.

Since SF,x is convex, ηf1(s) + (1 − η)f2(s) ∈ SF,x, thus ηω1(t) + (1 − η)ω2(t) ∈ Φ(x).

Step 2. For every a > 0, there is a positive constant r0 = r(a), such that Φ(Br0) ⊂ Br0 .
If this is not true, then for each r > 0, there exists x ∈ Br, u ∈ L2(J,U) corresponding to x, such that

Φ(x) * Br, that is
‖Φ(x)‖PC1−ν = sup{‖ω‖PC1−ν : ω ∈ Φ(x)} > r.

By using Holder’s inequality and (H3), we have

∫t
0
‖Kq(t− s)f(s)‖ds =

∫t
0
(t− s)q−1‖Pq(t− s)f(s)‖ds

6
M

Γ(q)

∫t
0
(t− s)q−1‖f(s)‖ds

6
Mψ(‖x‖PC1−ν)

Γ(q)

( ∫t
0
(t− s)

q−1
1−βds

)1−β( ∫t
0
H(s)

1
βds

)β
=
MΘ‖P‖

L
1
β

Γ(q)
ψ(‖x‖PC1−ν),

∫t
0
‖Kq(t− s)Bu(s)‖ds 6

∫t
0
(t− s)q−1‖Pq(t− s)Bu(s)‖ds

6
∫t

0
(t− s)q−1(b− s)q−1‖Pq(t− s)BB∗P∗q(b− s)R(a, Γb0 )P(x(b))‖ds

6
M2M2

B

aΓ 2(q)

∫t
0
(t− s)q−1(b− s)q−1‖P(x(b))‖ds

6
M2M2

Bb
2q−1

aΓ(q)(2q− 1)

[
‖x1‖+

Mbν−1

Γ(p(1 − q) + q)
‖x0‖+

M‖H‖
L

1
β
Θ

Γ(q)

×ψ(‖x‖PC1−ν) +

k∑
i=1

M(b− ti)
1−ν

Γ(p(1 − q) + q)
(di‖x(t−i )‖+ ‖Gi(ti, 0)‖)

]
.
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If t ∈ (0, t1], then we have

‖t1−νΦ(x̄)‖ 6 ‖t1−νSp,q(t)x0‖+
∥∥∥t1−ν

∫t
0
(t− s)q−1Pq(t− s)[Bu(s) + f(s)]ds

∥∥∥
6

M

Γ(p(1 − q) + q)
‖x0‖+

Mb1−νΘ

Γ(q)
‖H‖

L
1
β
ψ(‖x‖) +

M2M2
Bb

2q−1

aΓ 2(q)(2q− 1)

×
[
b1−ν‖x1‖+

M

Γ(p(1 − q) + q)
‖x0‖+

Mb1−νΘ

Γ(q)
‖H‖

L
1
β
ψ(‖x‖)

+

k∑
i=1

M(b− ti)
1−νb1−ν

Γ(p(1 − q) + q)
(di‖x(t−i )‖+ ‖Gi(ti, 0)‖)

]
.

If t ∈ (tk, tk+1], then we get

r 6 (t− tk)
1−ν‖Φ(x)‖X 6 (t− tk)

1−ν‖Sp,q(t)x0‖+ (t− tk)
1−ν

∥∥∥ ∫t
0
Kq(t− s)f(s)ds

∥∥∥
+ (t− tk)

1−ν
∥∥∥ ∫t

0
Kq(t− s)Bu(s)ds

∥∥∥
+ (t− tk)

1−ν
∥∥∥ k∑
i=1

Sp,q(t− ti)Gi(ti, x(t−i ))
∥∥∥

6
M‖x0‖

Γ(p(1 − q) + q)
+
M(t− tk)

1−νΘ‖H‖
L

1
β

Γ(q)
ψ(‖x‖PC1−ν)

+
M2M2

Bb
2q−1

aΓ 2(q)(2q− 1)

[
(t− tk)

1−ν‖x1‖+
M‖x0‖

Γ(p(1 − q) + q)

+
M(t− tk)

1−νΘ

Γ(q)
‖H‖

L
1
β
ψ(‖x‖PC1−ν)

+

k∑
i=1

M(b− ti)
1−ν(t− tk)

1−ν

Γ(p(1 − q) + q)
(di‖x(t−i )‖+ ‖Gi(ti, 0)‖)

]

+

k∑
i=1

M(b− ti)
1−ν(t− tk)

1−ν

Γ(p(1 − q) + q)

(
di‖x(t−i )‖+ ‖Gi(ti, 0)‖

)
6

M

Γ(p(1 − q) + q)
‖x0‖+

Mb1−νΘ

Γ(q)
‖H‖

L
1
β
ψ(r) +

M2M2
Bb

2q−1

aΓ 2(q)(2q− 1)

×
[
b1−ν‖x1‖+

M

Γ(p(1 − q) + q)
‖x0‖+

Mb1−νΘ‖H‖
L

1
β

Γ(q)
ψ(r)

+

k∑
i=1

Mb2(ν−1)
(
di‖x‖+ ‖Gi(ti, 0)‖

)
Γ(p(1 − q) + q)

]
+

k∑
i=1

Mb2(ν−1)
(
di‖x‖+ ‖Gi(ti, 0)‖

)
Γ(p(1 − q) + q)

.

Dividing both sides by r and taking r→∞, we obtain

Mb1−νΘ

Γ(q)
‖H‖

L
1
β
Λ

[
1 +

M2M2
Bb

2q−1

aΓ 2(q)(2q− 1)

]
> 1,

which is a contradiction to (H4). Thus there exists r0 such that Φ maps Br0 into itself.

Step 3. Φ(x) is closed for every x ∈ PC1−ν(J,X).
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Indeed, for every given x ∈ PC1−ν(J,X), let {ωn}n>0 ⊂ Φ(x) such that as n → ∞, ωn → ω ∈
PC1−ν(J,X). Then there exists fn ∈ SF,x such that for each t ∈ (tk, tk+1],

ωn(t) = Sp,q(t)x0 +

∫t
0
Kq(t− s)fn(s)ds+

k∑
i=1

Sp,q(t− ti)Gi(ti, x(t−i )) +
∫t

0
Kq(t− s)BB

∗K∗q(b− s)

× R(a, Γb0 )
[
x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)fn(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds.

From [8], we know that SF,x is weakly compact in L1(J,X), which implies that fn converges weakly to
some f ∈ SF,x. Therefore as n→∞,

ωn(t)→ ω(t) = Sp,q(t)x0 +

∫t
0
Kq(t− s)f(s)ds+

k∑
i=1

Sp,q(t− ti)Gi(ti, x(t−i )) +
∫t

0
Kq(t− s)BB

∗K∗q(b− s)

× R(a, Γb0 )
[
x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds.

Thus we prove that ω ∈ Φ(x).

Step 4. Φ(x) is u.s.c. and condensing.
We decompose Φ = Φ1 +Φ2, where the operators Φ1 and Φ2 are defined by

Φ1(t) =

{
0, t ∈ (0, t1],∑k
i=1 Sp,q(t− ti)Gi(ti, x(t−i )), t ∈ (tk, tk+1], k = 1, 2, · · · ,m,

Φ2 = Sp,q(t)x0 +

∫t
0
Kq(t− s)[Bu(s) + f(s)]ds, f ∈ SF,x, t ∈ J \ {t1, t2, · · · , tm}.

According to [15], we if and only if show that Φ1 is a contraction operator, while Φ2 is a completely
continuous operator.

Let us begin proving that Φ1 is a contraction operator. For any x,y ∈ X, t ∈ (tk, tk+1], we obtain

(t− tk)
1−ν‖(Φ1x)(t) − (Φ1y)(t)‖ 6 (t− tk)

1−ν
k∑
i=1

‖Sp,q(t− ti)‖ · ‖Gi(ti, x(t−i )) −Gi(ti,y(t
−
i ))‖

6
M
∑k
i=1 di(ti − ti−1)

ν−1

Γ(p(1 − q) + q)
‖x− y‖PC1−ν .

Thus, Φ1 is a contraction by assumption (H3).
Next, we prove that Φ2 is u.s.c. and completely continuous. We subdivide the proof into three claims.

Claim 1. Φ2 maps bounded sets into uniformly bounded sets in PC1−ν, i.e. there exists a positive constant
r1 such that Φ2(Br1) ⊂ Br1 .

By employing the technique used in Step 2, one can easily show that there exists r1 > 0 such that
Φ2(Br1) ⊂ Br1 .

Claim 2. Φ2(Br) is a family of equicontinuous functions. The equicontinuity of

{Sp,q(t)x0 | t ∈ J/{t1, t2, · · · , tm}},

can be shown using the fact of Sp,q(·) is continuous.
Now we only need to check the equicontinuity of the second term in Φ2.

Denote E = {y ∈ PC1−ν(J,X) : y(t) = t1−νΦ2(x)(t),y(0) = y(0+), x ∈ Br}, for t ′ = 0, 0 < t ′′ 6 t1, we can



J. Du, W. Jiang, A. U. K. Niazi, J. Nonlinear Sci. Appl., 10 (2017), 595–611 605

easily get ‖y(t ′′) − y(t ′)‖ → 0, as t ′′ → 0. For 0 < t ′ < t ′′ 6 t1, for each x ∈ Br, there exists f ∈ SF,x such
that

‖y(t ′′) − y(t ′)‖ 6 (t ′′)1−ν
∥∥∥ ∫t ′′
t ′

(t ′′ − s)q−1Pq(t
′′ − s)f(s)ds

∥∥∥
+
∥∥∥ ∫t ′

0
[(t ′′)1−ν(t ′′ − s)q−1 − (t ′)1−ν(t ′ − s)q−1]Pq(t

′′ − s)f(s)ds
∥∥∥

+ (t ′)1−ν
∥∥∥ ∫t ′

0
(t ′ − s)q−1[Pq(t

′′ − s) − Pq(t
′ − s)]f(s)ds

∥∥∥
+ (t ′′)1−ν

∥∥∥ ∫t ′′
t ′

(t ′′ − s)q−1Pq(t
′′ − s)Bu(s)ds

∥∥∥
+
∥∥∥ ∫t ′

0
[(t ′′)1−ν(t ′′ − s)q−1 − (t ′)1−ν(t ′ − s)q−1]Pq(t

′′ − s)Bu(s)ds
∥∥∥

+ (t ′)1−ν
∥∥∥ ∫t ′

0
(t ′ − s)q−1[Pq(t

′′ − s) − Pq(t
′ − s)]Bu(s)ds

∥∥∥
6
M(t ′′)1−ν

Γ(q)

∥∥∥ ∫t ′′
t ′

(t ′′ − s)q−1f(s)ds
∥∥∥

+
M

Γ(q)

∥∥∥ ∫t ′
0
[(t ′′)1−ν(t ′′ − s)q−1 − (t ′)1−ν(t ′ − s)q−1]f(s)ds

∥∥∥
+ (t ′)1−ν

∥∥∥ ∫t ′
0
(t ′ − s)q−1[Pq(t

′′ − s) − Pq(t
′ − s)]f(s)ds

∥∥∥
+
M(t ′′)1−ν

Γ(q)

∥∥∥ ∫t ′′
t ′

(t ′′ − s)q−1Bu(s)ds
∥∥∥

+
M

Γ(q)

∥∥∥ ∫t ′
0
[(t ′′)1−ν(t ′′ − s)q−1 − (t ′)1−ν(t ′ − s)q−1]Bu(s)ds

∥∥∥
+ (t ′)1−ν

∥∥∥ ∫t ′
0
(t ′ − s)q−1[Pq(t

′′ − s) − Pq(t
′ − s)]Bu(s)ds

∥∥∥
=

6∑
i=1

Ii,

where

I1 =
Mb1−νb1(t

′′ − t ′)q−β

Γ(q)
ψ(r)‖H‖

L
1
β

,

I2 =
M

Γ(q)

∥∥∥ ∫t ′
0
[(t ′′)1−ν(t ′′ − s)q−1 − (t ′)1−ν(t ′ − s)q−1]f(s)ds

∥∥∥,

I3 = (t ′)1−ν
∥∥∥ ∫t ′

0
(t ′ − s)q−1[Pq(t

′′ − s) − Pq(t
′ − s)]f(s)ds

∥∥∥,

I4 =
MMB(t

′′)1−ν

Γ(q)

∥∥∥ ∫t ′′
t ′

(t ′′ − s)q−1u(s)ds
∥∥∥,

I5 =
M

Γ(q)

∥∥∥ ∫t ′
0
[(t ′′)1−ν(t ′′ − s)q−1 − (t ′)1−ν(t ′ − s)q−1]Bu(s)ds

∥∥∥,

I6 = (t ′)1−ν
∥∥∥ ∫t ′

0
(t ′ − s)q−1[Pq(t

′′ − s) − Pq(t
′ − s)]Bu(s)ds

∥∥∥.
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Since β ∈ (0,q), we have q−β > 0, I1 → 0 as t ′ → t ′′. Noting that

(t ′)1−ν(t ′ − s)q−1 − (t ′′)1−ν(t ′′ − s)q−1 6 (t ′)1−ν(t ′ − s)q−1,

then by Lebesgue dominated convergence theorem, we derive that I2, I5 → 0 as t ′′ − t ′ → 0+. From the
strong continuity of {Pq(t) : t > 0}, there exists a δ > 0 such that |t ′′ − t ′| < δ and ‖Pq(t ′′) − Pq(t ′)‖ < τ,
so

I3 6 (t ′)(1−ν+q−β)b1τ‖ψ(r)‖ · ‖H‖
L

1
β
→ 0, as δ→ 0,

and

I6 6 (t ′)1−ντMB

∫t ′
0
(t ′ − s)q−1u(s)ds→ 0, as δ→ 0.

Note that

I4 6
MMB(t

′′)1−ν

Γ(q)

∥∥∥ ∫t ′′
t ′

(t ′′ − s)q−1u(s)ds
∥∥∥

6
MMB(t

′′)1−ν

Γ(q)

∥∥∥ ∫t ′′
t ′

(t ′′ − s)q−1(b− s)q−1B∗P∗q(b− s)R(a, Γb0 )P(x(b))ds
∥∥∥

6
M2M2

B(t
′′)1−ν

aΓ 2(q)

∫t ′′
t ′

(b− s)2(q−1)‖P(x(b))‖ds

6
M2M2

B(t
′′)1−ν

aΓ 2(q)

(t ′′ − t ′)2q−1

2q− 1
‖P(x(b))‖ → 0, as t ′′ − t ′ → 0.

Hence the right-hand side of the above inequality tends to zero independently of x ∈ Br. By recalling the
relationship of E and Φ2(Br), one can easily deduce that Φ2 is equicontinuous on Br.

Claim 3. V(t) = {ω(t),ω ∈ Φ2(Br)} is a relatively compact in X.
Let 0 < t 6 b be fixed, since

Sp,q(t)x0 = I
p(1−q)
0+ Kq(t)x0

=
1

Γ(p(1 − q))

∫t
0
(t− s)p(1−q)−1sq−1Pq(s)x0ds

=
q

Γ(p(1 − q))

∫t
0
(t− s)p(1−q)−1sq−1

∫∞
0
θMq(θ)S(s

qθ)x0dθds,

let x ∈ Br and ω ∈ Φ2(Br), then for all η ∈ (0, t) and for all δ > 0, define an operator

ωλ,δ(t) =
q

Γ(p(1 − q))

∫t−λ
0

∫∞
δ

θMq(θ)(t− s)
p(1−q)−1sq−1S(sqθ)x0dθds

+ qS(λqθ)

∫t−λ
0

∫∞
δ

θMq(θ)(t− s)
q−1S((t− s)qθ− λqθ)[Bu(s) + f(s)]dθds.

From the compactness of S(λqθ), λqθ > 0, we obtain the set Vλ,δ(t) = {ωλ,δ(t),ωλ,δ ∈ Φλ,δ
2 (x), x ∈ Br} is

relatively compact in X for all λ ∈ (0, t) and δ > 0.
Moreover, for each x ∈ Br, by using Holder’s inequality, we have

‖ω−ωλ,δ‖PC1−ν 6 sup(t− tk)1−ν Mq

Γ(p(1 − q))

[∥∥∥ ∫t
0
(t− s)p(1−q)−1sq−1ds

∫δ
0
θMq(θ)x0dθ

∥∥∥
+
∥∥∥ ∫t−λ
t

(t− s)p(1−q)−1sq−1ds

∫∞
δ

θMq(θ)x0dθ
∥∥∥]+ q sup(t− tk)1−ν



J. Du, W. Jiang, A. U. K. Niazi, J. Nonlinear Sci. Appl., 10 (2017), 595–611 607

×
[∥∥∥ ∫t

0

∫δ
0
θMq(θ)(t− s)

q−1S((t− s)qθ)[f(s) +Bu(s)]dθds
∥∥∥

+
∥∥∥ ∫t−λ
t

∫∞
δ

θMq(θ)(t− s)
q−1S((t− s)qθ)[f(s) +Bu(s)]dθds

∥∥∥]
6
Γ(1 + q)M‖x0‖b1−ν

Γ(p(1 − q) + q)

∫δ
0
θMq(θ)dθ+

M‖x0‖b1−ν

Γ(p(1 − q))Γ(q)

∫t−λ
t

(t− s)p(1−q)−1

× sq−1ds+ qMΘb1−νψ(r)‖H‖
L

1
β

∫δ
0
θMq(θ)dθ+

Mb1−ν

Γ(q)
ψ(r)‖H‖

L
1
β
λq−β

+
βM2M2

Bb
1−ν+q

(2q− 1)Γ(q)

[
‖x1‖+

M‖x0‖bν−1

Γ(p(1 − q) + q)
+
MΘ

Γ(q)
ψ(r)‖H‖

L
1
β

+

k∑
i=1

M(b− ti)
1−ν

Γ(p(1 − q) + q)
[di‖x(t−i )‖+ ‖Gi(ti, 0)‖]

] ∫δ
0
θMq(θ)dθ

+
qM2M2

Bb
1−νλ2q−1

a(2q− 1)Γ 2(q)

[
‖x1‖+

M‖x0‖bν−1

Γ(p(1 − q) + q)
+
MΘ

Γ(q)
ψ(r)‖H‖

L
1
β

+

k∑
i=1

M(b− ti)
1−ν

Γ(p(1 − q) + q)
[di‖x(t−i )‖+ ‖Gi(ti, 0)‖]

]
=

6∑
i=1

Ki.

Applying the absolute continuity of the Lebesgue integral, we can derive K2 → 0 as λ, δ→ 0+. In addition,
we can derive that Ki → 0, i = 1, 3, 4, 5, 6 as λ, δ → 0+, where we have used the equality

∫δ
0 θMq(θ)dθ =

1
Γ(1+q) . Hence there are relatively compact sets arbitrarily close to the set V(t) = {ω(t),ω ∈ Φ2(x), x ∈ Br},
which implies V(t) is also relatively compact in X by Arzelá-Ascoli theorem.

From Claims 1–3, we know that Φ2 is a completely continuous multivalued map.

Step 5. Φ2(x) has a closed graph.
Let x(n) → x∗(n→∞), ω(n) → ω∗(n→∞). We will prove that ω∗ ∈ Φ2(x

∗). Since ω(n) ∈ Φ2(x
(n)),

there exists f(n) ∈ SF,x(n) , such that for each t ∈ J ′,

ω(n)(t) = Sp,q(t)x0 +

∫t
0
Kq(t− s)f

(n)(s)ds+

∫t
0
Kq(t− s)BB

∗K∗q(b− s)R(a, Γb0 )

×
[
x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f

(n)(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds.

It remains to prove that the existence of f∗ ∈ SF,x∗ such that for each t ∈ J ′,

ω∗(t) = Sp,q(t)x0 +

∫t
0
Kq(t− s)f

∗(s)ds+

∫t
0
Kq(t− s)BB

∗K∗q(b− s) · R(a, Γb0 )

×
[
x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f

∗(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds.

Consider the linear continuous operator

Γ : L
1
β (J,X)→ PC1−ν(J,X),

where

(Γf)(t) =

∫t
0
Kq(t− s)

[
f(s) −BB∗K∗q(b− s)R(a, Γb0 )

∫b
0
Kq(b− τ)f(τ)dτ

]
ds.
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Obviously, it follows from Lemma 2.8 that Γ ◦ SF is a closed graph operator. Since ω(n) → ω∗(n → ∞),
we can get that as n→∞,

∥∥ω(n)(t) − Sp,q(t)x0 −

∫t
0
Kq(t− s)BB

∗K∗q(b− s)R(a, Γb0 )
[
x1 − Sp,q(b)x0 −

k∑
i=1

Sp,q(b− ti)

·Gi(ti, x(t−i ))
]
ds−

{
ω∗(t) − Sp,q(t)x0 −

∫t
0
Kq(t− s)BB

∗K∗q(b− s)R(a, Γb0 )

×
[
x1 − Sp,q(b)x0 −

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds
}∥∥∥→ 0.

Moreover we have

ω(n)(t) − Sp,q(t)x0 −

∫t
0
Kq(t− s)BB

∗K∗q(b− s)R(a, Γb0 )
[
x1 − Sp,q(b)x0

−

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds ∈ Γ(SF,x(n)).

Since x(n) → x∗, it follows from Lemma 2.8 that

ω∗(t) − Sp,q(t)x0 −

∫t
0
Kq(t− s)BB

∗K∗q(b− s)R(a, Γb0 )
[
x1 − Sp,q(b)x0 −

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i ))
]
ds

=

∫t
0
Kq(t− s)

[
f∗(s) −BB∗K∗q(b− s)R(a, Γb0 )

∫b
0
Kq(b− s)f

∗(s)ds
]
ds,

for some f∗ ∈ SF,x, this shows that ω∗ ∈ Φ2(x
∗). Hence Φ2 has a closed graph. Since Φ2 is a completely

continuous multivalued map with compact value, from Proposition 2.6, we get that Φ2 is u.s.c., on the
other hand, Φ1 is a contraction and hence Φ = Φ1 +Φ2 is u.s.c. and condensing. Thus from Lemma 2.9,
we know operator Φ has a fixed point on Br, which is a mild solution of system (1.1). This completes the
proof.

The following result concerns the approximate controllability of that problem (1.1). We assume that
the following assumption be held.

(H5) There exists a positive constant L such that ‖F(t, x(t))‖ 6 L, for all (t, x) ∈ J×X.

Theorem 3.2. Suppose that the hypotheses (H0)–(H5) are satisfied and the linear system (2.6) is approximately
controllable on J. Then system (1.1) is approximately controllable on J.

Proof. By employing the technique used in Theorem 3.1, we can easily show that for all 0 < a < 1, the
operator Φ has a fixed point in Br, where r = r(a). Let xe(·) be a fixed point of Φ in Br. Any fixed point
of Φ is a mild solution of (1.1). This means that there exists fe ∈ SF,xe such that for each t ∈ J ′,

xe(t) = Sp,q(t)x0 +

∫t
0
Kq(t− s)f

e(s)ds+

k∑
i=1

Sp,q(t− ti)Gi(ti, xe(t−i )) +
∫t

0
Kq(t− s)BB

∗K∗q(b− s)

× R(a, Γb0 )
[
x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f

e(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, xe(t−i ))
]
ds.

Define

P(xe) = x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f

e(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, xe(t−i )).
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Noting that I− Γb0 R(a, Γb0 ) = aR(a, Γb0 ), we get

xe(b) = Sp,q(b)x0 +

∫b
0
Kq(b− s)f

e(s)ds+

k∑
i=1

Sp,q(b− ti)Gi(ti, xe(t−i )) +
∫b

0
Kq(b− s)BB

∗K∗q(b− s)

× R(a, Γb0 )
[
x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f

e(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, xe(t−i ))
]
ds

= Sp,q(b)x0 +

∫b
0
Kq(b− s)f

e(s)ds+

k∑
i=1

Sp,q(b− ti)Gi(ti, xe(t−i )) + Γ
b
0 R(a, Γb0 )P(xe)

= Sp,q(b)x0 +

∫b
0
Kq(b− s)f

e(s)ds+

k∑
i=1

Sp,q(b− ti)Gi(ti, xe(t−i )) + P(x
e) − aR(a, Γb0 )P(xe)

= x1 − aR(a, Γb0 )P(xe).

In addition, by our assumption (H5), ∫b
0
‖fe(s)‖2ds 6 L2b.

Consequently, the sequence {fe(s)} is uniformly bounded in L
1
β (J,X). Thus, there is a subsequence, still

denoted by {fe}, that converges weakly to, say f, in L
1
β (J,X).

Denote

z = x1 − Sp,q(b)x0 −

∫b
0
Kq(b− s)f(s)ds−

k∑
i=1

Sp,q(b− ti)Gi(ti, x(t−i )).

We deduce that

‖P(xe) − z‖ 6
∥∥∥ ∫b

0
Kq(b− s)[f

e(s) − f(s)]ds
∥∥∥.

By the Ascoli-Arzelá theorem, we can show that the linear operator ∆ →
∫·

0 Kβ(·− s)∆(s)ds : L
1
β (J,X) →

PC1−ν(J,X) is compact, consequently the right-hand side of the upper formula tends to zero as e → 0+.
This implies that as e→ 0+,

‖xe(b) − x1‖ = ‖aR(a, Γb0 )P(xe)‖
6 ‖aR(a, Γb0 )(z)‖+ ‖aR(a, Γb0 )(P(xe) − z)‖
6 ‖aR(a, Γb0 )(z)‖+ ‖P(xe) − z‖ → 0.

This proves the approximate controllability of system (1.1).

4. An example

The partial differential system arises in the mathematical modeling of heat transfer
D
q, 2

3
0+ x(t, s) ∈

∂2

∂y2x(t, s) + F̃(t, x(t, s)) + η(t, s), t ∈ (0, 1]\{ 1
2 }, s ∈ [0,π],

∆I
1
3 (1−q)
0+ x( 1

2 , s) = |x(s)|
2π+|x(s)| , s ∈ [0,π],

x(t, 0) = x(t,π) = 0, t ∈ [0, 1],

I
1
3 (1−q)
0+ x(t, s) |t=0= x0(s) ∈ X, s ∈ [0,π].

(4.1)

To write the above system (4.1) into the abstract system (1.1), we choose the space X = L2([0,π], R) and
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define the operator A : D(A) ⊂ X→ X by

Ay = y ′′,
D(A) =

{
y ∈ X : y,y ′ are absolutely continuous, y ′′ ∈ X, y(0) = y(π) = 0

}
.

Then, A can be written as

Ay =

∞∑
k=1

n2(y,yn)yn, y ∈ D(A),

where yn(y) =
√

2
π sinny, (n = 1, 2, · · · ) is an orthonormal basis of X. It is well-known that A is the

infinitesimal generator of a compact semigroup S(t)(t > 0) in X given by

S(t)y =

∞∑
k=1

e−n
2t(y,yn)yn, y ∈ X,

in particular, S(·) is a uniformly stable semigroup and

‖S(t)‖ 6 e−1 < 1 =M.

Let v(t)(s) = x(t, s), t ∈ J = [0, 1], s ∈ [0,π]. Now for any v ∈ X = L2([0,π], R), s ∈ [0,π], we define function
F : J× X → X and the bounded linear operator B : U → X respectively by F(t, v(t))(s) = F̃(t, x(t, s)) =
e−t

1+e−t sin(x(t, s)) and Bu(t)(s) = η(t, s), 0 < s < π, where η : J× [0,π]→ [0,π] is continuous in t.
Therefore, (4.1) can be reformulated as the abstract system (1.1). Obviously, F̃(t, x(t, s)) is uniformly

bounded. On the other hand, assume that the linear fractional differential system corresponding to (4.1) is
approximately controllable and other assumptions of Theorem 3.2 hold. Thus, all conditions of Theorem
3.2 are satisfied. Hence the Hilfer fractional differential inclusion with impulsive (4.1) is approximately
controllable (but not exactly controllable since the associated C0-semigroup S(t) is compact) on [0, 1].
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