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Abstract

In this paper, we investigate the following nonlinear fractional Schrödinger equation

(−∆)su+ V(x)u = f(x,u), x ∈ RN,

where s ∈ (0, 1),N > 2 and (−∆)s is fractional Laplacian operator. We prove that the problem has a non-trivial solution under
asymptotically periodic case of V and f at infinity. Moreover, the nonlinear term f does not satisfy any monotone condition and
Ambrosetti-Rabinowitz condition. c©2017 All rights reserved.
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1. Introduction

In this paper, we consider the following fractional Schrödinger equations

(−4)su+ V(x)u = f(x,u), x ∈ RN, (1.1)

where s ∈ (0, 1),N > 2, (−4)s is the fractional Laplacian operator of order s. Problem (1.1) arises the
following nonlinear field equation

i∂Ψ∂t = (−∆)sΨ+ (1 + E)Ψ−K(x)|Ψ|q−1Ψ, x ∈ RN, t ∈ R+. (1.2)

The nonlinear field equation (1.2) reflects the stable diffusion process of Lévy particles in random field.
Later, people found that this stable diffusion of Lévy process has also a very important application in the
mechanical system, flame propagation, chemical reactions in the liquid and the anomalous diffusion of
the physics in the plasma. For more detail, readers can refer to [5, 20, 21, 36] and the references therein.
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The problem (1.1) involves the fractional Laplacian (−4)s, which is a nonlocal operator. After this
question was raised, it immediately aroused the interest of mathematicians [3, 6–11, 14, 16–18, 22, 28–
30, 34, 35, 38–40]. Especially, in [17], Felmer et al. studied the existence of positive solutions for the
nonlinear fractional Schrödinger equation{

(−∆)su+ u = f(x,u), x ∈ RN,

u > 0 in RN, lim|x|→∞ u(x) = 0.
(1.3)

Moreover, the regularity, decay and symmetry properties of these solutions of problem (1.3) were consid-
ered.

In [29], Secchi considered the existence of radially solutions for the following fractional Schrödinger
equation

(−∆)su+ V(x)u = g(u), x ∈ RN. (1.4)

In case g(u) = |u|q−1u, lim|x|→∞ V(x) = +∞, Cheng [11] considered the existence of bound state
solution of problem (1.4).

Later, when lim|x|→∞ V(x) = +∞, Secchi [28] obtained ground state solution for problem (1.4) with
general nonlinearity f(x,u).

Recently, Zhang et al. [38] studied ground state solution to problem (1.1). In [38], in addition to V , f
satisfies the asymptotic periodic condition, the nonlinear term f satisfies the monotone condition: t 7→
f(x,t)
|t| increasing on (−∞, 0) and (0,∞).

On the other hand, when s = 1 the fractional Schrödinger equation (1.1) becomes the standard
Schrödinger equation

−4u+ V(x)u = f(x,u), x ∈ RN. (1.5)

The Schrödinger equation (1.5) has been widely investigated by many authors in the last decades, see [2,
4, 12, 13, 15, 19, 25, 26, 37] and references therein.

Motivated by above results, in this paper we study non-trivial solution and ground state solution to
problem (1.1) under asymptotically periodic case of V and f at infinity. In the context about asymptotic
periodic, we refer the reader to [1, 12, 23, 24, 31, 32].

Let Γ be the functions h ∈ C(RN, R)∩L∞(RN, R) such that for every ε > 0, the set {x ∈ RN : |h(x)| > ε}
has finite Lebesgue measure. To state our main results, we assume that:

(V) There exist a constant a0 > 0 and V0 ∈ C(RN, R), 1−periodic in xi, 1 6 i 6 N, such that V0 − V ∈ Γ
and

0 < a0 6 V(x) 6 V0(x).

(f1) Set F(x, t) =
∫t

0 f(x, s)ds, F(x, t) > 0 for all (x, t) ∈ (RN, R) and f(x, t) = o(t) as t → 0 uniformly in
x ∈ RN.

(f2) There exists a function g ∈ C(R/{0}, R+) such that

F̂(x, t) =
1
2
f(x, t)t− F(x, t) > g(t)t2,

for all (x, t) ∈ (RN, R).

(f3) There exist a1 > 0,R1 > 0 and τ > N
2 such that

|f(x, t)|τ 6 a1|t|
τF̂(x, t),

for all (x, t) ∈ (RN, R) with |t| > R1.

(f4) lim|t|→∞ F(x,t)
|t|2

= +∞ uniformly in x ∈ RN.
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(f5) There exist q ∈ (2, 2∗s), where 2∗s =
2N
N−2s and h ∈ Γ , f0 ∈ C(RN ×R, R), 1-periodic in xi, 1 6 i 6 N

such that

(i) F(x, t) > F0(x, t) =
∫t

0 f0(x, s)ds, for all (x, t) ∈ (RN, R);
(ii) |f(x, t) − f0(x, t)| 6 h(x)|t|q−1, for all (x, t) ∈ (RN, R);

(iii) t 7→ f0(x,t)
|t| is increasing in (−∞, 0) and (0,+∞).

Main results of this paper are as follows:

Theorem 1.1. Assume (V), (f1)-(f5) are satisfied, then problem (1.1) has at least one non-trivial solution.

We also consider this condition:

(f2)
? F̂(x, t) > 0 for all t 6= 0.

Theorem 1.2. Suppose that V(x) and f(x, t) are 1-periodic in xi, 1 6 i 6 N and V(x) > a0 > 0, for all x ∈ RN.
If f satisfies (f1), (f3), (f4) and (f2)

?, then problem (1.1) has a ground-state solution.

Remark 1.3.

(1) In this paper, the condition (V) and (f5) mean asymptotically periodic case of V and f at infinity.
This condition was introduced by Lins and Silva [24] in the study of a Schrödinger equation.

(2) In this paper, the condition (f3) is weaker than Ambrosetti-Rabinowitz condition. It is well-known
that Ambrosetti-Rabinowitz condition has an important role in proof of bounded of Palais-Smale
sequence. As far as we know, condition (f3) was introduced by Ding and Lee [15].

(3) In our paper, f does not satisfy any monotone condition, that is, f(x,t)
t is oscillatory and therefore

the method of Nehari manifold [33] used in [38] is not applicable.

2. Definitions and lemmas

Let s ∈ (0, 1), the fractional Sobolev space Hs(RN) is defined by

Hs(RN) = {u ∈ L2(RN) :
|u(x) − u(y)|

|x− y|
N
2 +s

∈ L2(RN ×RN)},

and endowed with the natural norm

‖u‖Hs(RN) =

(∫
RN

|u|2dx+

∫
RN

∫
RN

|u(x) − u(y)|2

|x− y|N+2s dxdy

) 1
2

,

here

[u]Hs(RN) =

(∫
RN

∫
RN

|u(x) − u(y)|2

|x− y|N+2s dxdy

) 1
2

,

is the so-called Gagliardo (semi) norm of u.
Using Fourier transform, the space Hs(RN) can also be defined by

Hs(RN) = {u ∈ L2(RN) :

∫
RN

(1 + |ξ|2)s|u|2dξ < +∞},

where u denotes the Fourier transform of u.
Let ` be the Schwartz space of rapidly decreasing C∞ function on RN, u ∈ `, one has

(−4)su(x) = C(N, s)P.V .
∫

RN

u(x) − u(y)

|x− y|N+2s dy,

the symbol P.V . stands for the Cauchy value and C(N, s) is a constant depends only on the space dimen-
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sion N and the order s.
From the results of [7, 14], we have

(−4)su = −1(|ξ|2su), ∀ξ ∈ RN.

Then, by Proposition 3.4 and Proposition 3.6 of [7, 14], we have

[u]2Hs =
2

C(N, s)

∫
RN

|ξ|2s|u|2dξ =
2

C(N, s)
‖(−4)

s
2u‖2

L2 .

From the above fact, the norms on Hs(RN) defined below,

u 7→
(
‖u‖2

L2(RN) +

∫
RN

|ξ|2s|u|2dξ

) 1
2

,

u 7→
(
‖u‖2

L2(RN) + ‖(−4)
s
2u‖2

L2(RN)

) 1
2

,

u 7→ ‖u‖Hs(RN)

are all equivalent.
In the sequel, we consider the Hilbert space Hs(RN) endowed with one of the following norms:

‖u‖ =
(∫

RN
V(x)|u|2dx+

∫
RN

|ξ|2s|u|2dξ

) 1
2

,

‖u‖0 =

(∫
RN
V0(x)|u|

2dx+

∫
RN

|ξ|2s|u|2dξ

) 1
2

,

and the inner product induced by the first norm. In view of (V), the norm ‖ · ‖ and ‖ · ‖0 are equivalent
to the standard norm in Hs(RN).

For the readers’ convenience, we review the embedding results and Lions compactness lemma for the
space Hs(RN).

Lemma 2.1 ([14, 29]). The embedding Hs(RN) ↪→ Lq(RN) is continuous for any q ∈ [2, 2∗s]. Moreover, The
embedding Hs(RN) ↪→ Lq(RN) is locally compact whenever q ∈ [2, 2∗s).

Lemma 2.2 ([28]). Assume un is bounded in Hs(RN) and satisfies

lim
n→∞ sup

y∈RN

∫
Br(y)

|un(x)|
2dx = 0,

for some r > 0. Then un → 0 in Lq(RN) for any q ∈ (2, 2∗s).

Lemma 2.3. Suppose that f satisfies (f1), (f3) and (ii) of (f5). Then for any given ε > 0, there exist Cε > 0 and
p ∈ (2, 2∗s) such that

|f(x, t)| 6 ε|t|+Cε|t|p−1, |F(x, t)| 6 ε|t|2 +Cε|t|p, for all (x, t) ∈ (RN, R).

Proof. Since the proof is easy, so we omitted here.

We say u ∈ Hs(RN) is a weak solution of (1.1), if∫
RN

|ξ|2suvdξ+

∫
RN
V(x)uvdx =

∫
RN
f(x,u)vdx,
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for all v ∈ Hs(RN).
The energy functional I : Hs(RN)→ R corresponding to problem (1.1) is defined by

I(u) =
1
2

∫
RN

|ξ|2s|u|2dξ+
1
2

∫
RN
V(x)u2dx−

∫
RN
F(x,u)dx.

In fact, I(u) = 1
2‖u‖

2 −
∫

RN
F(x,u)dx. In view of Lemma 2.3, the functional I is well-defined. Furthermore,

under our condition, I ∈ C1(Hs(RN)) and its critical points are solutions of problem (1.1).
Let un ⊂ Hs(RN), we say un is a Cerami sequence for the functional I at level c ∈ R, if

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0, n→∞.

Theorem 2.4 ([27]). Let E be a real Banach space. Assume I ∈ C ′(E, R) satisfies I(0) = 0 and

(I1) there exist ρ,α > 0 such that I(u) > α > 0, for all ‖u‖ = ρ;

(I2) there exists e ∈ E with ‖e‖ > ρ such that I(e) 6 0.

Then I possesses a Cerami sequence at level

c = inf
Θ

max
t∈[0,1]

I(γ(t)),

where
Θ = {γ ∈ C([0, 1],E) : γ(0) = 0, ‖γ(1)‖ > ρ, I(γ(1)) 6 0}.

Theorem 2.5 (local mountain pass theorem [24]). Let E be a real Banach space. Assume I ∈ C ′(E, R) satisfies
I(0) = 0, (I1) and (I2). If there exists γ0 ∈ Θ, Θ defined as in Theorem 2.4 such that

c = max
t∈[0,1]

I(γ0(t)) > 0,

then I possesses a non-trivial critical point u ∈ γ0([0, 1]) at the level c.

Lemma 2.6. Suppose that f satisfies (f1), (f3), (f4) and (ii) of (f5). Then I satisfies (I1) and (I2).

Proof. By Lemma 2.1 and Lemma 2.3, there exist C > 0, C1 > 0 such that∫
RN
F(x,u)dx 6 ε|u|22 +Cε|u|

p
p 6 εC1‖u‖2 +C‖u‖p.

Hence, we have

I(u) =
1
2
‖u‖2 −C1ε‖u‖2 −C‖u‖p =

(
1
2
−C1ε

)
‖u‖2 −C‖u‖p.

Since p > 2, we have

I(u) >

(
1
2
−C1ε

)
‖u‖2 + o(‖u‖2) > α > 0,

for ‖u‖ = ρ small enough. This proves (I1).
To prove that there exists e ∈ Hs(RN) such that I(e) < 0 let us choose v ∈ Hs(RN) such that v(x) > 0

in RN and ‖v‖ = 1.
Let η = 2∫

RN
v2dx

, by (f4), there exists δ > 0 such that

F(x, t) > ηt2, for |t| > δ.

Let R > 0, denote ΩR = {x ∈ RN : v(x) > δ
R }, we have∫

RN
F(x,Rv)dx >

∫
ΩR

F(x,Rv)dx > ηR2
∫
ΩR

v2dx.
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Since v > 0, there exists R0 > 0 such that for any R > R0 we have that∫
ΩR

v2dx >
1
2

∫
RN
v2dx.

Then ∫
RN
F(x,Rv)dx >

ηR2

2

∫
RN
v2dx.

From the above fact, one has that

I(Rv) 6
1
2
R2‖v‖2 − R2 < 0,

for any R > R0. So, we choose e = Rv and I(e) < 0.

The following lemma is a revised version of the corresponding lemma in [12], which we sketch here
for the reader’s convenience.

Lemma 2.7. Suppose that f satisfies (f1)-(f4) and part (ii) of (f5). Then any Cerami sequence for I is bounded.

Proof. Let un ⊂ Hs(RN) such that

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0.

We have
c+ on(1) = I(un) −

1
2
I ′(un)un =

∫
RN
F̂(x,un)dx.

Suppose by contradiction that for some subsequences still denote un, we have that ‖un‖ → +∞.
Let vn = un

‖un‖ , one has

on(1) =
I ′(un)un
‖un‖2 = 1 −

∫
RN

f(x,un)vn
‖un‖

dx.

So,

lim
n→+∞

∫
RN

f(x,un)vn
‖un‖

dx = 1. (2.1)

Let
G(r) = inf{F̂(x, t) : x ∈ RN, |t| > r},

where r > 0.
By (f2) and (f3), for any |t| > R1, we have

a1F̂(x, t) >
(
f(x, t)
t

)r
>

(
2F(x, t)
t2

)τ
.

According to (f4), F̂(x, t)→∞, t→∞ uniformly in x ∈ RN. So, it is easy to see that G(r) > 0 for all r > 0
and G(r)→∞ as r→∞.

Let 0 < a < b, denote
Ωn(a,b) = {x ∈ RN : a 6 |un(x)| < b}.

Let 0 6 a < b, denote

cba = inf{
F̂(x, t)
t2 : x ∈ RN,a 6 |t| 6 b}.

In view of (f2), cba > 0.
Above all, we have that

c+ on(1) =
∫
Ωn(0,a)

F̂(x,un)dx+
∫
Ωn(a,b)

F̂(x,un)dx+
∫
Ωn(b,∞)

F̂(x,un)dx
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>
∫
Ωn(0,a)

F̂(x,un)dx+ cba

∫
Ωn(a,b)

u2
ndx+G(b)|Ωn(b,∞)|.

Therefore, there exists C1 > 0 such that

max
{∫
Ωn(0,a)

F̂(x,un)dx, cba

∫
Ωn(a,b)

u2
ndx, G(b)|Ωn(b,∞)|

}
6 C1. (2.2)

Since the fact that G(b)→ +∞ as b→ +∞, one gets limb→+∞ |Ωn(b,∞)| = 0.
Let µ ∈ [2, 2∗s), by Hölder’s inequality and Lemma 2.1, there exists C2 > 0 such that∫

Ωn(b,∞)
|vn|

µdx 6

(∫
ΩΩn(b,∞)

|vn|
2∗sdx

)µ/2∗s

|Ωn(b,∞)|(2∗s−µ)/2∗s

6 C2‖vn‖µ|Ωn(b,∞)|(2∗s−µ)/2∗s = C2|Ωn(b,∞)|(2∗s−µ)/2∗s .

Since µ < 2∗s, we conclude that

lim
b→+∞

∫
Ωn(b,∞)

|vn|
µdx = 0. (2.3)

Let ε ∈ (0, 1
3), by (f1) there exists aε > 0 such that

|f(x, t)| 6
ε|t|

C2
3

, for all |t| 6 aε,

where C3 > 0 be such that |u|2 6 C3‖u‖ for all u ∈ Hs(RN). Hence,∫
Ωn(0,aε)

f(x,un)vn
‖un‖

dx 6
ε

C2
3

∫
Ωn(0,aε)

v2
ndx 6 ε. (2.4)

Let 2τ ′ = 2τ/(τ− 1) ∈ (2, 2∗s), from (f3), (2.2) and Hölder’s inequality one has∫
Ωn(bε,∞)

f(x,un)vn
‖un‖

dx 6
∫
Ωn(bε,∞)

f(x,un)v2
n

|un|
dx

6

(∫
Ωn(bε,∞)

|f(x,un)|τ

|un|τ
dx

)1/τ(∫
Ωn(bε,∞)

|vn|
2τ ′dx

)1/τ ′

6 a1/τ
1

(∫
Ωn(bε,∞)

F̂(x,un)dx
)1/τ(∫

Ωn(bε,∞)
|vn|

2τ ′dx

)1/τ ′

6 C5

(∫
Ωn(bε,∞)

|vn|
2τ ′dx

)1/τ ′

.

So by (2.3), for bε > 0 sufficiently large we have∫
Ωn(bε,∞)

f(x,un)vn
‖un‖

dx < ε. (2.5)

In view of (ii) of (f5) and f0 ∈ C(RN×R, R), there exists C4 > 0 such that |f(x,un)| 6 C4|un|, for every
x ∈ Ωn(aε,bε). From (2.1), there exists n0 such that n > n0 we have∫

Ωn(aε,bε)

f(x,un)vn
‖un‖

dx 6 C4

∫
Ωn(aε,bε)

v2
ndx 6

C1C4

cba‖un‖2 < ε. (2.6)

Hence, according to (2.4), (2.5), (2.6) for bε > 0 sufficiently large we have∫
RN

f(x,un)vn
‖un‖

dx 6 3ε < 1,

which contradicts (2.1). Therefore {un} is bounded in Hs(RN).
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Remark 2.8. The above lemma still holds under the conditions of Theorem 1.2.

Lemma 2.9. Suppose that f satisfies (f1)-(f4) and (ii) of (f5). Let un ⊂ Hs(RN) be Cerami sequence for I at level
c > 0. If un ⇀ 0 in Hs(RN), then there exist a sequence {yn} ⊂ RN and R > 0,β > 0 such that yn →∞ and

lim
n→∞ sup

∫
BR(yn)

|un|
2 > β > 0.

Proof. Suppose by contradiction that the lemma is false. Then for any R > 0, we have that

lim
n→∞ sup

∫
BR(y)

|un|
2 = 0,

for all R > 0. By Lemma 2.2, we have that |un|Ls → 0 for any s ∈ (2, 2∗s).
By Lemma 2.3, we have

lim
n→∞

∫
RN
f(x,un)undx 6 lim

n→∞
(
ε

∫
RN

|un|
2 +Cε

∫
RN

|un|
p

)
.

In view of the boundedness of un in L2(RN) and ε is arbitrary, we get that∫
RN
f(x,un)undx→ 0

as n→∞.
Similarly, we have that

∫
RN
F(x,un)dx→ 0 as n→∞. So we get

c+ on(1) = I(un) −
1
2
I ′(un)un =

∫
RN

(
1
2
f(x,un)un − F(x,un)

)
dx.

Therefore, c = 0 which contradicts with c > 0.

Lemma 2.10 ([31, 38]). Assume {un} ⊂ Hs(RN) satisfies un ⇀ 0 and {ϕn} ⊂ Hs(RN) is bounded. Then∫
RN

[V(x) − V0(x)]unϕndx→ 0,∫
RN

[f(x,un) − f0(x,un)]ϕndx→ 0.

Lemma 2.11. Assume h ∈ Γ and µ ∈ [2, 2∗s]. If un ⊂ Hs(RN) such that un ⇀ u weakly in Hs(RN), then

lim
n→+∞

∫
RN
h|un|

µdx =

∫
RN
h|u|µdx.

Proof. Since the proof is similar to that of the results in [31], so we omitted here.

3. Proof of theorems

Let I0 : Hs(RN)→ R be the functional associated with the periodic problem, namely,

I0(u) =
1
2

∫
RN

|ξ|2s|u|2dξ+
1
2

∫
RN
V0(x)u

2dx−

∫
RN
F0(x,u)dx.

Proof of Theorem 1.1. In view of Lemma 2.6 and Theorem 2.4, there exists a Cerami sequence {un} ⊂
Hs(RN), i.e.,

I ′(un)→ c > α > 0, and (1 + ‖un‖)I ′(un)→ 0, as n→∞. (3.1)

From Lemma 2.7, {un} is bounded. Going if necessary to a subsequence, one assumes that un ⇀ u

weakly in Hs(RN).
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To prove I ′(u) = 0. In fact, it suffices to prove that I ′(u)ϕ = 0 for all ϕ ∈ C∞0 (RN), since C∞0 (RN) is
dense in Hs(RN). For all ϕ ∈ C∞0 (RN), we have

I ′(un)ϕ− I ′(u)ϕ =

∫
RN

|ξ|2sunϕdξ+

∫
RN
V(x)unϕdx−

∫
RN
f(x,un)ϕdx

−

∫
RN

|ξ|2suϕdξ−

∫
RN
V(x)uϕdx+

∫
RN
f(x,u)ϕdx

= 〈un − u,ϕ〉−
∫

RN
(f(x,un) − f(x,u))ϕdx.

Since un ⇀ u weakly in Hs(RN) and Lemma 2.3, we have

I ′(u)ϕ = lim
n→∞ I ′(un)ϕ = 0,

which implies that I ′(u) = 0.
If u 6= 0, the proof is finished.
If u = 0, from Lemma 2.9, there exist a sequence (yn) ⊂ RN, R > 0 and β > 0 such that |yn| → ∞ as

n→∞ and
lim sup
n→∞

∫
BR(yn)

|un|
2 > β > 0. (3.2)

Let {yn} ⊂ ZN and ũn(x) = un(x+yn) and ‖ũn‖ = ‖un‖0. Going if necessary to a subsequence, from
Lemma 2.1 we can assume that

ũn ⇀ ũ ∈ Hs(RN),

ũn → ũ ∈ Lqloc(R
N), 2 6 q < 2∗s,

ũn → ũ a.e in RN.

From (3.2), we have ũ 6= 0.

To prove I ′0(ũ) = 0 :

For all ϕ ∈ C∞0 (RN), for each n ∈N, let ϕn(x) = ϕ(x− yn), we have

I ′0(ũ)ϕ = I ′0(ũn)ϕ+ on(1) = I ′0(un)ϕn + on(1).

On the other hand, by Lemma 2.10 one has that

I ′0(un)ϕn = I ′(un)ϕn +

∫
RN

[V0(x) − V(x)]unϕndx−

∫
RN

[f0(x,un) − f(x,u)]ϕndx

= I ′(un)ϕn + on(1).

From (3.1), we have at I ′0(ũ) = 0. From (ii) of (f5), one has that

|F̂(x, t) − F̂0(x, t)| 6
(

1
2
+

1
q

)
h(x)|t|q.

According to un ⇀ 0 weakly in Hs(RN) and Lemma 2.11 we have that

lim
n→∞

∫
RN
F̂(x,un)dx = lim

n→∞
∫

RN
F̂0(x,un)dx = lim

n→∞
∫

RN
F̂0(x, ũn)dx >

∫
RN
F̂0(x, ũ)dx.

By (3.1), we have

c = lim
n→∞[I(un) − 1

2
I ′(un)un] = lim inf

n→∞
∫

RN
F̂(x,un)dx >

∫
RN
F̂0(x, ũ)dx
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= I0(ũ) −
1
2
I ′0(ũ)ũ

= I0(ũ).

That is I0(ũ) 6 c.
Next we prove maxt>0 I0(tũ) = I0(ũ). Let

χ(t) = I0(tũ) =
t2

2
‖ũ‖2

0 −

∫
RN
F0(x, tũ)dx,

then
χ ′(t) = t‖ũ‖2

0 −

∫
RN
f0(x, tũ)ũdx

= t

(
‖ũ‖2

0 −

∫
RN

f0(x, tũ)ũ
t

)
dx

= tA(t).

Since I ′0(ũ) = 0, A(1) = 0 from (iii) of (f5), A is nonincreasing in (0,∞). Then A(t) > 0 when t ∈
(0, 1) and A(t) < 0 when t ∈ (1,∞). Therefore

χ ′(t) > 0, when t ∈ (0, 1) and χ ′(t) < 0, when t ∈ (1,∞).

Above all, we have that maxt>0 I0(tũ) = I0(ũ). Hence, by the definition of c, (V) and part (i) of (f5),
we have that

c 6 max
t>0

I(tũ) 6 max
t>0

I0(tũ) = I0(ũ) 6 c.

By Theorem 2.5, we obtain that I possesses a critical point at level c > 0. So the proof is finished.

Proof of Theorem 1.2. It is easy to see that Lemmas 2.3, 2.6 and 2.7 are all held by using the conditions of
Theorem 1.2. From Lemma 2.6 and Theorem 2.4, there exists Cerami sequence {un} ⊂ Hs(RN), i.e.,

I0(un)→ c0, and (1 + ‖un‖0)I
′
0(un)→ 0, as n→ +∞,

where c0 is the mountain pass level of I0.
By Lemma 2.7, we conclude that un ⇀ u weakly in Hs(RN). Similar to proof of Theorem 1.1, we have

I ′0(u) = 0.
We only need to consider the case in which u = 0. By Lemma 2.9, there are a sequence (yn) ⊂ ZN,

R > 0 and β > 0 such that |yn|→∞ as n→∞ and

lim sup
n→∞

∫
BR(yn)

|un|
2 > β > 0. (3.3)

Let ũn(x) = un(x+ yn), then ‖ũn‖0 = ‖un‖0. Up to a subsequence, we have

ũn ⇀ ũ weakly in Hs(RN),

ũn → ũ in L2
loc(R

N),

ũn(x)→ ũ almost every where in RN.

By (3.3), ũ 6= 0. Similar to proof of Theorem 1.1, we get I ′0(ũ) = 0.
So m = inf{I0(u) : u ∈ Hs(RN), I ′(u) = 0} > 0 is well-defined. Next, we prove m is achieved. Indeed,

let {un} ⊂ Hs(RN) be a minimizing sequence for m, i.e.,

I0(un)→ m, I ′0(un) = 0 and un 6= 0.
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Obviously, {un} is a Cerami sequence for I0. So, from Lemma 2.7, {un} is bounded. Moreover, from
I ′0(un)un = 0 and Lemma 2.3, there exists α > 0 such that ‖un‖0 > α. Thus, arguing as in the preced-
ing paragraph, we obtain a translated subsequence {ũn}, which has a non-zero weak limit u0 such that
I ′0(u0) = 0 and ũn(x)→ u0(x) a.e. in RN. By Fatou’s lemma,

m = lim
n→∞ I0(un) = lim

n→∞ I0(ũn) = lim inf
n→∞

∫
RN
F̂0(x, ũn)dx >

∫
RN
F̂0(x,u0)dx = I0(u0).

Hence, I0(u0) = m, that is u0 6= 0 is a ground-state solution of problem (1.1).
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[5] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, (1996). 1
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