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Abstract

The purpose of this article is to introduce a new multidirectional hybrid shrinking projection iterative algorithm (or called
cloud hybrid shrinking projection iterative algorithm) for solving the common element problems which consist of a generalized
split equilibrium problems and fixed point problems for a family of countable quasi-Lipschitz mappings in the framework of
Hilbert spaces. It is proved that under appropriate conditions, the sequence generated by the multidirectional hybrid shrinking
projection method, converges strongly to some point which is the common fixed point of a family of countable quasi-Lipschitz
mappings and the solution of the generalized split equilibrium problems. This iteration algorithm can accelerate the convergence
speed of iterative sequence. The main results were also applied to solve split variational inequality problem and split optimiza-
tion problems. Meanwhile, the main results were also used for solving common problems which consist of a generalized split
equilibrium problems and fixed point problems for asymptotically nonexpansive mappings. The results of this paper improve
and extend the previous results given in the literature. (©2017 All rights reserved.
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1. Introduction
In 1994, Blum and Oettli [2] introduced the equilibrium problem which is to find x € C such that
F(x,y) >0, WYyeC. (1.1)

They denoted the solution set of problem (1.1) as EP(F). Since the well-known problems were variational
problems, complementary problems, fixed point problems, saddle point problems and other problems
proposed from the equilibrium problem, it has become the most attractive topic for many mathematicians
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[12, 15-17]. They have widely spread its applications to other applied disciplines including physics,
chemistry, economics and engineering (see, for example, [5, 13, 19, 20]).

Combettes and Hirstoaga [7] proposed an iterative method for solving problem (1.1) by the assumption
that EP(F) # (. Moreover, there are many new iteratively generated sequences for solving this problem
together with fixed point problems (see [1, 8, 21-23]).

Later, the so-called split equilibrium problem was introduced (shortly, SEP). Let H;, Hy be two real
Hilbert spaces. Let C, Q be closed convex subsets of H; and H,, respectively, and let A : H; — H; be a
bounded linear operator. Further, let F; : C x C — Rand F : Q x Q — R be two bifunctions. The SEP is
to find the element x* € C such that

Fi(x%y) =20, VyeC, (1.2)

and such that
Ax* € Q solves Fp(Ax*,v) >0, WweQ. (1.3)

The solution sets of problems (1.2) and (1.3) are symbolized by EP(F;) and EP(F,), respectively. There-
fore, we denote Q ={v € C:v € EP(F;) such that Av € EP(F,)} as the solution set of SEP.

Clearly, the SEP contains two equilibrium problems, that is, we find out the solution of one equilibrium
problem, i.e., its image under a given bounded linear operator must be the solution of another equilibrium
problem. In order to find a common solution of equilibrium problems, it has been mostly considered in
the same spaces. However, we normally found that, in the real-life problems, it may be considered in
different spaces. That is how the SEP works very well for this case (see, for example, [10]). Moreover, the
split variational inequality problem (shortly, SVIP) is its special case which is to find x* € C such that

(f(x"),x—x*) >0, ¥xeC(,

and corresponding to
y' =Ax" € Q solves (9(y"),y—y") >0, vyeQ

where f : H; — Hp and g : Hy — H are nonlinear mappings and A : H; — H; is a bounded linear
operator (see [4]).

In 2012, He [10] proposed the new algorithm for solving a split equilibrium problem and investigated
the convergence behavior in several ways including both weak and strong convergence. Moreover, they
gave some examples and mentioned that there exist many SEPs and the new methods for solving it further
need to be explored in the future. Later, in 2013, Kazmi and Rizvi [14] considered the iterative method
to compute the common approximate solution of a split equilibrium problem, a variational inequality
problem and a fixed point problem for a nonexpansive mapping in the framework of real Hilbert spaces.
They generated the sequence iteratively as follows:

Un = JE(T+yA*(JR2 = DA)xn,
Yn = PC (U-n - )\nDun)/

Xni4l = &nV+ Brxn +Ynsynz

for each n > 0, where A : Hy — Hy is a bounded linear operator, D : C — Hj is a T-inverse strongly
monotone mapping, F; : Cx C — R, F, : Q x Q — R are two bifunctions. They found that, under the
sufficient conditions of 1, An, v, Bn and yn, the generated sequence {x,, } converges strongly to a common
solution of all mentioned problems.

Recently, in 2014, Bnouhachem [3] introduced a new iterative method for solving split equilibrium
problem and hierarchical fixed point problems by defining the sequence {x,} as follows:

Un =TT+ YA (T2 = DA)xn,
Yn = anxn + (1 - Bn)un/
Xn41 = PclonpU(xn) + (I = otn uF) (T(yn))l,
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for eachn > 0, where S, T are nonexpansive mappings, F : C — C is a k-Lipschitz mapping and n-strongly
monotone, U : C — C is a 1-Lipschitz mapping. Also, they proved some strong convergence theorems for
the proposed iteration under some appropriate conditions.

In 2015 [24], motivated and inspired by the results [3, 10, 14] and the recent works in this field,
Witthayarat et al. introduced a shrinking projection method for solving split equilibrium problems and
fixed point problems for asymptotically nonexpansive mappings in the framework of Hilbert spaces and
proved some strong convergence theorems for the proposed new iterative method. They proved the
following strong convergence theorem.

Theorem 1.1 (UAY). Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of
Hilbert spaces Hy and Hp, respectively. Let F; : C x C — Rand F» : Q x Q — R be two bifunctions satisfying
conditions (Al)-(A4) and F, be upper semi-continuous in the first arqument. Let T : C — C be an asymptotically
nonexpansive mapping and A : Hy — Hy be a bounded linear operator. Suppose that F(T) N Q # 0, where
Q ={veC:vekEP(F)such that Av € EP(F;)} and let xo € C define sequence {xn} iteratively as follows:

¢ =¢C,

Un = T (I—yA*(I=T{2)A)xy,

Yn = otnXn + (1 —on) TNy,
Chr1={z€Cn:lyn _Z||2 < [lxn _ZHZ +0n},

Xnt1 = Pc,,q %o,

foreachm > 1, where 0 < an <a<1l,0<b<rn <00, vE (O,%)and
0= (1— cxn)(k121—1)sup{Hxn—zH2 1z e Q},

forall n > 1, L is the spectral radius of the operator A*A and A* is the adjoint of A. Then the sequence {xn}
converges strongly to a point p € F(T) N Q.

In 2015 [9], Guan et al. presented the following non-convex hybrid iteration algorithms and proved
the following strong convergence theorem for a uniformly closed asymptotically family of countable
quasi-L,-Lipschitz mappings.

Theorem 1.2 (G). Let C be a closed convex subset of a Hilbert space H, and let {T,,} : C — C be a uniformly closed
asymptotically family of countable quasi-L,,-Lipschitz mappings from C into itself. Assume that «n € (a,1] holds
for some a € (0,1). Then {xn} generated by

xo € C = Qo, chosen arbitrarily,

Yn = (1 —an)xn + xnThxn, n =0,

Ch={z€eC:|lyn—z]| < (14 (Lqy —Doan)||xn—z[[}NA, n>=0,
Qn={z€Qn-1:xn—2z%x—xn) =20}, n>1,

Xn+1 = Pco CnNQn X0/

converges strongly to Prxg, where co Cy, denotes the closed convex closure of Cr, forallm > 1, A ={z € H:
HZ— PFXQH < 1}.

The closely related works were also introduced in [6, 7, 11, 18].

In this paper, we introduce and consider a new multidirectional hybrid shrinking projection iterative
algorithm (or called cloud hybrid shrinking projection iterative algorithm) for solving common problems
which consist of generalized split equilibrium problems and fixed point problems for a family of count-
able quasi-Lipschitz mappings in the framework of Hilbert spaces. It is proved that under appropriate
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conditions, the sequence generated by the multidirectional hybrid shrinking projection method, con-
verges strongly to some point which is the common fixed point of a family of countable quasi-Lipschitz
mappings and the solution of the generalized split equilibrium problems. This iteration algorithm can
accelerate the convergence speed of iterative sequence. The main results were also applied to solve split
variational inequality problem and split optimization problems. Meanwhile, the main results were also
used for solving common problems which consist of generalized split equilibrium problems and fixed
point problems for asymptotically nonexpansive mappings. The results of this paper improve and extend
the previous results given in the literature.

2. Preliminaries

In this section, we recall some concepts including the assumption which will be needed for the proof
of our main result. Let H be a real Hilbert space with inner product (-, -) and norm || - ||. We write x,, — x
to indicate that the sequence {x,} converges strongly to x. Let C be a nonempty closed convex subset of
H, we denote by Pc(-) the metric projection onto C. It is known that z = P¢(x) is equivalent to that z € C
and (z—y,x—z) > 0 for every y € C. Recall that T : C — C is nonexpansive if || Tx — Ty|| < |[x —y|| for all
x,y € C. A point x € C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T,
that is, F(T) = {x € C: Tx = x}. It is will-known that F(T) is closed and convex. A mapping T: C — Cis
said to be quasi-Lipschitz (or quasi-L-Lipschitz), if the following conditions hold:

(1) the fixed point set F(T) is nonempty;
(2) ITx—p| < L||lx—p]|, forallx € C, p € F(T),

where 1 < L < 400 is a constant. T is said to be quasi-nonexpansive, if L = 1.

A sequence of mappings {T} : C — C is said to be a family of countable asymptotically quasi-k,-
Lipschitz mappings, if the following hold:

(1) the common fixed point set F is nonempty;
(2) Ty is quasi-kn-Lipschitz for each n > 1 and limp o0 kn = 1.

Recall that a mapping T : C — C is said to be closed, if x, = x and || Tx, —Xn || — 0 as 1 — oo implies
Tx =x.

Let C be a nonempty closed and convex subset of a Hilbert space H. Let {T,,} be sequence of mappings
from C into itself with a nonempty common fixed point set F. {T,,} is said to be uniformly closed, if for
any convergent sequence {z,,} C C such that || Thzn —zn| — 0 as n — oo, the limit of {z,,} belongs to F.

A mapping T : C x C — R is said to be asymptotically nonexpansive, if there exists a sequence
{kn} C [1,00) with limy, .o k. = 1 such that

T =TMy[ < knlx—yl,

for all x,y € C. It is easy to see that, if k,, = 1, then T is said to be nonexpansive. We denote the set of
fixed point of T by F(T), that is, F(T) = {x € C : Tx = x}. There are many iterative methods for solving a
fixed point problem corresponding to an asymptotically nonexpansive mapping (see also [2, 12, 15, 16]).

Let H be a Hilbert space and C be a nonempty closed convex subset of H. For each x € H, there exists
a unique nearest point of C, denoted by Pcx, such that

X =Pex|| < [x—yl,

for all y € C. Pcx is called the metric projection from H onto C. It is well-known that Pc is a firmly
nonexpansive mapping from H onto C, that is,

[Pcx —Peyl* < (Pex—Pcy, x —y),
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for all x,y € H. Furthermore, for any x € H and z € C, z = Pcx, if and only if
(x—2z,z—y) >0,
for ally € C. A mapping A : C — H is called x-inverse strongly monotone, if there exists & > 0 such that
(x =y, Ax = Ay) > o Ax — Ay|P?,

for all x,y € H. Moreover, we can investigate that, for each A € (0,2«], I —AA is a nonexpansive mapping
of C into H (see [11]).

Lemma 2.1. In a Hilbert space H, the following identity holds:
[ (1= Ayl = AlxI? + (1= Ay = A=A [x =] %,
forall x,y € Hand A € [0, 1].

Lemma 2.2 ([9]). Let H be a Hilbert space, let C be a closed convex subset of E and let {T,} be a uniformly closed
asymptotically family of countable quasi-kn-Lipschitz mappings from C into itself. Then the common fixed point set
F is closed and convex.

Assumption 2.3 ([7]). Let F: C x C — R be a bifunction satisfying the following conditions:
(A1) F(x,y)=0forallx € C;

(A2) Fis monotone, i.e., F(x,y)+F(y,x) <0, forall x,y € C;

(A3) for each x,y,z € C, lim o F(tz+ (1 —t)x,y) < F(x,y);

(A4) for each x € C, y — F(x,y) is convex and lower semi-continuous.

Lemma 2.4 ([7]). Let C be a nonempty closed convex subset of a Hilbert space Hand F : C x C — R be a bifunction
which satisfies conditions (A1)-(A4). For any x € H and v > 0 define a mapping TF : H — C by

1
Tr(x)={ze C:Flz,y) + ;(y —z,z—x) >0, Yy € C}.

Then T is well-defined and the following hold:

(1) TV is single-valued;

(2) TF is firmly nonexpansive, i.e., for any x,y € H,

ITox =Tyl < (Trx =Ty, x—y);
(3) F(T{) = EP(F);
(4) EP(F) is closed and convex.
The following useful result is well-known.

Lemma 2.5. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let x € E. Then

lz—Pex|]* + [Pex—x[* < |lz—x|?, VzeC.

3. Main results

Theorem 3.1. Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
Hy and Hy, respectively. Let F; : Cx C — Rand Fo : Q x Q — R be two bifunctions satisfying conditions
(A1)-(A4) and F, be upper semi-continuous in the first arqument. Let {Tn}: C — C be a uniformly closed and
equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty common fixed point set F and
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A : Hy — Hy be a bounded linear operator. Suppose that FNQ # 0, where Q ={v € C :v € EP(Fy) such that
Av € EP(Fp)}and let xo;: € C, 1=1,2,3,---, N, define sequences {xn 1}, 1 =1,2,3,---,N and {wn,} iteratively
as follows:

Ci=C, 1=123, -
Ui =To) (I—yiA*(I—TFZ

rﬂl T'T'L‘.

)A)XTL,‘LI i= 1/2/3/"' /N
Yni = On,iXn,i+ (1 — (xn,l)Tnun,i, 1i=1,2,3,---,N,
Cnt1i =€ Cnitllyni—zl?> <lxni—zl>+0ni), i=1,23,---,N, @3.1)

N
Crnt1=iz1 Cnt1is
Xn_|_1,1'_ = PCHHXO,i/ i= 1,2,3, cee ,N

Wni1 =Y AiXns1i, SigMh=1, A el0,1],

foreachn > 1, where 0 < i <a<1, 0<b<rtni<oo, vi€(0,1)and

Oni = (1—om,i) (K3 — 1) sup{|lxni —z|[*:z € Q},

foralln>1,1=1,2,3,---,N, Lis the spectral radius of the operator A*A and A* is the adjoint of A. Then the
following conclusions hold:

(1) {xn,i} converges strongly top; € FNQ, foralli=1,2,3,--- ,N;
(2) {wn) converges strongly to w = Y N | Ajps € FN Q.

Proof. Firstly, we claim that, for eachn > 1, i = 1,2,3,--- ,N, A*(I— Tf'j,i)A is a ﬁ—inverse strongly

1

monotone mapping. Since T2 s firmly nonexpansive and (I — T2 ) is 3-inverse strongly monotone, it

T"r'Ll. TTI'L

follows that
IA* (1= T2 JAx = A*(1=T,2 JAy|* = (A*(1—-T,2 ) (Ax — Ay), A*(1 = T;2 ) (Ax — Ay))
TFz J(Ax—Ay), AA*(I—TFZ J(Ax—Ay))

(A*
((1
L<(I—TF2 )(Ax — Ay), (I-T,2 )(Ax — Ay))
L
2

N

I(I—TF2 )(Ax — Ay)|?

rﬂl

N

Lix—y, A*(1- T2 )(Ax — Ay)),

for all x,y € H, from which it can be concluded that
* Fz * F2 1 * Fz * Fz 2
(A*(I— Trn’i)Ax —A*(I—- Trm)Ay,x —y) = iHA (I— TTM)AX —A*(I— TTM)Ay 1%,

for all x,y € H. That is, A*(I Terl)A is a ﬁ—inverse strongly monotone mapping. Moreover, we claim
that since y; € (0, %),

[—yiA*(I-T2 A,

are nonexpansive, foralln >1,1=1,2,3,--- ,N.

Next, we show that FNQ C Cpqq4 forallm>1,1=1,23,--- ,N. Letp e FNQ, ie, TrFi,iP =p and
(I—viA*(I— Terl)A)p = p. By mathematical induction, we have p € C = C;; and hence FN Q C Cy;.
Let FNQ C Cy i, for some k > 1. It follows that

s —pll = TR (T —viA (1= T2 A — T (T—viAS (1= T2 )A)p||

< I =y A* (T = T2 ) A)xies — (- viA* (1= T2 )A)p||

Tki

~X
< i —pll,
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and ) ,
luki —pll° = [lox,ixk + (1 — o i) Tkuk i — pl|

< ot il [ = PP + (1 — oaei) [ Trewe i — >
— agei(1— o i) [ xi,i — P — (Tiewr,i — Tip) |2
< o ifxii =PI+ (1 — o) urs — >
— age,i (1 — o) [[xi,i — Tieuse i
< o ifxi =PI+ (1 — o)k [Pt — plf?
=[x — P> + (1 — oe,1) (kg — 1) [Ixie, s — P>
< Jxai =PI+ (1 — o i) (kg — 1IME 4
=[xt —PlI* + O 1,

where My ;i = sup{||xki—z| : z € Q} and 0x;i = (1 — oi) (kK — 1)M12<,1- It can be concluded that
P € Cikt1i and F(T)NQ C Cyy14 and further, F(T)NQ C Cpyqq foralln > 1, i = 1,2,3,--- ,N.
Therefore, F(T)NQ C Cy1 = ﬂiN:1Cn+1,1'./ foralln > 1.

Next, we show that C,, is closed and convex for all n > 1. It is obvious that, C;,; is closed for all
n>11=1,2,3,---,N. Therefore, C,, is closed for all n > 1. Suppose that Cy_1; is closed and convex
forsomek >2,1=1,2,3,--- ,N. Weseeforalln >1,1i=1,2,3,---,N that,

[yni —2l* < xni =2l + O,
is equivalent to

<Z/ Z(Xn,i _yn,i)> < HXn,iHZ - Hyn,iHZ + en,1'.~

Hence
Cri=1{z€C:{z,2(xxi —Yki)) < [[xrill® = lyrill®* + Oxi} N Cr_14,

is convex for all i = 1,2,3,---,N. By induction, we know that C,; is convex for alln > 1, i =
1,2,3,--+,N. Therefore, C,, is convex for all n > 1.

Next, from x ;i = Pc, %0, n>1,1=1,2,3,---,N, we have
X0 = xnill < [lxo—yl,

for ally € Cy, ;. Since F(T) N Q is nonempty closed and convex, there exists zgp € F(T) N Q, we have that
X0 = xn,ill < [|xo —zol|-

This implies that {xn i} is bounded. From xn; = Pc, x0i and xn411 = Pc,,, %01 € Cny1,i C Cni, we
also have
xn,i —=x0,ill < [Xn41,i—%0ill,

for all n € N. This means that {||xn i — Xo||} is bounded and nondecreasing. Then limn_, || Xn,i — Xo||
exists for alli =1,2,3,--- ,N. Put limn_, ||Xn,i —Xo|| = ci for alli =1,2,3,---,N. On the other hand,
from xp4m,i C Cpiforalli=1,2,3,---,N, by using Lemma 2.5, we have for any positive integer m, that

Xnami — Xnill? < [Xnsmi — X0l — xni — X0,

So {xn,i} is a Cauchy sequence in C, then there exits a point p; € C such that lim, o Xn,i = pi for any
i=1,2,3,---,N. Therefore,

N N
Wn = Z AiXni — W = Z AiPi,
i=1 i=1

as n — oQ.
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Since limp 00 Xn,i = pi foranyi=1,2,3,--- ,N, we have
lim HXTl,i _Xn+1,iH = O, i= 1,2,3, cee ,N. (32)
n—oo
Since xn41,i € Cny14 C Cpyi foranyi=1,2,3,---, N, we have
[Yni —%ns1ill* < [%ni — X1l + Onis
which means that
lyn,i —xnerill < lxni —xng1ill +/0ni- (3.3)
Thus, by (3.2) and (3.3) we have
[yni = %nill < [[Uni —*nt14ll + [Xns1i —xnill =0, (3.4)
as n — oo. Furthermore, since Tri . is firmly nonexpansive, we have
[wni =PI = T (et — ViA* (1 - TF;JAXM) ~TH (p—viAT(I=T2 )Ap)|?
< I=yi A (1= T2 A X, — (1 — (I—Tfjl JAIPIP = [(I-T{2)
X (I=ViA* (1= Tf2 JA)xn i — (I—Tf; ) — (1= viA* (1= T2 )A)p|?
= ||Xn,i_p_'Yi(A*(I_Tfii)Axn,i_A*( Tfjl Ap ||2_ HBTI'L Tfil
= [xn,i —PII* = 2vi(xni —p, A" (I— TFZ AR — A (1— TFZ JAP)
+VHIAT(I-T2, )Axni —ANI=T2 DAP|® — [|Bni —Tfmﬁmuz
< xni =PI +vily HA T2 JAXn P = B — T3 Brll?,
where i = (I—viA*(I —Tfjl) A)xn,i. Moreover,
Hyn,i _p”z = chn,ixn,i +(1— ocn,i)Tnun,i _pH2
< o‘ni”xni_PHZ (1= otn, 1)k [l[xn, i — 2
+yilvi HA* — T2 Al = 1B — T B il
= o, ifXn,i — p”2 1_0‘n1 k nllXni— sz (1—otn,i) nHBTLl_Tl:;l
+ (1 - O‘n,i)knYI( ”A Tfj,-l)AXn,in/
which leads to 1
(1 — ok byl =y A (=T YA | 4 [ B = T2 Bl (35)

< ((Xn,i +(1— o"n,i)k%l Hxn,i _pH2 - Hyn,i _p”Z'
Letting pn = kn — 1, it is clear that p, — 0 as n — oo and by (3.5), we have

— YA (I =T2 ) A% i |* + 1Bri — T Bl

T'nl Tni

(1~ o il

< “n,i”xn,i —P”2 +(1— OCn,i)(Pn + 1) Hxn,i _pHZ - ”yn,i _pHZ
< Hxn,i _pHZ - Hyn,i _sz +(1— o‘n,i)(ng +2pn) Hxn,i _pH2
<

(i — Pl + [yni —PIDIxni — Ynall + (1 — ot i) (03 +200) [Xni —

By (3.4) and p;, — 0 as n — oo, we have

IA*(T=T2 JAxnil> =0, [[Bn =T, Bnil> =0,
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as n — oo. Furthermore, since A is linear bounded and so is A*, we can conclude that

lim |[(I—T;2 JAxn ] =0. (3.6)

n—oo

Next, we show that ||un i —Xxn ]| = 0. We investigate the following;:

i = Xl = [T52 B = ol
< ”Tfilif’n,i - Bn,i” + HBn,i _Xn,i” (3 7)
= T Bt — Brill + 1T = YA (T = T2 JA) X i — xn i '
= T2 B = Broill + Vil AT (T = T2 JAXn |-
Consequently, by (3.7), we can conclude that
Hun,i — XTL,iH — 0.
Next, we show that || Ty Xn i —Xni]| = 0. We consider
Hyn,i - Xn,i” = H On,iXn,i+ (1 - (xn,i)Tnun,i - Xn,i”

=(1- ocn,i) HTnun,i _Xn,iHr

and since
[yn,i = *n+1ill < [[xXni—Xnt1ill + /On i,
hence,
1
[Tatni —xnill = ﬁ”yn,i —Xn il
n,i
1
ST a(Hyn,i —Xn41,ill + [Xnt1,i = Xn i)
1 1
S g Ui = xnsnill + V0 + o Ixnsii = xnill,

and so ||Taun,i —Xn il = 0. Consider
||Tnxn,i - Xn,i” < HTnxn,i - Tnun,iH + ”Tnun,i - Xn,i”-
Since {T,} is equicontinuous, we have
HTan,i - Xn,iH — 0/

as n — oo. Since {Ty} is uniformly closed, then p; € Fforalli=1,2,3,---,N. Since F is convex, we also
have

N N
w = nlgr;o Wn = nlgr;OZ?\ixn,i = Z)\ipi e F
i=1 i=1

Next, we show that p; € Q foralli=1,2,3,---,N. By (3.1),
Uni = T (I=viA* (I=T72 JA)xn i,

that is,

1 *
(Y —Un,i, Uni —Xni) — — (Y —Un,i, ViA* (172, = DAxn 1) >0,

Tn,i rﬂ,l

for all y € C. From (A2), it follows that

1 «
(Y —n,i, VIA (T2, = DAxp1) + —

Tn,i Trni

Fi(uni,y)+

(Y—Uni, Uni—Xni) = F1(y, uni),
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for all y € C. Since
”A*(TrFf,l —DAxnAill 70, [[uni—xnill 70, [Xni—pill =0,

as n — oo, we have
F1(91p1)<0; i:]-/2/3/"'11\]/

forally € C. Letyy =ty + (1 —t)pi, forany 0 <t <1and y € C. It means that y, € C and hence

0=F1(ye, yt) < thi(ye,y) + (1 —t)F(y, pi) < thi(ye y),
and then F;(y¢,y) > 0. Letting t — 0, we immediately have F;(pi,y) >0, i.e.,
plEEP(Fl)/ 12112/3/"'/]\1'

Next, we show that Ap; € EP(F;) foralli=1,2,3,---,N. Since A is a bounded linear operator and
(3.6), we have
T2 Axni—Ap|l < | T2 Axpi — Axnill + |Axn i — Ap|| = 0,

Tn,i Tn,i

as n — oo, which yields that Ter Axn — Ap. By the definition of TTFj, we have

1
(y—T2 Axni, T2 Axni —Axni) 20, (3.8)

Tn,i

Fa(T72 Axni y) +

for all y € C. Since F; is upper semi-continuous in the first argument, taking limsup in (3.8), it follows
that
FZ(APi/U) 20/ i:1/2/3/"'/]\]/

for all y € C, from which it can be concluded that
Api € EP(F), 1=1,2,3,--- ,N.

So,pi € Qforalli=1,23,---,N. Consequently, since () is convex, we have w = ZiN:1 Aipi € Q. This
completes the proof. O

In Theorem 3.1, if the mapping T is a nonexpansive mapping, then we immediately have the following
theorem.

Theorem 3.2. Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
H; and Hy, respectively. Let F1 : C x C — Rand Fp : Q x Q — R be two bifunctions satisfying conditions
(A1)-(A4) and F, be upper semi-continuous in the first arqument. Let T : C — C be a nonexpansive mapping and
A : Hy — Hp be a bounded linear operator. Suppose that F(T) N Q # 0, where Q ={v € C :v € EP(F;) such that
Av € EP(Fp)}and let xo; € C, 1 =1,2,3,--- , N define sequences {xn i}, 1 =1,2,3,--- ,N and {w} iteratively
as follows:

Cii=C 1=123,---,N,

(= vA" (1= Ty

Tn,i

F
Uni= T

Tn,i

JA)xni, 1=1,2,3,---,N,
Yni=niXni+ (1—oxni)Tuni, i=123,---,N,
Cnt1i={z€ Cnji:llyni—zl < |xni—2zll}), i=123-,N,
Cry1= ﬂil Cht1ir

Xn+1i=Pc, %01, 1=123,---,N,

W1 =Y N Aixnge, SR A=1, A €01,

foreachn > 1, where0 < ani <a<1l, 0<b<rpi <00, Vi € (O,%)foralln >1,1=1,2,3,---,N, Lis the
spectral radius of the operator A*A and A* is the adjoint of A. Then the following conclusions hold:
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(1) {xn,i} converges strongly top; € F(T)NQ, foralli=1,2,3,--- ,N
(2) {wn} converges strongly to w = le Aipi € H(T) N Q.

Theorem 3.3. Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
Hy and Hy, respectively. Let F1 : Cx C — Rand Fo : Q x Q — R be two bifunctions satisfying conditions
(A1)-(A4) and Fy be upper semi-continuous in the first arqument. Let {Tn} : C — C be a uniformly closed and
equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty common fixed point set F and
A : Hy — Hy be a bounded linear operator. Suppose that F(T) N Q # 0, where Q ={v € C :v € EP(F;) such that
Av € EP(Fp)}and let xo; € C,i=1,2,3,--- , N, define sequences {xn 1}, i =1,2,3,---,N and {wn} iteratively
as follows:

Ci=¢C

un = TEH (1= yn AT (1= T A)wn,

Yn = XnWn + (1 - ‘xn)Tnun/

Cni1 ={z € Cntllyn —z[? < [wn —2|* + 0n),
Xni= PCnXO,ir i= 1,2,3, ce ,N,

Wn = Zl\lzl }\an,i/ ZiNzl Ai=1, A€ [0; 1]/

(3.9)

foreachn > 1, where 0 < oy <a <1, 0<b <1y <00, Yn € (0,%)und
0, = (1—an)(k3 —1) sup{||wn —z|?:z€ Q]

forallm > 1, Lis the spectral radius of the operator A*A and A* is the adjoint of A. Then the following conclusions
hold:

(1) {xn,i} converges strongly top; € FNQ foralli=1,2,3,---,N;

(2) {wn} converges strongly to w = ZiN:1 Aipi € FNQ.
Proof. Firstly, we claim that for each n > 1, A*( ~T{2)A is a s--inverse strongly monotone mapping.
Since T;2 is firmly nonexpansive and (I—T}2) is 1-inverse strongly monotone, it follows that

A" ([=T2)Ax = A" (T=TE)AY[[? = (A (1= Ti2) (Ax — Ay), A*(1 = Ti2) (Ax — Ay))

= ((I=T{2)(Ax — Ay), AA™ (1= T;2) (Ax — Ay))

< K(T=T2)(Ax = Ay), (1= T72) (Ax — Ay))

= L[|(1=T72)(Ax — Ay)|”
<2Lx—y, AT (I=T2)(Ax — Ay)),

N

for all x,y € H, from which it can be concluded that
* Fz * Fz 1 * Fz * Fz 2
(A"(I-T2)Ax — A" (I-T2)Ay,x —y) > iHA (I-T2)Ax — A*(I-T;2)Ay|,

for all x,y € H. That is, A*(I — Tfﬁ)A is a 5--inverse strongly monotone mapping. Moreover, we claim
that since v, € (0, %),

I-ynA*(I-T2)A,
are nonexpansive, for all n > 1.

Next, we show that F(T)NQ C Cnyq forallm > 1. Letp € F(T)NQ, ie., TrF]p =pand (I—
YnA*(1 —TTn) )p = p. By mathematical induction, we have p € C = C; and hence F(T)NQ C C;. Let
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F(T)NQ c Cy for some k > 1. It follows that

[uk —pll = [TH (I —yn A (1= TI2)A)xi — TH (I —ynA* (1= T{2)A)p||
NI —=ynAM(I=T2)A)xx — (I—ynA* (1= T2)A)p|
< lxk —pll,
and

[y = pI* = lloaewic + (1 — o) Trewre — p||?
< ol lwic = plI” + (1 — )| Trewse — >
— e (1 — o) xie — p — (THu — Tuep) |12
< o[ wie —pl* + (1 — ou) lwe — pI?
— ot (1 — o) [[wie — Theuge |2
< o fwie = pIP + (1 — oad ) ki xi — pI?
= [l = pl* + (1 — o) (K — 1) |lwi — pl?
< e = pI* + (1 — o) (kg — )M
= [wic —pl* + 6k,

where My = sup{||wx —z|| : z € Q} and 0y = (1 — ok ) (k3 —1)M2. It can be concluded that p € Cy1 and
FNQ c Cyyq and further, FNQ € Cpyq, foralln > 1.

Next, we show that C,, is closed and convex for all n > 1. It is obvious that, C,, is closed for alln > 1.
Suppose that Cy_; is closed and convex for some k > 2. We see for all n > 1 that,

lyn —z]* < [[wn —2]* + 0,
is equivalent to

(z,2(wn —yn)) < [wnl? = [lyn | + 0x.

Hence
Cr =1{z € C:(z,2(wk —yx)) < |[wi|* = Jykl* + 0} N Ci_1,

is convex. By induction, we know that, C, is convex for all n > 1.
Next, from x i = Pc, x0i, n>1,1=1,2,3,---,N, we have
X0 —xn,ill < [[xo —yl|,

for all y € Cy,. Since F(T) N Q is nonempty, closed and convex, there exists zg € F(T) N Q), we have that
[0 = Xn,ill < [Ix0 —zol|-

This implies that {x;, 1} is bounded. From x; = Pc,x01 and xn41,i = Pc, ;%01 € Cny1 C Cy, we also
have

[%n,i —x0,ill < [Xn+1,i—%o,ill,

for all n € N, This means that {||xn,i — Xo||} is bounded and nondecreasing. Then limy_, || Xn,i — Xo||
exists for alli =1,2,3,--- ,N. Put limn_, ||Xn,i —Xo|| = ci foralli =1,2,3,--- ,N. On the other hand,
from xn4mi C Cp foralli=1,2,3,---,N, by using Lemma 2.5, we have for any positive integer m that

[xntmi — Xnill® < Xngmi —X0,ill* — xni — X0,i]%
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So {xn,i} is a Cauchy sequence in C, then there exits a point p; € C such that limy o Xn,i = pi for any
i=1,2,3,---,N. Therefore,

N N
Wi =) AXni—wW=) Api,
i=1 i1

as n — oQ.

Since limp_soo Wn = W, we have

lim |[wn —wn1]] =0. (3.10)
n—o0

Since wy 11 € Cryq1 C Cyy, we have

lyn = wiitl? < [wn —wial? +6n,

which means that

[yn = wnill < [[wn =wniall + v/ 0n. (3.11)
Thus, by (3.10) and (3.11) we have
[Yn —=wnl < lyn —=wnia| + [Wni1 —xnl =0, (3.12)

as n — oo. Furthermore, since TTFi is firmly nonexpansive, we have
[wn =Pl = [T (Wi = yaA (1= T{2)Awn) = T (p — yn A" (I T{2)Ap)|?
< I =y A (1= T2)A)wn — (1= yn A* (1= T2)A)P|> = [[(1-T]1)

X (I=yn A" (I =T2)A)wn — (1= T1) = (I —yn A" (1= T{2)A)p|?
= |wn —p —vn(A*(1 _TrFT%)AWn —A*(I —Ter)Ap)Hz —[IBn — TFl Bn”z
= Hwn_p||2_2Yn<Wn _p/A*(I_Ter)AWn_A*( _TFZ)AP>

+YRlAT(I=T2)Aw, — A*(T=T2)Ap|* — ||Bn — T Bul?

1 *
< Iwn =PI+ ynyn = DA =T AW = [|Bn =Ty Ba?,
where 3, = (I —y,A*(I —TrFi)A)wn. Moreover,
[yn _pHZ = [lonwn + (1 — on ) Taitn _pH2
< otn [ wn — 1o||2 + (1= o) K2 [ wn — 12
+Yn(Yn— =+ ”A* I_TFz AWnH2 - ”ﬁn _TFIBn||2]
= otn|[wn — P”z (1— o‘n kz wlWn — pHZ (1— o) k2 nllBn — TfiBnHZ

+ (1= an ) K3 yn(yn — i)HA*(I —T2)Awn |,

which leads to

1 .
(1= an)kpbyn (g = ya)IA* (1= T Awn + [ Bn = T7! Bl (3.13)

< (an + (1= o)k [wn —pl1* = llyn — P~

Letting pn, = kn — 1, it is clear that p, — 0 as n — oo and, by (3.13), we have

(1— on) K2 yn (5 — V) [A*(I=TE2)Awn |2 + [ Bn — TH1 B0 |12

< ot wn — I + (1= &n) (pn + 1) [wn — Pl = lyn — pII?
< W =Pl = lyn — P> + (1 — o) (02 + 2pn) [wn —p|?
< ([wn =Pl + lyn =PI IIWn —ynll + (1 — o) (0% + 200 ) [[wn — |1
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By (3.12) and p, — 0 as n — oo, we have
IA(I=Ti)AWn|* =0, |[Bn —T7!Bnl?* =0,
as n — oo. Furthermore, since A is linear bounded and so is A*, we can conclude that
Jim [[(1=TF2) Awa | =0,
Next, we show that |[un, —wy, || — 0. We investigate the following;:

[un —wn | = HTFlﬁn —wn|
ST B — Bl + [1Br — Wl
= T Bn — Bl + [T = VoA (1= T2)A)wn — |
= T Bn — Bl + YnJA* (1= TF2) Awn .

Consequently, by (3.15), we can conclude that
|un —wn| — 0.
Next, we show that || T,wn —wny|| — 0. We consider

Hyﬂ _WnH = H(ann + (1 - ocn)Tnun _WnH

= (1 - o‘n)HTnun _WnH/

and since
||Un _Wn+lH < ||Wn _Wn+1|| +v0n.
Hence,
1
Tt —wnll = 1— " [yn —wn|
T
1
< 1— _Wn—l—lu + ||WTL+1 _WnH)
1
<— 1—a (J[wn —wni1] + /0 |Wn+1 wnl,

and so || Thaun —wn|| = 0. Consider
[Tawn —Wnl| < [[Tawn — Taun || + [[Taun —wnll.
Since {Ty} is equicontinuous, we have
[Tawn —wnl| — 0,
as n — oo. Since {T,,} is uniformly closed, then w € F.
Next, we show that w € Q foralli=1,2,3,--- ,N. By (3.9),
Up =TI —yn A (1= T2)A)wn,

that is,
1 1
Fi(un,y) + T<U —Un, Up —Wp) — r<y —Un, YnA" (Tl:j —DAwy,) >0,

n n

for all y € C. From (A2), it follows that

1 ) 1
_T‘ <U —Un, YnA (TTFT% - I)Awn> + - <y —Un,Un _Wn> =k (y/un)/
n

n

(3.14)

(3.15)
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for all y € C. Since
HA*(TTFTf —DAwn|| =0, |lun—wn| =0, |[wn—w||—=0,

as n — oo, we have
Fi(y,w) <0,

forally € C. Letyy =ty + (1 —t)pi forany 0 <t <1and y € C. It means that y¢ € C and hence
0=Flyoyd <th(y,y) + 1 -tF(y,w) < th(yyy),
and then F;(y¢,y) > 0. Letting t — 0, we immediately have F;(w,y) > 0, i.e,,
w € EP(Fq).
Next, we show that Aw € EP(F;). Since A is a bounded linear operator and (3.14), we have
T2 Awn — Ap|| < T2 AWn — Awn| + [ Awn — Ap|| =0,

as n — oo, which yields that TTFj Awyn — Aw. By the definition of Tfﬁ, we have

1
Fo(TL2Awn, y) + T—(y — T2 AW, TL2Aw, — Awy) > 0, (3.16)

n

for all y € C. Since F; is upper semi-continuous in the first argument, taking limsup in (3.16), it follows
that
F2(Aw,y) >0,

for all y € C, from which it can be concluded that
Aw € EP(F,).

So, w € Q. This completes the proof. O

Remark 3.4. Let T : C — C be an asymptotically nonexpansive mapping and let T,, = T™ for all n > 1.
It is easy to check that the {T,,} is a uniformly closed and equicontinuous family of countable quasi-k,-
Lipschitz mappings with nonempty common fixed point set F = F(T). Where k,, — 1 and

T =Tyl < knfx—yll, vVxyeC
Therefore, Theorem 3.1 and Theorem 3.3 still hold for {T,} is replaced by {T™}, where T is an asymptoti-
cally nonexpansive mapping.
4. Applications to split variational inequality problems

Firstly, we point out the so-called variational inequality problem (shortly, VIP), which is to find a point
x* € C which satisfies the following inequality:

(Ax*,z—x") >0,

for all z € C. Its solution set is symbolized by VI(A,C).
In 2012, Censor et al. [4] proposed the split variational inequality problem (shortly, SVIP) which is
formulated as follows:

Find a point x* € C such that (f(x*),x—x*) >0, forall xe C,
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and such that
y* =Ax" € Q solves (g(y*),y—y*) >0, forall yeQ,

where A : C — C is a bounded linear operator. The solution set of split variational inequality problem is
denoted by the SVIP.

Setting Fi(x,y) = (f(x),y —x) and Fa(x,y) = (g(x),y —x), it is clear that F;, F, satisfy conditions
(A1)-(A4), where f and g are 13- and np-inverse strongly monotone mappings, respectively.

From Lemma 2.4, we define a mapping T, : H — C by

T (x) ={z € C: (f(x),y —x) +%<y—z,z—x> >0,vy € CJ,

and T : H — C by
1
T9(x) ={z€ C:(g(x),y—x)+ ;(y —z,z—x) > 0,vy € C}.
Then, by Theorem 3.1, we get the following theorem.

Theorem 4.1. Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert
spaces Hy and Hy, respectively. Let f and g be n1- and np-inverse strongly monotone mappings, respectively. Let
{Tn} be a uniformly closed and equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty
common fixed point set F and A : Hy — Hy be a bounded linear operator. Suppose that F(T) N Q # 0, where
Q ={v e C:v e SVIP(f) such that Av € SVIP(g)} and let xo; € C,i = 1,2,3,---,N, define sequences
xnil, 1=1,2,3,---,Nand {wn} iteratively as follows:

C],i:CI i:1/2/3/"'11\]/
Uni =T (I=yiA*(I-T7

i Tni

JAXni, 1=1,23,---,N,
Yni=0nixni+ (1—oni)Tanuni, 1=1,23,---,N,
Cniti={Z€Cni:llyni—zlI> <lxni—zl>+0n4), i=1,23---,N,
Crs1 =N Crris

Xn+1i = Pc, %04, 1=1,23,---,N,

Wn+1 = Z]i\j:1 AiXn41,is le Ai=1, Ay €l0,1],

foreachn > 1, where 0 < i <a<1l, 0<b<rni <00, Vi€ (0,%) and
Oni = (1—on i) (K, — 1) sup{[xn: —2|* : 2 € QJ,

foralln>1,1=1,2,3,---,N, Lis the spectral radius of the operator A*A and A* is the adjoint of A. Then the
following conclusions hold:

(1) {xn,i} converges strongly top; € FNQ foralli=1,2,3,--- ,N;
(2) {wn)} converges strongly to w = Y N Aip; € FN Q.
Proof. The desired result can be proved directly through Theorem 3.1. O
Then, by Theorem 3.3, we get the following result.

Theorem 4.2. Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert
spaces Hy and Hy, respectively. Let f and g be n1- and np-inverse strongly monotone mappings, respectively. Let
{Tn} be a uniformly closed and equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty
common fixed point set F and A : Hy — Hy be a bounded linear operator. Suppose that F(T) N Q # (), where
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Q ={v e C:v e SVIP(f) such that Av € SVIP(g)} and let xo; € C,i = 1,2,3,---,N, define sequences
{xni}, 1=1,2,3,---, N, and {wn} iteratively as follows:

¢ =¢C,

Un =T (I=ynA*(1=T2,)A)wn,

Yn = tqnWn + (1 — o) Thun,
Chr1={z€Cn:llyn— Z||2 < [wn _Z||2 +0n},
Xn,i = PCnXO,i/ i= 1,2,3,' . ,N,

Wn =Y N Axni, YigA=1, A elo1],

foreachn > 1, where 0 < oy <a <1, 0<b <1y <00, Y € (0,%)and
0 = (1—an) (K% — 1) sup{|wn —z|*: 2z € Q},

forallm > 1, Lis the spectral radius of the operator A*A and A* is the adjoint of A. Then the following conclusions
hold:

(1) {xn,i} converges strongly top; € FNQ foralli=1,2,3,--- ,N;
(2) {wn} converges strongly to w = Z{\Ll Aipi € FN Q.

Proof. The desired result can be proved directly through Theorem 3.3. O

5. Applications to split optimization problems

In this section, we mention applications to the split optimization problem, which is to find x* € C
such that
f(x*) > f(x) forall x € C satisfying Ax" =y* € Q solves g(y*) > g(y),

for all y € Q. We symbolize O(f, A) for the solution set of the split optimization problem.
Let f: C — Rand g: Q — R be two functions satisfying the following assumption:

(1) f(tx+ (1 —t)y) < f(y), gtu+ (1 —t)v) < gv), Vx,ye C,u,veQ;
(2) f(x), g(u) are concave and upper semi-continuous.

Let F1(x,y) = f(x) — f(y) for all x,y € C and F(u,v) = g(u) — g(v) for all u,v € Q. If f and g satisfy
conditions (1) and (2), then it is clear that F; : C x C — Rand F> : Q x Q — R are two bifunctions satisfying
conditions (Al)-(A4). Let T be an asymptotically nonexpansive mapping defined on a bounded closed
convex subset C of a Hilbert space H. By Lemma 2.4, we define a mapping Of : H — C by

Of(x) ={z e C:f(x)—fly) + %(y —z,z—x) >0, Yy € C},

and O : H— C by

0¢(x) ={z € C:g(x)—g(y)%—%(y—z,z—x) >0, Wy e C}L.

Therefore, by Theorem 3.1, we have the following.

Theorem 5.1. Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
Hy and Hy, respectively. Let f : C — Rand g : Q — R be tow functions satisfying conditions (1) and (2). Let
A : Hi — Hy be a bounded linear operator. Suppose that O(f,A) # (. Let xp; € C,i =1,2,3,---,N, define
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sequences {xn i}, 1=1,2,3,---, N and {wn} iteratively as follows:

Cii=C, i=123,

Uni =0l (I—ylA*(I— rm)A)xn,i, i=1,2,3,---,N,
Chny1i= {Z €Cnitlluni—z| <|xni—z|}, 1=1,23,---,N
Cns1 =ity Crris

Xn+1i = Pc, %01, 1=123,---,N,

Wni1 = Y 1 Attt YiqA=1 A €l01],

foreachn > 1, where 0 < b < Ty < 00, vi € (0,1) foralln >1,1=1,2,3,--- ,N, L is the spectral radius of
the operator A*A and A* is the adjoint of A. Then the following conclusions hold.

(1) {xn i} converges strongly to p; € O(f,A) forall1=1,2,3,--- ,N;
(2) {wn} converges strongly to w = Z]i\lzl Aipi € O(f, A).

Proof. Take T, = I and &, = 0 for all n > 1, where I denotes the identity operator. Taking o, = 0, the
desired result can be proved directly through Theorem 3.1. O

Then, by Theorem 3.3, we have the following.

Theorem 5.2. Let Hy, Hy be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
Hy and Hy, respectively. Let f : C — Rand g : Q — R be two functions satisfying conditions (1) and (2).
A : Hy — Hy be a bounded linear operator. Suppose that O(f,A) # 0. Let xo; € C,i =1,2,3,---,N, define
sequences {xn i}, 1=1,2,3,---, N and {wn} iteratively as follows:

Ci=¢C,

Up = O] (I—ynA*(I—-07)A)wn,
Cny1={z € Cn:llun —zl < [wn—z|l},
Xn,i=Pc,x0i, 1=123,---,N,

Wn =Y N Aixnit, SigA=1, A €l01],

foreachn > 1, where 0 < b < 1y < 00, Yn € (0, L ) for all n > 1, L is the spectral radius of the operator A*A
and A* is the adjoint of A. Then the following concluszons hold:

(1) {xn,i} converges strongly to p; € O(f,A) foralli=1,2,3,--- ,N;

(2) {wn} converges strongly to w = ZiNzl Aipi € O(f, A).
Proof. Take T, = I and &, = 0 for all n > 1, where I denotes the identity operator. Taking o, = 0, the
desired result can be proved directly through Theorem 3.3. O
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