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Abstract

The purpose of this article is to introduce a new multidirectional hybrid shrinking projection iterative algorithm (or called
cloud hybrid shrinking projection iterative algorithm) for solving the common element problems which consist of a generalized
split equilibrium problems and fixed point problems for a family of countable quasi-Lipschitz mappings in the framework of
Hilbert spaces. It is proved that under appropriate conditions, the sequence generated by the multidirectional hybrid shrinking
projection method, converges strongly to some point which is the common fixed point of a family of countable quasi-Lipschitz
mappings and the solution of the generalized split equilibrium problems. This iteration algorithm can accelerate the convergence
speed of iterative sequence. The main results were also applied to solve split variational inequality problem and split optimiza-
tion problems. Meanwhile, the main results were also used for solving common problems which consist of a generalized split
equilibrium problems and fixed point problems for asymptotically nonexpansive mappings. The results of this paper improve
and extend the previous results given in the literature. c©2017 All rights reserved.
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1. Introduction

In 1994, Blum and Oettli [2] introduced the equilibrium problem which is to find x ∈ C such that

F(x,y) > 0, ∀y ∈ C. (1.1)

They denoted the solution set of problem (1.1) as EP(F). Since the well-known problems were variational
problems, complementary problems, fixed point problems, saddle point problems and other problems
proposed from the equilibrium problem, it has become the most attractive topic for many mathematicians
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[12, 15–17]. They have widely spread its applications to other applied disciplines including physics,
chemistry, economics and engineering (see, for example, [5, 13, 19, 20]).

Combettes and Hirstoaga [7] proposed an iterative method for solving problem (1.1) by the assumption
that EP(F) 6= ∅. Moreover, there are many new iteratively generated sequences for solving this problem
together with fixed point problems (see [1, 8, 21–23]).

Later, the so-called split equilibrium problem was introduced (shortly, SEP). Let H1, H2 be two real
Hilbert spaces. Let C, Q be closed convex subsets of H1 and H2, respectively, and let A : H1 → H2 be a
bounded linear operator. Further, let F1 : C×C → R and F2 : Q×Q → R be two bifunctions. The SEP is
to find the element x∗ ∈ C such that

F1(x
∗,y) > 0, ∀y ∈ C, (1.2)

and such that
Ax∗ ∈ Q solves F2(Ax

∗, v) > 0, ∀v ∈ Q. (1.3)

The solution sets of problems (1.2) and (1.3) are symbolized by EP(F1) and EP(F2), respectively. There-
fore, we denote Ω = {v ∈ C : v ∈ EP(F1) such that Av ∈ EP(F2)} as the solution set of SEP.

Clearly, the SEP contains two equilibrium problems, that is, we find out the solution of one equilibrium
problem, i.e., its image under a given bounded linear operator must be the solution of another equilibrium
problem. In order to find a common solution of equilibrium problems, it has been mostly considered in
the same spaces. However, we normally found that, in the real-life problems, it may be considered in
different spaces. That is how the SEP works very well for this case (see, for example, [10]). Moreover, the
split variational inequality problem (shortly, SVIP) is its special case which is to find x∗ ∈ C such that

〈f(x∗), x− x∗〉 > 0, ∀x ∈ C,

and corresponding to
y∗ = Ax∗ ∈ Q solves 〈g(y∗),y− y∗〉 > 0, ∀y ∈ Q,

where f : H1 → H2 and g : H1 → H2 are nonlinear mappings and A : H1 → H2 is a bounded linear
operator (see [4]).

In 2012, He [10] proposed the new algorithm for solving a split equilibrium problem and investigated
the convergence behavior in several ways including both weak and strong convergence. Moreover, they
gave some examples and mentioned that there exist many SEPs and the new methods for solving it further
need to be explored in the future. Later, in 2013, Kazmi and Rizvi [14] considered the iterative method
to compute the common approximate solution of a split equilibrium problem, a variational inequality
problem and a fixed point problem for a nonexpansive mapping in the framework of real Hilbert spaces.
They generated the sequence iteratively as follows:

un = JF1
rn(I+ γA

∗(JF2
rn − I)A)xn,

yn = PC(un − λnDun),
xn+1 = αnv+βnxn + γnSyn,

for each n > 0, where A : H1 → H2 is a bounded linear operator, D : C → H1 is a τ-inverse strongly
monotone mapping, F1 : C× C → R, F2 : Q×Q → R are two bifunctions. They found that, under the
sufficient conditions of rn, λn,γ,βn and γn, the generated sequence {xn} converges strongly to a common
solution of all mentioned problems.

Recently, in 2014, Bnouhachem [3] introduced a new iterative method for solving split equilibrium
problem and hierarchical fixed point problems by defining the sequence {xn} as follows:

un = TF1
rn(I+ γA

∗(TF2
rn − I)A)xn,

yn = βnSxn + (1 −βn)un,
xn+1 = PC[αnρU(xn) + (I−αnµF)(T(yn))],
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for each n > 0, where S, T are nonexpansive mappings, F : C→ C is a k-Lipschitz mapping and η-strongly
monotone, U : C→ C is a τ-Lipschitz mapping. Also, they proved some strong convergence theorems for
the proposed iteration under some appropriate conditions.

In 2015 [24], motivated and inspired by the results [3, 10, 14] and the recent works in this field,
Witthayarat et al. introduced a shrinking projection method for solving split equilibrium problems and
fixed point problems for asymptotically nonexpansive mappings in the framework of Hilbert spaces and
proved some strong convergence theorems for the proposed new iterative method. They proved the
following strong convergence theorem.

Theorem 1.1 (UAY). Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of
Hilbert spaces H1 and H2, respectively. Let F1 : C× C → R and F2 : Q×Q → R be two bifunctions satisfying
conditions (A1)-(A4) and F2 be upper semi-continuous in the first argument. Let T : C → C be an asymptotically
nonexpansive mapping and A : H1 → H2 be a bounded linear operator. Suppose that F(T) ∩Ω 6= ∅, where
Ω = {v ∈ C : v ∈ EP(F1) such that Av ∈ EP(F2)} and let x0 ∈ C define sequence {xn} iteratively as follows:

C1 = C,
un = TF1

rn(I− γA
∗(I− TF2

rn)A)xn,
yn = αnxn + (1 −αn)T

nun,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 6 ‖xn − z‖2 + θn},
xn+1 = PCn+1x0,

for each n > 1, where 0 6 αn 6 a < 1, 0 < b 6 rn <∞, γ ∈ (0, 1
L) and

θn = (1 −αn)(k
2
n − 1) sup{‖xn − z‖2 : z ∈ Ω},

for all n > 1, L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Then the sequence {xn}

converges strongly to a point p ∈ F(T)∩Ω.

In 2015 [9], Guan et al. presented the following non-convex hybrid iteration algorithms and proved
the following strong convergence theorem for a uniformly closed asymptotically family of countable
quasi-Ln-Lipschitz mappings.

Theorem 1.2 (G). Let C be a closed convex subset of a Hilbert space H, and let {Tn} : C→ C be a uniformly closed
asymptotically family of countable quasi-Ln-Lipschitz mappings from C into itself. Assume that αn ∈ (a, 1] holds
for some a ∈ (0, 1). Then {xn} generated by

x0 ∈ C = Q0, chosen arbitrarily,
yn = (1 −αn)xn +αnTnxn, n > 0,
Cn = {z ∈ C : ‖yn − z‖ 6 (1 + (Ln − 1)αn)‖xn − z‖}∩A, n > 0,
Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 > 0}, n > 1,
xn+1 = PcoCn∩Qn

x0,

converges strongly to PFx0, where coCn denotes the closed convex closure of Cn for all n > 1, A = {z ∈ H :
‖z− PFx0‖ 6 1}.

The closely related works were also introduced in [6, 7, 11, 18].
In this paper, we introduce and consider a new multidirectional hybrid shrinking projection iterative

algorithm (or called cloud hybrid shrinking projection iterative algorithm) for solving common problems
which consist of generalized split equilibrium problems and fixed point problems for a family of count-
able quasi-Lipschitz mappings in the framework of Hilbert spaces. It is proved that under appropriate
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conditions, the sequence generated by the multidirectional hybrid shrinking projection method, con-
verges strongly to some point which is the common fixed point of a family of countable quasi-Lipschitz
mappings and the solution of the generalized split equilibrium problems. This iteration algorithm can
accelerate the convergence speed of iterative sequence. The main results were also applied to solve split
variational inequality problem and split optimization problems. Meanwhile, the main results were also
used for solving common problems which consist of generalized split equilibrium problems and fixed
point problems for asymptotically nonexpansive mappings. The results of this paper improve and extend
the previous results given in the literature.

2. Preliminaries

In this section, we recall some concepts including the assumption which will be needed for the proof
of our main result. Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We write xn → x

to indicate that the sequence {xn} converges strongly to x. Let C be a nonempty closed convex subset of
H, we denote by PC(·) the metric projection onto C. It is known that z = PC(x) is equivalent to that z ∈ C
and 〈z− y, x− z〉 > 0 for every y ∈ C. Recall that T : C→ C is nonexpansive if ‖Tx− Ty‖ 6 ‖x− y‖ for all
x,y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T ,
that is, F(T) = {x ∈ C : Tx = x}. It is will-known that F(T) is closed and convex. A mapping T : C → C is
said to be quasi-Lipschitz (or quasi-L-Lipschitz), if the following conditions hold:

(1) the fixed point set F(T) is nonempty;

(2) ‖Tx− p‖ 6 L‖x− p‖, for all x ∈ C, p ∈ F(T),

where 1 6 L < +∞ is a constant. T is said to be quasi-nonexpansive, if L = 1.
A sequence of mappings {Tn} : C → C is said to be a family of countable asymptotically quasi-kn-

Lipschitz mappings, if the following hold:

(1) the common fixed point set F is nonempty;

(2) Tn is quasi-kn-Lipschitz for each n > 1 and limn→∞ kn = 1.

Recall that a mapping T : C→ C is said to be closed, if xn → x and ‖Txn − xn‖ → 0 as n→∞ implies
Tx = x.

Let C be a nonempty closed and convex subset of a Hilbert space H. Let {Tn} be sequence of mappings
from C into itself with a nonempty common fixed point set F. {Tn} is said to be uniformly closed, if for
any convergent sequence {zn} ⊂ C such that ‖Tnzn − zn‖ → 0 as n→∞, the limit of {zn} belongs to F.

A mapping T : C × C → R is said to be asymptotically nonexpansive, if there exists a sequence
{kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ 6 kn‖x− y‖,

for all x,y ∈ C. It is easy to see that, if kn ≡ 1, then T is said to be nonexpansive. We denote the set of
fixed point of T by F(T), that is, F(T) = {x ∈ C : Tx = x}. There are many iterative methods for solving a
fixed point problem corresponding to an asymptotically nonexpansive mapping (see also [2, 12, 15, 16]).

Let H be a Hilbert space and C be a nonempty closed convex subset of H. For each x ∈ H, there exists
a unique nearest point of C, denoted by PCx, such that

‖x− PCx‖ 6 ‖x− y‖,

for all y ∈ C. PCx is called the metric projection from H onto C. It is well-known that PC is a firmly
nonexpansive mapping from H onto C, that is,

‖PCx− PCy‖2 6 〈PCx− PCy, x− y〉,
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for all x,y ∈ H. Furthermore, for any x ∈ H and z ∈ C, z = PCx, if and only if

〈x− z, z− y〉 > 0,

for all y ∈ C. A mapping A : C→ H is called α-inverse strongly monotone, if there exists α > 0 such that

〈x− y,Ax−Ay〉 > α‖Ax−Ay‖2,

for all x,y ∈ H. Moreover, we can investigate that, for each λ ∈ (0, 2α], I− λA is a nonexpansive mapping
of C into H (see [11]).

Lemma 2.1. In a Hilbert space H, the following identity holds:

‖λx+ (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x− y‖2,

for all x,y ∈ H and λ ∈ [0, 1].

Lemma 2.2 ([9]). Let H be a Hilbert space, let C be a closed convex subset of E and let {Tn} be a uniformly closed
asymptotically family of countable quasi-kn-Lipschitz mappings from C into itself. Then the common fixed point set
F is closed and convex.

Assumption 2.3 ([7]). Let F : C×C→ R be a bifunction satisfying the following conditions:

(A1) F(x,y) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F(x,y) + F(y, x) 6 0, for all x,y ∈ C;

(A3) for each x,y, z ∈ C, limt↓0 F(tz+ (1 − t)x,y) 6 F(x,y);

(A4) for each x ∈ C, y 7−→ F(x,y) is convex and lower semi-continuous.

Lemma 2.4 ([7]). Let C be a nonempty closed convex subset of a Hilbert space H and F : C×C→ R be a bifunction
which satisfies conditions (A1)-(A4). For any x ∈ H and r > 0 define a mapping TFr : H→ C by

TFr (x) = {z ∈ C : F(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ C}.

Then TFr is well-defined and the following hold:

(1) TFr is single-valued;

(2) TFr is firmly nonexpansive, i.e., for any x,y ∈ H,

‖TFr x− TFr y‖2 6 〈TFr x− TFr y, x− y〉;

(3) F(TFr ) = EP(F);

(4) EP(F) is closed and convex.

The following useful result is well-known.

Lemma 2.5. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let x ∈ E. Then

‖z− PCx‖2 + ‖PCx− x‖2 6 ‖z− x‖2, ∀ z ∈ C.

3. Main results

Theorem 3.1. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
H1 and H2, respectively. Let F1 : C × C → R and F2 : Q ×Q → R be two bifunctions satisfying conditions
(A1)-(A4) and F2 be upper semi-continuous in the first argument. Let {Tn} : C → C be a uniformly closed and
equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty common fixed point set F and
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A : H1 → H2 be a bounded linear operator. Suppose that F ∩Ω 6= ∅, where Ω = {v ∈ C : v ∈ EP(F1) such that
Av ∈ EP(F2)} and let x0,i ∈ C, i = 1, 2, 3, · · · ,N, define sequences {xn,i}, i = 1, 2, 3, · · · ,N and {ωn} iteratively
as follows: 

C1,i = C, i = 1, 2, 3, · · · ,N,
un,i = T

F1
rn,i(I− γiA

∗(I− TF2
rn,i)A)xn,i, i = 1, 2, 3, · · · ,N,

yn,i = αn,ixn,i + (1 −αn,i)Tnun,i, i = 1, 2, 3, · · · ,N,
Cn+1,i = {z ∈ Cn,i : ‖yn,i − z‖2 6 ‖xn,i − z‖2 + θn,i}, i = 1, 2, 3, · · · ,N,
Cn+1 =

⋂N
i=1Cn+1,i,

xn+1,i = PCn+1x0,i, i = 1, 2, 3, · · · ,N,
ωn+1 =

∑N
i=1 λixn+1,i,

∑N
i=1 λi = 1, λi ∈ [0, 1],

(3.1)

for each n > 1, where 0 6 αn,i 6 a < 1, 0 < b 6 rn,i <∞, γi ∈ (0, 1
L) and

θn,i = (1 −αn,i)(k
2
n − 1) sup{‖xn,i − z‖2 : z ∈ Ω},

for all n > 1, i = 1, 2, 3, · · · ,N, L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Then the
following conclusions hold:

(1) {xn,i} converges strongly to pi ∈ F∩Ω, for all i = 1, 2, 3, · · · ,N;

(2) {ωn} converges strongly to ω =
∑N

i=1 λipi ∈ F∩Ω.

Proof. Firstly, we claim that, for each n > 1, i = 1, 2, 3, · · · ,N, A∗(I − TF2
rn,i)A is a 1

2L -inverse strongly
monotone mapping. Since TF2

rn,i is firmly nonexpansive and (I− TF2
rn,i) is 1

2 -inverse strongly monotone, it
follows that

‖A∗(I− TF2
rn,i

)Ax−A∗(I− TF2
rn,i

)Ay‖2 = 〈A∗(I− TF2
rn,i

)(Ax−Ay),A∗(I− TF2
rn,i

)(Ax−Ay)〉

= 〈(I− TF2
rn,i

)(Ax−Ay),AA∗(I− TF2
rn,i

)(Ax−Ay)〉

6 L〈(I− TF2
rn,i

)(Ax−Ay), (I− TF2
rn,i

)(Ax−Ay)〉

= L‖(I− TF2
rn,i

)(Ax−Ay)‖2

6 2L〈x− y,A∗(I− TF2
rn,i

)(Ax−Ay)〉,

for all x,y ∈ H, from which it can be concluded that

〈A∗(I− TF2
rn,i

)Ax−A∗(I− TF2
rn,i

)Ay, x− y〉 > 1
2L
‖A∗(I− TF2

rn,i
)Ax−A∗(I− TF2

rn,i
)Ay‖2,

for all x,y ∈ H. That is, A∗(I− TF2
rn,i)A is a 1

2L -inverse strongly monotone mapping. Moreover, we claim
that since γi ∈ (0, 1

L),
I− γiA

∗(I− TF2
rn,i

)A,

are nonexpansive, for all n > 1, i = 1, 2, 3, · · · ,N.
Next, we show that F ∩Ω ⊂ Cn+1,i for all n > 1, i = 1, 2, 3, · · · ,N. Let p ∈ F ∩Ω, i.e., TF1

rn,ip = p and
(I− γiA

∗(I− TF2
rn,i)A)p = p. By mathematical induction, we have p ∈ C = C1,i and hence F ∩Ω ⊂ C1,i.

Let F∩Ω ⊂ Ck,i, for some k > 1. It follows that

‖uk,i − p‖ = ‖TF1
rk,i

(I− γiA
∗(I− TF2

rk,i
)A)xk,i − T

F1
rk,i

(I− γiA
∗(I− TF2

rk,i
)A)p‖

6 ‖(I− γiA∗(I− TF2
rk,i

)A)xk,i − (I− γiA
∗(I− TF2

rk,i
)A)p‖

6 ‖xk,i − p‖,
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and
‖yk,i − p‖2 = ‖αk,ixk + (1 −αk,i)Tkuk,i − p‖2

6 αk,i‖xk,i − p‖2 + (1 −αk,i)‖Tkuk,i − p‖2

−αk,i(1 −αk,i)‖xk,i − p− (Tkuk,i − Tkp)‖2

6 αk,i‖xk,i − p‖2 + (1 −αk,i)‖uk,i − p‖2

−αk,i(1 −αk,i)‖xk,i − Tkuk,i‖2

6 αk,i‖xk,i − p‖2 + (1 −αk,i)k
2
k‖xk,i − p‖2

= ‖xk − p‖2 + (1 −αk,i)(k
2
k − 1)‖xk,i − p‖2

6 ‖xk,i − p‖2 + (1 −αk,i)(k
2
k − 1)M2

k,i

= ‖xk,i − p‖2 + θk,i,

where Mk,i = sup{‖xk,i − z‖ : z ∈ Ω} and θk,i = (1 − αk,i)(k
2
k − 1)M2

k,i. It can be concluded that
p ∈ Ck+1,i and F(T) ∩Ω ⊂ Ck+1,i and further, F(T) ∩Ω ⊂ Cn+1,i for all n > 1, i = 1, 2, 3, · · · ,N.
Therefore, F(T)∩Ω ⊂ Cn+1 = ∩Ni=1Cn+1,i, for all n > 1.

Next, we show that Cn is closed and convex for all n > 1. It is obvious that, Cn,i is closed for all
n > 1, i = 1, 2, 3, · · · ,N. Therefore, Cn is closed for all n > 1. Suppose that Ck−1,i is closed and convex
for some k > 2, i = 1, 2, 3, · · · ,N. We see for all n > 1, i = 1, 2, 3, · · · ,N that,

‖yn,i − z‖2 6 ‖xn,i − z‖2 + θn,i,

is equivalent to
〈z, 2(xn,i − yn,i)〉 6 ‖xn,i‖2 − ‖yn,i‖2 + θn,i.

Hence
Ck,i = {z ∈ C : 〈z, 2(xk,i − yk,i)〉 6 ‖xk,i‖2 − ‖yk,i‖2 + θk,i}∩Ck−1,i,

is convex for all i = 1, 2, 3, · · · ,N. By induction, we know that Cn,i is convex for all n > 1, i =
1, 2, 3, · · · ,N. Therefore, Cn is convex for all n > 1.

Next, from xn,i = PCn,ix0,i, n > 1, i = 1, 2, 3, · · · ,N, we have

‖x0 − xn,i‖ 6 ‖x0 − y‖,

for all y ∈ Cn,i. Since F(T)∩Ω is nonempty closed and convex, there exists z0 ∈ F(T)∩Ω, we have that

‖x0 − xn,i‖ 6 ‖x0 − z0‖.

This implies that {xn,i} is bounded. From xn,i = PCn,ix0,i and xn+1,i = PCn+1,ix0,i ∈ Cn+1,i ⊂ Cn,i, we
also have

‖xn,i − x0,i‖ 6 ‖xn+1,i − x0,i‖,

for all n ∈ N. This means that {‖xn,i − x0‖} is bounded and nondecreasing. Then limn→∞ ‖xn,i − x0‖
exists for all i = 1, 2, 3, · · · ,N. Put limn→∞ ‖xn,i − x0‖ = ci for all i = 1, 2, 3, · · ·,N. On the other hand,
from xn+m,i ⊂ Cn,i for all i = 1, 2, 3, · · · ,N, by using Lemma 2.5, we have for any positive integer m, that

‖xn+m,i − xn,i‖2 6 ‖xn+m,i − x0,i‖2 − ‖xn,i − x0,i‖2.

So {xn,i} is a Cauchy sequence in C, then there exits a point pi ∈ C such that limn→∞ xn,i = pi for any
i = 1, 2, 3, · · · ,N. Therefore,

ωn =

N∑
i=1

λixn,i → ω =

N∑
i=1

λipi,

as n→∞.
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Since limn→∞ xn,i = pi for any i = 1, 2, 3, · · · ,N, we have

lim
n→∞ ‖xn,i − xn+1,i‖ = 0, i = 1, 2, 3, · · · ,N. (3.2)

Since xn+1,i ∈ Cn+1,i ⊂ Cn,i for any i = 1, 2, 3, · · · ,N, we have

‖yn,i − xn+1,i‖2 6 ‖xn,i − xn+1,i‖2 + θn,i,

which means that
‖yn,i − xn+1,i‖ 6 ‖xn,i − xn+1,i‖+

√
θn,i. (3.3)

Thus, by (3.2) and (3.3) we have

‖yn,i − xn,i‖ 6 ‖yn,i − xn+1,i‖+ ‖xn+1,i − xn,i‖ → 0, (3.4)

as n→∞. Furthermore, since TF1
rn,i is firmly nonexpansive, we have

‖un,i − p‖2 = ‖TF1
rn,i

(xn,i − γiA
∗(I− TF2

rn,i
)Axn,i) − T

F1
rn,i

(p− γiA
∗(I− TF2

rn,i
)Ap)‖2

6 ‖(I− γiA∗(I− TF2
rn,i

)A)xn,i − (I− γiA
∗(I− TF2

rn,i
)A)P‖2 − ‖(I− TF1

rn,i
)

× (I− γiA
∗(I− TF2

rn,i
)A)xn,i − (I− TF1

rn,i
) − (I− γiA

∗(I− TF2
rn,i

)A)p‖2

= ‖xn,i − p− γi(A
∗(I− TF2

rn,i
)Axn,i −A

∗(I− TF2
rn,i

)Ap)‖2 − ‖βn,i − T
F1
rn,i
βn,i‖2

= ‖xn,i − p‖2 − 2γi〈xn,i − p,A∗(I− TF2
rn,i

)Axn,i −A
∗(I− TF2

rn,i
)Ap〉

+ γ2
i‖A∗(I− TF2

rn,i
)Axn,i −A

∗(I− TF2
rn,i

)Ap‖2 − ‖βn,i − T
F1
rn,i
βn,i‖2

6 ‖xn,i − p‖2 + γi(γi −
1
L
)‖A∗(I− TF2

rn,i
)Axn,i‖2 − ‖βn,i − T

F1
rn,i
βn‖2,

where βn,i = (I− γiA
∗(I− TF2

rn,i)A)xn,i. Moreover,

‖yn,i − p‖2 = ‖αn,ixn,i + (1 −αn,i)Tnun,i − p‖2

6 αn,i‖xn,i − p‖2 + (1 −αn,i)k
2
n[‖xn,i − p‖2

+ γi(γi −
1
L
)‖A∗(I− TF2

rn,i
)Axn,i‖2 − ‖βn,i − T

F1
rn,i
βn,i‖2]

= αn,i‖xn,i − p‖2 + (1 −αn,i)k
2
n‖xn,i − p‖2 − (1 −αn,i)k

2
n‖βn,i − T

F1
rn,i
βn,i‖2

+ (1 −αn,i)k
2
nγi(γi −

1
L
)‖A∗(I− TF2

rn,i
)Axn,i‖2,

which leads to
(1 −αn,i)k

2
n[γi(

1
L
− γi)‖A∗(I− TF2

rn,i
)Axn‖2 + ‖βn,i − T

F1
rn,i
βn,i‖2]

6 (αn,i + (1 −αn,i)k
2
n)‖xn,i − p‖2 − ‖yn,i − p‖2.

(3.5)

Letting ρn = kn − 1, it is clear that ρn → 0 as n→∞ and by (3.5), we have

(1 −αn,i)k
2
n[γi(

1
L
− γi)‖A∗(I− TF2

rn,i
)Axn,i‖2 + ‖βn,i − T

F1
rn,i
βn,i‖2]

6 αn,i‖xn,i − p‖2 + (1 −αn,i)(ρn + 1)2‖xn,i − p‖2 − ‖yn,i − p‖2

6 ‖xn,i − p‖2 − ‖yn,i − p‖2 + (1 −αn,i)(ρ
2
n + 2ρn)‖xn,i − p‖2

6 (‖xn,i − p‖+ ‖yn,i − p‖)‖xn,i − yn,i‖+ (1 −αn,i)(ρ
2
n + 2ρn)‖xn,i − p‖2.

By (3.4) and ρn → 0 as n→∞, we have

‖A∗(I− TF2
rn,i

)Axn,i‖2 → 0, ‖βn − TF1
rn,i
βn,i‖2 → 0,
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as n→∞. Furthermore, since A is linear bounded and so is A∗, we can conclude that

lim
n→∞ ‖(I− TF2

rn,i
)Axn,i‖ = 0. (3.6)

Next, we show that ‖un,i − xn,i‖ → 0. We investigate the following:

‖un,i − xn,i‖ = ‖TF1
rn,i
βn,i − xn,i‖

6 ‖TF1
rn,i
βn,i −βn,i‖+ ‖βn,i − xn,i‖

= ‖TF1
rn,i
βn,i −βn,i‖+ ‖(I− γiA∗(I− TF2

rn,i
)A)xn,i − xn,i‖

= ‖TF1
rn,i
βn,i −βn,i‖+ γi‖A∗(I− TF2

rn,i
)Axn,i‖.

(3.7)

Consequently, by (3.7), we can conclude that

‖un,i − xn,i‖ → 0.

Next, we show that ‖Tnxn,i − xn,i‖ → 0. We consider

‖yn,i − xn,i‖ = ‖αn,ixn,i + (1 −αn,i)Tnun,i − xn,i‖
= (1 −αn,i)‖Tnun,i − xn,i‖,

and since
‖yn,i − xn+1,i‖ 6 ‖xn,i − xn+1,i‖+

√
θn,i,

hence,

‖Tnun,i − xn,i‖ =
1

1 −αn,i
‖yn,i − xn,i‖

6
1

1 − a
(‖yn,i − xn+1,i‖+ ‖xn+1,i − xn,i‖)

6
1

1 − a
(‖xn,i − xn+1,i‖+

√
θn,i) +

1
1 − a

‖xn+1,i − xn,i‖,

and so ‖Tnun,i − xn,i‖ → 0. Consider

‖Tnxn,i − xn,i‖ 6 ‖Tnxn,i − Tnun,i‖+ ‖Tnun,i − xn,i‖.

Since {Tn} is equicontinuous, we have
‖Tnxn,i − xn,i‖ → 0,

as n → ∞. Since {Tn} is uniformly closed, then pi ∈ F for all i = 1, 2, 3, · · · ,N. Since F is convex, we also
have

ω = lim
n→∞ωn = lim

n→∞
N∑
i=1

λixn,i =

N∑
i=1

λipi ∈ F.

Next, we show that pi ∈ Ω for all i = 1, 2, 3, · · · ,N. By (3.1),

un,i = T
F1
rn,i

(I− γiA
∗(I− TF2

rn,i
)A)xn,i,

that is,

F1(un,i,y) +
1
rn,i
〈y− un,i,un,i − xn,i〉−

1
rn,i
〈y− un,i,γiA∗(TF2

rn,i
− I)Axn,i〉 > 0,

for all y ∈ C. From (A2), it follows that

−
1
rn,i
〈y− un,i,γiA∗(TF2

rn,i
− I)Axn,i〉+

1
rn,i
〈y− un,i,un,i − xn,i〉 > F1(y,un,i),
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for all y ∈ C. Since

‖A∗(TF2
rn,i

− I)Axn,i‖ → 0, ‖un,i − xn,i‖ → 0, ‖xn,i − pi‖ → 0,

as n→∞, we have
F1(y,pi) 6 0, i = 1, 2, 3, · · · ,N,

for all y ∈ C. Let yt = ty+ (1 − t)pi, for any 0 < t 6 1 and y ∈ C. It means that yt ∈ C and hence

0 = F1(yt,yt) 6 tF1(yt,y) + (1 − t)F1(y,pi) 6 tF1(yt,y),

and then F1(yt,y) > 0. Letting t→ 0, we immediately have F1(pi,y) > 0, i.e.,

pi ∈ EP(F1), i = 1, 2, 3, · · · ,N.

Next, we show that Api ∈ EP(F2) for all i = 1, 2, 3, · · · ,N. Since A is a bounded linear operator and
(3.6), we have

‖TF2
rn,i
Axn,i −Ap‖ 6 ‖TF2

rn,i
Axn,i −Axn,i‖+ ‖Axn,i −Ap‖ → 0,

as n→∞, which yields that TF2
rnAxn → Ap. By the definition of TF2

rn , we have

F2(T
F2
rn,i
Axn,i,y) +

1
rn,i
〈y− TF2

rn,i
Axn,i, TF2

rn,i
Axn,i −Axn,i〉 > 0, (3.8)

for all y ∈ C. Since F2 is upper semi-continuous in the first argument, taking limsup in (3.8), it follows
that

F2(Api,y) > 0, i = 1, 2, 3, · · · ,N,

for all y ∈ C, from which it can be concluded that

Api ∈ EP(F2), i = 1, 2, 3, · · · ,N.

So, pi ∈ Ω for all i = 1, 2, 3, · · · ,N. Consequently, since Ω is convex, we have ω =
∑N

i=1 λipi ∈ Ω. This
completes the proof.

In Theorem 3.1, if the mapping T is a nonexpansive mapping, then we immediately have the following
theorem.

Theorem 3.2. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
H1 and H2, respectively. Let F1 : C × C → R and F2 : Q ×Q → R be two bifunctions satisfying conditions
(A1)-(A4) and F2 be upper semi-continuous in the first argument. Let T : C→ C be a nonexpansive mapping and
A : H1 → H2 be a bounded linear operator. Suppose that F(T)∩Ω 6= ∅, where Ω = {v ∈ C : v ∈ EP(F1) such that
Av ∈ EP(F2)} and let x0,i ∈ C, i = 1, 2, 3, · · · ,N define sequences {xn,i}, i = 1, 2, 3, · · · ,N and {ωn} iteratively
as follows: 

C1,i = C, i = 1, 2, 3, · · · ,N,
un,i = T

F1
rn,i(I− γiA

∗(I− TF2
rn,i)A)xn,i, i = 1, 2, 3, · · · ,N,

yn,i = αn,ixn,i + (1 −αn,i)Tun,i, i = 1, 2, 3, · · · ,N,
Cn+1,i = {z ∈ Cn,i : ‖yn,i − z‖ 6 ‖xn,i − z‖}, i = 1, 2, 3, · · · ,N,
Cn+1 =

⋂N
i=1Cn+1,i,

xn+1,i = PCn+1x0,i, i = 1, 2, 3, · · · ,N,
ωn+1 =

∑N
i=1 λixn+1,i,

∑N
i=1 λi = 1, λi ∈ [0, 1],

for each n > 1, where 0 6 αn,i 6 a < 1, 0 < b 6 rn,i <∞, γi ∈ (0, 1
L) for all n > 1, i = 1, 2, 3, · · · ,N, L is the

spectral radius of the operator A∗A and A∗ is the adjoint of A. Then the following conclusions hold:
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(1) {xn,i} converges strongly to pi ∈ F(T)∩Ω, for all i = 1, 2, 3, · · · ,N;

(2) {ωn} converges strongly to ω =
∑N

i=1 λipi ∈ F(T)∩Ω.

Theorem 3.3. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
H1 and H2, respectively. Let F1 : C × C → R and F2 : Q ×Q → R be two bifunctions satisfying conditions
(A1)-(A4) and F2 be upper semi-continuous in the first argument. Let {Tn} : C → C be a uniformly closed and
equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty common fixed point set F and
A : H1 → H2 be a bounded linear operator. Suppose that F(T)∩Ω 6= ∅, where Ω = {v ∈ C : v ∈ EP(F1) such that
Av ∈ EP(F2)} and let x0,i ∈ C, i = 1, 2, 3, · · · ,N, define sequences {xn,i}, i = 1, 2, 3, · · · ,N and {ωn} iteratively
as follows: 

C1 = C,
un = TF1

rn(I− γnA
∗(I− TF2

rn)A)wn,
yn = αnwn + (1 −αn)Tnun,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 6 ‖wn − z‖2 + θn},
xn,i = PCn

x0,i, i = 1, 2, 3, · · · ,N,
ωn =

∑N
i=1 λixn,i,

∑N
i=1 λi = 1, λi ∈ [0, 1],

(3.9)

for each n > 1, where 0 6 αn 6 a < 1, 0 < b 6 rn <∞, γn ∈ (0, 1
L) and

θn = (1 −αn)(k
2
n − 1) sup{‖wn − z‖2 : z ∈ Ω},

for all n > 1, L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Then the following conclusions
hold:

(1) {xn,i} converges strongly to pi ∈ F∩Ω for all i = 1, 2, 3, · · · ,N;

(2) {wn} converges strongly to w =
∑N

i=1 λipi ∈ F∩Ω.

Proof. Firstly, we claim that for each n > 1, A∗(I− TF2
rn)A is a 1

2L -inverse strongly monotone mapping.
Since TF2

rn is firmly nonexpansive and (I− TF2
rn) is 1

2 -inverse strongly monotone, it follows that

‖A∗(I− TF2
rn
)Ax−A∗(I− TF2

rn
)Ay‖2 = 〈A∗(I− TF2

rn
)(Ax−Ay),A∗(I− TF2

rn
)(Ax−Ay)〉

= 〈(I− TF2
rn
)(Ax−Ay),AA∗(I− TF2

rn
)(Ax−Ay)〉

6 L〈(I− TF2
rn
)(Ax−Ay), (I− TF2

rn
)(Ax−Ay)〉

= L‖(I− TF2
rn
)(Ax−Ay)‖2

6 2L〈x− y,A∗(I− TF2
rn
)(Ax−Ay)〉,

for all x,y ∈ H, from which it can be concluded that

〈A∗(I− TF2
rn
)Ax−A∗(I− TF2

rn
)Ay, x− y〉 > 1

2L
‖A∗(I− TF2

rn
)Ax−A∗(I− TF2

rn
)Ay‖2,

for all x,y ∈ H. That is, A∗(I− TF2
rn)A is a 1

2L -inverse strongly monotone mapping. Moreover, we claim
that since γn ∈ (0, 1

L),
I− γnA

∗(I− TF2
rn
)A,

are nonexpansive, for all n > 1.

Next, we show that F(T) ∩Ω ⊂ Cn+1 for all n > 1. Let p ∈ F(T) ∩Ω, i.e., TF1
rnp = p and (I −

γnA
∗(I− TF2

rn)A)p = p. By mathematical induction, we have p ∈ C = C1 and hence F(T) ∩Ω ⊂ C1. Let
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F(T)∩Ω ⊂ Ck for some k > 1. It follows that

‖uk − p‖ = ‖TF1
rk
(I− γnA

∗(I− TF2
rk
)A)xk − TF1

rk
(I− γnA

∗(I− TF2
rk
)A)p‖

6 ‖(I− γnA∗(I− TF2
rk
)A)xk − (I− γnA

∗(I− TF2
rk
)A)p‖

6 ‖xk − p‖,
and

‖yk − p‖2 = ‖αkwk + (1 −αk)Tkuk − p‖2

6 αk‖wk − p‖2 + (1 −αk)‖Tkuk − p‖2

−αk(1 −αk)‖xk − p− (Tkuk − Tkp)‖2

6 αk‖wk − p‖2 + (1 −αk)‖uk − p‖2

−αk(1 −αk)‖wk − Tkuk‖2

6 αk‖wk − p‖2 + (1 −αk)k
2
k‖xk − p‖2

= ‖xk − p‖2 + (1 −αk)(k
2
k − 1)‖wk − p‖2

6 ‖xk − p‖2 + (1 −αk)(k
2
k − 1)M2

k

= ‖wk − p‖2 + θk,

where Mk = sup{‖wk − z‖ : z ∈ Ω} and θk = (1 −αk)(k
2
k − 1)M2

k. It can be concluded that p ∈ Ck+1 and
F∩Ω ⊂ Ck+1 and further, F∩Ω ⊂ Cn+1, for all n > 1.

Next, we show that Cn is closed and convex for all n > 1. It is obvious that, Cn is closed for all n > 1.
Suppose that Ck−1 is closed and convex for some k > 2. We see for all n > 1 that,

‖yn − z‖2 6 ‖wn − z‖2 + θn,

is equivalent to
〈z, 2(wn − yn)〉 6 ‖wn‖2 − ‖yn‖2 + θn.

Hence
Ck = {z ∈ C : 〈z, 2(wk − yk)〉 6 ‖wk‖2 − ‖yk‖2 + θk}∩Ck−1,

is convex. By induction, we know that, Cn is convex for all n > 1.
Next, from xn,i = PCn

x0,i, n > 1, i = 1, 2, 3, · · · ,N, we have

‖x0 − xn,i‖ 6 ‖x0 − y‖,

for all y ∈ Cn. Since F(T)∩Ω is nonempty, closed and convex, there exists z0 ∈ F(T)∩Ω, we have that

‖x0 − xn,i‖ 6 ‖x0 − z0‖.

This implies that {xn,i} is bounded. From xn,i = PCn
x0,i and xn+1,i = PCn+1x0,i ∈ Cn+1 ⊂ Cn, we also

have
‖xn,i − x0,i‖ 6 ‖xn+1,i − x0,i‖,

for all n ∈ N, This means that {‖xn,i − x0‖} is bounded and nondecreasing. Then limn→∞ ‖xn,i − x0‖
exists for all i = 1, 2, 3, · · · ,N. Put limn→∞ ‖xn,i − x0‖ = ci for all i = 1, 2, 3, · · · ,N. On the other hand,
from xn+m,i ⊂ Cn for all i = 1, 2, 3, · · · ,N, by using Lemma 2.5, we have for any positive integer m that

‖xn+m,i − xn,i‖2 6 ‖xn+m,i − x0,i‖2 − ‖xn,i − x0,i‖2.
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So {xn,i} is a Cauchy sequence in C, then there exits a point pi ∈ C such that limn→∞ xn,i = pi for any
i = 1, 2, 3, · · · ,N. Therefore,

wn =

N∑
i=1

λixn,i → w =

N∑
i=1

λipi,

as n→∞.
Since limn→∞wn = w, we have

lim
n→∞ ‖wn −wn+1‖ = 0. (3.10)

Since wn+1 ∈ Cn+1 ⊂ Cn, we have

‖yn −wn+1‖2 6 ‖wn −wn+1‖2 + θn,

which means that
‖yn −wn+1‖ 6 ‖wn −wn+1‖+

√
θn. (3.11)

Thus, by (3.10) and (3.11) we have

‖yn −wn‖ 6 ‖yn −wn+1‖+ ‖wn+1 − xn‖ → 0, (3.12)

as n→∞. Furthermore, since TF1
rn is firmly nonexpansive, we have

‖un − p‖2 = ‖TF1
rn
(wn − γnA

∗(I− TF2
rn
)Awn) − T

F1
rn
(p− γnA

∗(I− TF2
rn
)Ap)‖2

6 ‖(I− γnA∗(I− TF2
rn
)A)wn − (I− γnA

∗(I− TF2
rn
)A)P‖2 − ‖(I− TF1

rn
)

× (I− γnA
∗(I− TF2

rn
)A)wn − (I− TF1

rn
) − (I− γnA

∗(I− TF2
rn
)A)p‖2

= ‖wn − p− γn(A
∗(I− TF2

rn
)Awn −A∗(I− TF2

rn
)Ap)‖2 − ‖βn − TF1

rn
βn‖2

= ‖wn − p‖2 − 2γn〈wn − p,A∗(I− TF2
rn
)Awn −A∗(I− TF2

rn
)Ap〉

+ γ2
n‖A∗(I− TF2

rn
)Awn −A∗(I− TF2

rn
)Ap‖2 − ‖βn − TF1

rn
βn‖2

6 ‖wn − p‖2 + γn(γn −
1
L
)‖A∗(I− TF2

rn
)Awn‖2 − ‖βn − TF1

rn
βn‖2,

where βn = (I− γnA
∗(I− TF2

rn)A)wn. Moreover,

‖yn − p‖2 = ‖αnwn + (1 −αn)Tnun − p‖2

6 αn‖wn − p‖2 + (1 −αn)k
2
n[‖wn − p‖2

+ γn(γn −
1
L
)‖A∗(I− TF2

rn
)Awn‖2 − ‖βn − TF1

rn
βn‖2]

= αn‖wn − p‖2 + (1 −αn)k
2
n‖wn − p‖2 − (1 −αn)k

2
n‖βn − TF1

rn
βn‖2

+ (1 −αn)k
2
nγn(γn −

1
L
)‖A∗(I− TF2

rn
)Awn‖2,

which leads to

(1 −αn)k
2
n[γn(

1
L
− γn)‖A∗(I− TF2

rn
)Awn‖2 + ‖βn − TF1

rn
βn‖2]

6 (αn + (1 −αn)k
2
n)‖wn − p‖2 − ‖yn − p‖2.

(3.13)

Letting ρn = kn − 1, it is clear that ρn → 0 as n→∞ and, by (3.13), we have

(1 −αn)k
2
n[γn(

1
L
− γn)‖A∗(I− TF2

rn
)Awn‖2 + ‖βn − TF1

rn
βn‖2]

6 αn‖wn − p‖2 + (1 −αn)(ρn + 1)2‖wn − p‖2 − ‖yn − p‖2

6 ‖wn − p‖2 − ‖yn − p‖2 + (1 −αn)(ρ
2
n + 2ρn)‖wn − p‖2

6 (‖wn − p‖+ ‖yn − p‖)‖wn − yn‖+ (1 −αn)(ρ
2
n + 2ρn)‖wn − p‖2.
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By (3.12) and ρn → 0 as n→∞, we have

‖A∗(I− TF2
rn
)Awn‖2 → 0, ‖βn − TF1

rn
βn‖2 → 0,

as n→∞. Furthermore, since A is linear bounded and so is A∗, we can conclude that

lim
n→∞ ‖(I− TF2

rn
)Awn‖ = 0. (3.14)

Next, we show that ‖un −wn‖ → 0. We investigate the following:

‖un −wn‖ = ‖TF1
rn
βn −wn‖

6 ‖TF1
rn
βn −βn‖+ ‖βn −wn‖

= ‖TF1
rn
βn −βn‖+ ‖(I− γnA∗(I− TF2

rn
)A)wn −wn‖

= ‖TF1
rn
βn −βn‖+ γn‖A∗(I− TF2

rn
)Awn‖.

(3.15)

Consequently, by (3.15), we can conclude that

‖un −wn‖ → 0.

Next, we show that ‖Tnwn −wn‖ → 0. We consider

‖yn −wn‖ = ‖αnwn + (1 −αn)Tnun −wn‖
= (1 −αn)‖Tnun −wn‖,

and since
‖yn −wn+1‖ 6 ‖wn −wn+1‖+

√
θn.

Hence,

‖Tnun −wn‖ =
1

1 −αn
‖yn −wn‖

6
1

1 − a
(‖yn −wn+1‖+ ‖wn+1 −wn‖)

6
1

1 − a
(‖wn −wn+1‖+

√
θn) +

1
1 − a

‖wn+1 −wn‖,

and so ‖Tnun −wn‖ → 0. Consider

‖Tnwn −wn‖ 6 ‖Tnwn − Tnun‖+ ‖Tnun −wn‖.

Since {Tn} is equicontinuous, we have
‖Tnwn −wn‖ → 0,

as n→∞. Since {Tn} is uniformly closed, then w ∈ F.
Next, we show that w ∈ Ω for all i = 1, 2, 3, · · · ,N. By (3.9),

un = TF1
rn
(I− γnA

∗(I− TF2
rn
)A)wn,

that is,

F1(un,y) +
1
rn
〈y− un,un −wn〉−

1
rn
〈y− un,γnA∗(TF2

rn
− I)Awn〉 > 0,

for all y ∈ C. From (A2), it follows that

−
1
rn
〈y− un,γnA∗(TF2

rn
− I)Awn〉+

1
rn
〈y− un,un −wn〉 > F1(y,un),
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for all y ∈ C. Since

‖A∗(TF2
rn

− I)Awn‖ → 0, ‖un −wn‖ → 0, ‖wn −w‖ → 0,

as n→∞, we have
F1(y,w) 6 0,

for all y ∈ C. Let yt = ty+ (1 − t)pi for any 0 < t 6 1 and y ∈ C. It means that yt ∈ C and hence

0 = F1(yt,yt) 6 tF1(yt,y) + (1 − t)F1(y,w) 6 tF1(yt,y),

and then F1(yt,y) > 0. Letting t→ 0, we immediately have F1(w,y) > 0, i.e.,

w ∈ EP(F1).

Next, we show that Aw ∈ EP(F2). Since A is a bounded linear operator and (3.14), we have

‖TF2
rn
Awn −Ap‖ 6 ‖TF2

rn
Awn −Awn‖+ ‖Awn −Ap‖ → 0,

as n→∞, which yields that TF2
rnAwn → Aw. By the definition of TF2

rn , we have

F2(T
F2
rn
Awn,y) +

1
rn
〈y− TF2

rn
Awn, TF2

rn
Awn −Awn〉 > 0, (3.16)

for all y ∈ C. Since F2 is upper semi-continuous in the first argument, taking limsup in (3.16), it follows
that

F2(Aw,y) > 0,

for all y ∈ C, from which it can be concluded that

Aw ∈ EP(F2).

So, w ∈ Ω. This completes the proof.

Remark 3.4. Let T : C → C be an asymptotically nonexpansive mapping and let Tn = Tn for all n > 1.
It is easy to check that the {Tn} is a uniformly closed and equicontinuous family of countable quasi-kn-
Lipschitz mappings with nonempty common fixed point set F = F(T). Where kn → 1 and

‖Tnx− Tny‖ 6 kn‖x− y‖, ∀ x,y ∈ C.

Therefore, Theorem 3.1 and Theorem 3.3 still hold for {Tn} is replaced by {Tn}, where T is an asymptoti-
cally nonexpansive mapping.

4. Applications to split variational inequality problems

Firstly, we point out the so-called variational inequality problem (shortly, VIP), which is to find a point
x∗ ∈ C which satisfies the following inequality:

〈Ax∗, z− x∗〉 > 0,

for all z ∈ C. Its solution set is symbolized by VI(A,C).
In 2012, Censor et al. [4] proposed the split variational inequality problem (shortly, SVIP) which is

formulated as follows:

Find a point x∗ ∈ C such that 〈f(x∗), x− x∗〉 > 0, for all x ∈ C,
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and such that
y∗ = Ax∗ ∈ Q solves 〈g(y∗),y− y∗〉 > 0, for all y ∈ Q,

where A : C → C is a bounded linear operator. The solution set of split variational inequality problem is
denoted by the SVIP.

Setting F1(x,y) = 〈f(x),y − x〉 and F2(x,y) = 〈g(x),y − x〉, it is clear that F1, F2 satisfy conditions
(A1)-(A4), where f and g are η1- and η2-inverse strongly monotone mappings, respectively.

From Lemma 2.4, we define a mapping Tfr : H→ C by

Tfr (x) = {z ∈ C : 〈f(x),y− x〉+ 1
r
〈y− z, z− x〉 > 0,∀y ∈ C},

and Tgr : H→ C by

Tgr (x) = {z ∈ C : 〈g(x),y− x〉+ 1
r
〈y− z, z− x〉 > 0,∀y ∈ C}.

Then, by Theorem 3.1, we get the following theorem.

Theorem 4.1. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert
spaces H1 and H2, respectively. Let f and g be η1- and η2-inverse strongly monotone mappings, respectively. Let
{Tn} be a uniformly closed and equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty
common fixed point set F and A : H1 → H2 be a bounded linear operator. Suppose that F(T) ∩Ω 6= ∅, where
Ω = {v ∈ C : v ∈ SVIP(f) such that Av ∈ SVIP(g)} and let x0,i ∈ C, i = 1, 2, 3, · · · ,N, define sequences
{xn,i}, i = 1, 2, 3, · · · ,N and {ωn} iteratively as follows:

C1,i = C, i = 1, 2, 3, · · · ,N,
un,i = T

f
rn,i

(I− γiA
∗(I− Tgrn,i)A)xn,i, i = 1, 2, 3, · · · ,N,

yn,i = αn,ixn,i + (1 −αn,i)Tnun,i, i = 1, 2, 3, · · · ,N,
Cn+1,i = {z ∈ Cn,i : ‖yn,i − z‖2 6 ‖xn,i − z‖2 + θn,i}, i = 1, 2, 3, · · · ,N,
Cn+1 =

⋂N
i=1Cn+1,i,

xn+1,i = PCn+1x0,i, i = 1, 2, 3, · · · ,N,
ωn+1 =

∑N
i=1 λixn+1,i,

∑N
i=1 λi = 1, λi ∈ [0, 1],

for each n > 1, where 0 6 αn,i 6 a < 1, 0 < b 6 rn,i <∞, γi ∈ (0, 1
L) and

θn,i = (1 −αn,i)(k
2
n − 1) sup{‖xn,i − z‖2 : z ∈ Ω},

for all n > 1, i = 1, 2, 3, · · · ,N, L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Then the
following conclusions hold:

(1) {xn,i} converges strongly to pi ∈ F∩Ω for all i = 1, 2, 3, · · · ,N;

(2) {ωn} converges strongly to ω =
∑N

i=1 λipi ∈ F∩Ω.

Proof. The desired result can be proved directly through Theorem 3.1.

Then, by Theorem 3.3, we get the following result.

Theorem 4.2. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert
spaces H1 and H2, respectively. Let f and g be η1- and η2-inverse strongly monotone mappings, respectively. Let
{Tn} be a uniformly closed and equicontinuous family of countable quasi-kn-Lipschitz mappings with nonempty
common fixed point set F and A : H1 → H2 be a bounded linear operator. Suppose that F(T) ∩Ω 6= ∅, where
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Ω = {v ∈ C : v ∈ SVIP(f) such that Av ∈ SVIP(g)} and let x0,i ∈ C, i = 1, 2, 3, · · · ,N, define sequences
{xn,i}, i = 1, 2, 3, · · · ,N, and {ωn} iteratively as follows:

C1 = C,
un = Tfrn(I− γnA

∗(I− Tgrn)A)wn,
yn = αnwn + (1 −αn)Tnun,
Cn+1 = {z ∈ Cn : ‖yn − z‖2 6 ‖wn − z‖2 + θn},
xn,i = PCn

x0,i, i = 1, 2, 3, · · · ,N,
ωn =

∑N
i=1 λixn,i,

∑N
i=1 λi = 1, λi ∈ [0, 1],

for each n > 1, where 0 6 αn 6 a < 1, 0 < b 6 rn <∞, γn ∈ (0, 1
L) and

θn = (1 −αn)(k
2
n − 1) sup{‖wn − z‖2 : z ∈ Ω},

for all n > 1, L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Then the following conclusions
hold:

(1) {xn,i} converges strongly to pi ∈ F∩Ω for all i = 1, 2, 3, · · · ,N;

(2) {ωn} converges strongly to ω =
∑N

i=1 λipi ∈ F∩Ω.

Proof. The desired result can be proved directly through Theorem 3.3.

5. Applications to split optimization problems

In this section, we mention applications to the split optimization problem, which is to find x∗ ∈ C
such that

f(x∗) > f(x) for all x ∈ C satisfying Ax∗ = y∗ ∈ Q solves g(y∗) > g(y),

for all y ∈ Q. We symbolize O(f,A) for the solution set of the split optimization problem.
Let f : C→ R and g : Q→ R be two functions satisfying the following assumption:

(1) f(tx+ (1 − t)y) 6 f(y), g(tu+ (1 − t)v) 6 g(v), ∀ x,y ∈ C,u, v ∈ Q;

(2) f(x),g(u) are concave and upper semi-continuous.

Let F1(x,y) = f(x) − f(y) for all x,y ∈ C and F2(u, v) = g(u) − g(v) for all u, v ∈ Q. If f and g satisfy
conditions (1) and (2), then it is clear that F1 : C×C→ R and F2 : Q×Q→ R are two bifunctions satisfying
conditions (A1)-(A4). Let T be an asymptotically nonexpansive mapping defined on a bounded closed
convex subset C of a Hilbert space H. By Lemma 2.4, we define a mapping Of

r : H→ C by

Of
r(x) = {z ∈ C : f(x) − f(y) +

1
r
〈y− z, z− x〉 > 0, ∀y ∈ C},

and Og
r : H→ C by

Og
r (x) = {z ∈ C : g(x) − g(y) +

1
r
〈y− z, z− x〉 > 0, ∀y ∈ C}.

Therefore, by Theorem 3.1, we have the following.

Theorem 5.1. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
H1 and H2, respectively. Let f : C → R and g : Q → R be tow functions satisfying conditions (1) and (2). Let
A : H1 → H2 be a bounded linear operator. Suppose that O(f,A) 6= ∅. Let x0,i ∈ C, i = 1, 2, 3, · · · ,N, define
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sequences {xn,i}, i = 1, 2, 3, · · · ,N and {ωn} iteratively as follows:

C1,i = C, i = 1, 2, 3, · · · ,N,
un,i = O

f
rn,i

(I− γiA
∗(I−Og

rn,i)A)xn,i, i = 1, 2, 3, · · · ,N,
Cn+1,i = {z ∈ Cn,i : ‖un,i − z‖ 6 ‖xn,i − z‖}, i = 1, 2, 3, · · · ,N,
Cn+1 =

⋂N
i=1Cn+1,i,

xn+1,i = PCn+1x0,i, i = 1, 2, 3, · · · ,N,
ωn+1 =

∑N
i=1 λixn+1,i,

∑N
i=1 λi = 1, λi ∈ [0, 1],

for each n > 1, where 0 < b 6 rn,i < ∞, γi ∈ (0, 1
L) for all n > 1, i = 1, 2, 3, · · · ,N, L is the spectral radius of

the operator A∗A and A∗ is the adjoint of A. Then the following conclusions hold:

(1) {xn,i} converges strongly to pi ∈ O(f,A) for all i = 1, 2, 3, · · · ,N;

(2) {ωn} converges strongly to ω =
∑N

i=1 λipi ∈ O(f,A).

Proof. Take Tn = I and αn = 0 for all n > 1, where I denotes the identity operator. Taking αn = 0, the
desired result can be proved directly through Theorem 3.1.

Then, by Theorem 3.3, we have the following.

Theorem 5.2. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of Hilbert spaces
H1 and H2, respectively. Let f : C → R and g : Q → R be two functions satisfying conditions (1) and (2).
A : H1 → H2 be a bounded linear operator. Suppose that O(f,A) 6= ∅. Let x0,i ∈ C, i = 1, 2, 3, · · · ,N, define
sequences {xn,i}, i = 1, 2, 3, · · · ,N and {ωn} iteratively as follows:

C1 = C,
un = Of

rn
(I− γnA

∗(I−Og
rn)A)wn,

Cn+1 = {z ∈ Cn : ‖un − z‖ 6 ‖wn − z‖},
xn,i = PCn

x0,i, i = 1, 2, 3, · · · ,N,
ωn =

∑N
i=1 λixn,i,

∑N
i=1 λi = 1, λi ∈ [0, 1],

for each n > 1, where 0 < b 6 rn < ∞, γn ∈ (0, 1
L) for all n > 1, L is the spectral radius of the operator A∗A

and A∗ is the adjoint of A. Then the following conclusions hold:

(1) {xn,i} converges strongly to pi ∈ O(f,A) for all i = 1, 2, 3, · · · ,N;

(2) {ωn} converges strongly to ω =
∑N

i=1 λipi ∈ O(f,A).

Proof. Take Tn = I and αn = 0 for all n > 1, where I denotes the identity operator. Taking αn = 0, the
desired result can be proved directly through Theorem 3.3.
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