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Abstract
We introduce and study convergence of a one-step iterative algorithm for a finite family of total asymptotically nonexpansive

mappings on a CAT(0) space. Our results are new in Hilbert spaces as well as CAT(0) spaces; in particular, an analogue of
Rhoades weak convergence theorem [B. E. Rhoades, Bull. Austral. Math. Soc., 62 (2000), 307–310] is established both for
4-convergence and strong convergence in CAT(0) spaces. c©2017 All rights reserved.
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1. Introduction and preliminaries

Goebel and Kirk [10] fixed point theorem for an asymptotically nonexpansive mapping on a uniformly
convex Banach space remains the only well-known existence result. Thereby, the iterative construction of
fixed (common fixed) point of asymptotically nonexpansive type mappings becomes essential on linear
as well as nonlinear domain. In this note, we establish convergence results about a one-step iterative al-
gorithm of a finite family of total asymptotically nonexpansive mappings on a nonlinear domain, namely,
CAT(0) space.

Let (X,d) be a metric space and x,y ∈ X with l = d (x,y). A geodesic path from x to y is a mapping
θ : [0, l] → X such that θ (0) = x, θ (l) = y, and d (θ (t) , θ (t′)) = |t− t′| for t, t′ ∈ [0, l] . The image of θ is
known as a geodesic segment in X. A metric space X is a uniquely geodesic space if any two points of X
are joined by a unique geodesic segment.

A geodesic triangle ∆ (x1, x2, x3) in a geodesic metric space X consists of three points x1, x2, and x3 in
X and a geodesic segment between each pair of these points. A comparison triangle for geodesic triangle
∆ (x1, x2, x3) in X is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in R2 such that dR2

(
x̄i, x̄j

)
= d

(
xi, xj

)
for all

i, j = 1, 2, 3.
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A geodesic space X is a CAT(0) space if for each ∆ in X and ∆ in R2, the inequality

d (x,y) 6 dR2 (x̄, ȳ)

holds for all x,y ∈ ∆ and x̄, ȳ ∈ ∆.
The Euclidean space Rn equipped with the distance induced by the usual `p-norm is uniquely

geodesic for all p ∈ (1,∞) but it is CAT(0) space if and only if p = 2 (see [5]). All Hilbert spaces
are CAT(0) spaces [13] while this is not the case with Banach spaces (cf. [22]).

In this paper, we use the standard notation (1 −α) x ⊕ αy for the unique point z on the geodesic
segment from x to y such that

d (z, x) = αd (x,y) and d (z,y) = (1 −α)d (x,y) .

A subset C of a CAT(0) space is convex if [x,y] = {(1 −α) x⊕αy : α ∈ [0, 1]} ⊂ C for all x,y ∈ C.
Let {xn} be a bounded sequence in a metric space X and x ∈ X. Set

r(x, {xn}) = lim sup
n→∞ d(xn, x).

The asymptotic radius r({xn}) of {xn} is defined by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

A sequence {xn} in X is said to be ∆-convergent to x ∈ X if x is the unique asymptotic center of every
subsequence {un} of {xn}. We write ∆− limn→∞ xn = x and call x as ∆-limit of {xn}.

Kirk and Panyanak [17] showed that ∆-convergence coincides with weak convergence in Banach spaces
satisfying the Opial condition.

Following the definition of (1 −α) x⊕αy, we introduce the following notations (see [7]).
For xi ∈ X and αi ∈ [0, 1] for i = 1, 2, 3, ...,n with

∑n
i=1 αi = 1, we set

2⊕
i=1

αixi =
α1

α1 +α2
x1 ⊕

α2

α1 +α2
x2.

For n = 3, we define

3⊕
i=1

αixi = (1 −α3)

2⊕
i=1

αixi ⊕α3x3 = (1 −α3)

(
α1

α1 +α2
x1 ⊕

α2

α1 +α2
x2

)
⊕α3x3

= (1 −α3)

(
α1

1 −α3
x1 ⊕

α2

1 −α3
x2

)
⊕α3x3.

By induction, we can write

n⊕
i=1

αixi = (1 −αn)

(
α1

1 −αn
x1 ⊕

α2

1 −αn
x2 ⊕ ...⊕ αn−1

1 −αn
xn−1

)
⊕αnxn.

Let C be a nonempty subset of a metric space X. A mapping T : C→ C is:

(i) nonexpansive if
d(Tx, Ty) 6 d(x,y) for all x,y ∈ C;
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(ii) asymptotically nonexpansive mapping if there is a nonnegative real sequence {cn} such that cn → 0
and

d(Tnx, Tny) 6 (1 + cn)d(x,y) for all x,y ∈ C, n > 1;

(iii) generalized asymptotically nonexpansive if there are nonnegative real sequences {cn} and {dn} with
cn → 0 and dn → 0 such that

d(Tnx, Tny) 6 (1 + cn)d(x,y) + dn for all x,y ∈ C, n > 1;

(iv) asymptotically nonexpansive in the intermediate sense if it is continuous and the following inequal-
ity holds:

lim sup
n→∞ sup

x,y∈C
(d(Tnx, Tny) − d(x,y)) 6 0.

It is worth mentioning that the class of asymptotically nonexpansive mappings in the intermediate sense
contains properly the class of asymptotically nonexpansive mappings (see, e.g., [16]).

In 2006, Alber et al. [3] introduced: a mapping T : C → C is a total asymptotically nonexpansive if
there exist nonnegative real sequences {cn}, {dn} with cn → 0,dn → 0 and a strictly increasing continuous
function φ : [0,∞)→ [0,∞) with φ(0) = 0 satisfying the inequality

d(Tnx, Tny) 6 d(x,y) + cnφ (d(x,y)) + dn for all x,y ∈ C, n > 1. (1.1)

This is the most general class of mappings which includes all the above mentioned classes (i)-(iv).
Remark 1.1. If φ (x) = x in (1.1), it takes the form

d(Tnx, Tny) 6 (1 + cn)d(x,y) + dn for all x,y ∈ C, n > 1,

and so T is a generalized asymptotically nonexpansive mapping. In addition, if dn = 0, it becomes
asymptotically nonexpansive. If cn = 0 = dn for all n > 1 in (1.1), it reduces to a nonexpansive mapping.
Denote by F (T), the set of fixed points of T , choose cn = 0 = dn for all n > 1 and y ∈ F (T) in (1.1), it
becomes quasi-nonexpansive.

Mann [18] introduced an iterative algorithm to approximate fixed point of a nonexpansive mapping
on a Banach space. Later on, it was observed that Mann iterative algorithm does not converge to a fixed
point of pseudocontractive mappings and this led to the introduction of Ishikawa iterative algorithm
[12]. Many authors (see for example, [2, 21]) have studied Ishikawa iterative algorithm for one mapping
and two mappings. Its further extension to a finite family of nonlinear mappings on Banach spaces and
CAT(0) spaces has been considered in [14, 19] (see also, [4, 11, 15]).

If I = {1, 2, 3, ...,m}, a one-step iterative algorithm for a finite family {Ti : i ∈ I} of total asymptotically
nonexpansive mappings in a CAT(0) space is defined as follows:

For an arbitrary x1 ∈ C, we define the iterative sequence {xn} in C as follows:

xn+1 =

m⊕
i=0

an,iT
n
i xn, (1.2)

where T0 = I (the identity mapping) and {an,i} are (m+ 1) sequences in [0, 1] such that
∑m

i=0 an,i = 1.
If an,i = 0 for i > 2 or Tni = Tn for each i > 1 in (1.2), then it becomes Mann iterative algorithm in a

CAT(0) space. To know more about the recent developments for the class of asymptotically nonexpansive
and total asymptotically nonexpansive mappings, we refer the reader to [8].

We need the following lemmas for our convergence analysis.

Lemma 1.2 ([21]). If {rn}, {sn}, and {tn} are nonnegative real sequences satisfying

rn+1 6 (1 + sn)rn + tn for all n > 1,
∞∑

n=1

sn <∞ and
∞∑

n=1

tn <∞,

then limn→∞ rn exists.
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Lemma 1.3 ([7]). Let X be a CAT(0) space with x, xi ∈ X and αi ∈ [0, 1] for i = 1, 2, 3, ...,n such that
∑n

i=1 αi =
1. Then, d (

⊕n
i=1 αixi, , x) 6

∑n
i=1 αi d(xi, x).

Lemma 1.4 ([6]). Let X be a CAT(0) space with x, xi ∈ X and αi ∈ [0, 1] for i = 1, 2, 3, ...,n such that
∑n

i=1 αi =
1. Then

d

(
n⊕

i=1

αixi, , x

)2

6
n∑

i=1

αid(xi, x)2 −

n∑
i,j=1,i 6=j

αiαjd(xi, xj)2.

Lemma 1.5 ([8]). If C is a closed and convex subset of a complete CAT(0) space and {xn} is a bounded sequence in
C, then the asymptotic center of {xn} is unique and lies in C.

Lemma 1.6 ([9]). Let C be a nonempty closed and convex subset of a complete CAT(0) space. Let {xn} be a
bounded sequence in C such that AC({xn}) = {y} and r({xn}) = ρ. If {ym} is another sequence in C such that
limm→∞ r(ym, {xn}) = ρ (a real number), then limm→∞ ym = y.

2. Convergence analysis

From now onwards, we assume that F =
⋂

i∈I F(Ti) 6= φ for a finite family {Ti : i ∈ I} of total asymp-
totically nonexpansive mappings.

We start with the following technical result.

Lemma 2.1. Let C be a nonempty closed and convex subset of a CAT(0) space X and {Ti : i ∈ I} be a finite family of
total asymptotically nonexpansive mappings where sequences {cn,i}, {dn,i}, and functions φi satisfy the following
conditions:

(C1):
∑∞

n=1 cn,i <∞ and
∑∞

n=1 dn,i <∞;
(C2): there exist constants αi,βi > 0 such that φi (t) 6 αit for all t > βi.

If {xn} is the sequence in (1.2), with T0 = I (the identity mapping) and an,i ∈ [0, 1] such that
∑m+1

i=1 an,i = 1,
then limn→∞ d(xn, x) exists for all p ∈ F.

Proof. By (C2) and strictly increasingness of φi, it follows that

φi (t) 6 φi (βi) +αit for i ∈ I. (2.1)

For any p ∈ F, we apply Lemma 1.3 to the iterative algorithm (1.2) and use (2.1) to get

d(xn+1,p) = d

(
m⊕
i=0

an,iT
n
i xn,p

)

6 an,0d (xn,p) +
m∑
i=1

an,id (T
n
i xn,p)

6 an,0d (xn,p) +
m∑
i=1

an,i [d(xn,p) + cn,iφi (d(xn,p)) + dn,i]

6 an,0d (xn,p) +
m∑
i=1

an,i

[
d(xn,p) + cn,iφi (βi)

+cn,iαid(xn,p) + dn,i

]

= an,0d (xn,p) +
m∑
i=1

an,i [(1 + cn,iαi)d(xn,p) + cn,iφi (βi) + dn,i]

=

(
1 +

m∑
i=1

an,icn,iαi

)
d(xn,p) +

m∑
i=1

an,icn,iφi (βi) +

m∑
i=1

an,idn,i
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6

(
1 +αδ

m∑
i=1

cn,i

)
d(xn,p) +αδ

m∑
i=1

cn,i + δ

m∑
i=1

dn,i,

where α = max16i6m (αi,φi (βi)). That is,

d(xn+1,p) 6

(
1 +α (1 − δ)

m∑
i=1

cn,i

)
d(xn,p) + (1 − δ)

(
α

m∑
i=1

cn,i +

m∑
i=1

dn,i

)
. (2.2)

Now Lemma 1.2 applied to (2.2) implies that limn→∞ d(xn,p) exists.

Lemma 2.2. Let C,X, {Ti : i ∈ I} , (C1), and (C2) be as in Lemma 2.1. If {Ti : i ∈ I} is uniformly continuous, then
limn→∞ d(xn, Tixn) = 0 for i ∈ I.

Proof. For any p ∈ F, we apply Lemma 1.4 to (1.2) and utilize (2.1) to get

d(xn+1,p)2 = d

(
m⊕
i=0

an,iT
n
i xn,p

)2

6 an,0d (xn,p)2 +

m∑
i=1

an,id(T
n
i xn,p)2 −

m∑
i=1

an,1an,id (xn, Tni xn)
2

6 an,0d (xn,p)2 +

m∑
i=1

an,i [(1 + cn,iαi)d(xn,p) + cn,iφi (βi) + dn,i]
2

−

m∑
i=1

an,1an,id (xn, Tni xn)
2

6 an,0d (xn,p)2 +

m∑
i=1

an,i

[
(1 + cn,iαi)

2 d(xn,p)2 + (cn,iφi (βi) + dn,i)
2

+2 (1 + cn,iαi)d(xn,p) (cn,iφi (βi) + dn,i)

]

−

m∑
i=1

an,1an,id (xn, Tni xn)
2

6 d(xn,p)2 +

m∑
i=1

an,i

[ (
c2
n,iα

2
i + 2cn,iαi

)
d(xn,p)2 + (cn,iφi (βi) + dn,i)

2

+2 (1 + cn,iαi)d(xn,p) (cn,iφi (βi) + dn,i)

]

−

m∑
i=1

an,1an,id (xn, Tni xn)
2 .

Since {d(xn,p)} , {cn,i}, and {dn,i} are bounded sequences, we can fix M > 0 such that(
c2
n,iα

2
i + 2cn,iαi

)
d(xn,p)2 + (cn,iφi (βi) + dn,i)

2 + 2 (1 + cn,iαi)d(xn,p) (cn,iφi (βi) + dn,i)

=M (cn,i + dn,i) .

That is,

δ2
m∑
i=1

d (xn, Tixn)
2 6 d(xn,p)2 − d(xn+1,p)2 +

m+1∑
i=1

Man,i (cn,i + dn,i) .

It follows that for any positive integer N > 1,

δ2
N∑

n=1

m∑
i=1

d (xn, Tixn)
2 6 d(x1,p)2 − d(xN+1,p)2 + δM

m+1∑
i=1

N∑
n=1

(cn,i + dn,i)

6 d(x1,p)2 + δM

m+1∑
i=1

N∑
n=1

(cn,i + dn,i) .
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That is,

δ2
N∑

n=1

m∑
i=1

d (xn, Tni xn)
2 < d(x1,p)2 + δM

m+1∑
i=1

N∑
n=1

(cn,i + dn,i) . (2.3)

When N→∞ in (2.3), we get that δ2 ∑∞
n=1

∑m
i=1 d

(
xn, Tni xn

)2
<∞ and hence

lim
n→∞

m∑
i=1

d (xn, Tni xn)
2 = 0.

Therefore,
lim
n→∞d (xn, Tni xn) = 0 for i = 1, 2, 3, ...,m. (2.4)

Now we show that limn→∞ d (xn, Tixn) = 0 for each i = 1, 2, 3, ...,m. Since

d (xn, xn+1) =d

(
xn,

m⊕
i=0

an,iT
n
i xn

)
6

m∑
i=0

an,id (xn, Tni xn) ,

and (2.4) hold, therefore we get
lim
n→∞d (xn, xn+1) = 0. (2.5)

The inequality

d (xn, Tixn) 6 d (xn, xn+1) + d
(
xn+1, Tn+1

i xn+1
)
+ d

(
Tn+1
i xn+1, Tn+1

i xn
)
+ d

(
Tn+1
i xn, Tixn

)
,

uniformly continuity of Ti, and (2.5) imply that

lim
n→∞d (xn, Tixn) = 0 for i ∈ I. (2.6)

Next we obtain our 4-convergence result.

Theorem 2.3. Let C,X, {Ti : i ∈ I} , (C1), and (C2) be as in Lemma 2.2. If X is complete and {xn} is the sequence
in (1.2), where T0 = I (the identity mapping) and an,i ∈ [δ, 1 − δ] for some δ ∈

(
0, 1

2

)
with

∑m
i=0 an,i = 1, then

{xn} 4-converges to a point in F.

Proof. The sequence {xn} is bounded (cf. Lemma 2.1). Hence by Lemma 1.5, {xn} has a unique asymptotic
center, that is, AC({xn}) = {x}. If {un} is any subsequence of {xn}, then again by Lemma 1.5, we have
AC({un}) = {u} and so (2.6) gives that

lim
n→∞d(un, Tiun) = 0 for i = 1, 2, 3, ...,m. (2.7)

We show that u ∈ F. Define a sequence {zi} in C by zi = T i1u. By the property of φ1 and (C2), we get the
following estimate

d(zi,un) 6 d(T i1u, T i1un) + d(T
i
1un, T i−1

1 un) + · · ·+ d(T1un,un)

6 d (u,un) + cn,1φ1 (d (u,un)) + dn,1 +

i−1∑
r=0

d(Tr1un, Tr+1
1 un)

6 (1 + cn,1α)d(u,un) + cn,1φ1 (β) + dn,1 +

i−1∑
r=0

d(Tr1un, Tr+1
1 un).
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Taking lim supn→∞ on both sides of the above estimate, applying uniform continuity of T1 and using
(2.7), we have that

r(zi, {un}) = lim sup
n→∞ d(zi,un) 6 lim sup

n→∞ d(u,un) = r(u, {un}).

That is, |r(zi, {un}) − r(u, {un})| → 0 as i → ∞. It follows from Lemma 1.6 that limi→∞ T i1u = u. Again,
utilizing the uniform continuity of T1, we have that T1(u) = T1(limi

i→∞ T1u) = limi→∞ T i+1
1 u = u. Simi-

larly, we can show that Ti(u) = u for i = 2, 3, 4, ...,m. Therefore u ∈ F. If x 6= u, then the uniqueness of the
asymptotic centers implies the following contradiction:

lim sup
n→∞ d(un,u) < lim sup

n→∞ d(un, x) 6 lim sup
n→∞ d(xn, x) < lim sup

n→∞ d(xn,u) = lim sup
n→∞ d(un,u).

Hence x = u. This proves that u is the unique asymptotic center of {un} for every subsequence {un} of
{xn}.

Let C be a nonempty subset of a metric space X. A family of mappings Ti : C → C (i = 1, 2, 3, ...,m)
with a nonempty common fixed point set F in C is said to satisfy condition (AR) if there is a nondecreasing
function g : [0,∞)→ [0,∞) with g(0) = 0 and g(r) > 0 for r > 0 and λi ∈ [0, 1] with

∑n
i=1 λi = 1 such that

n∑
i=1

λid(x, Tix) > g (d(x, F)) ,

where d(x, F) = infp∈F d (x,p) for all x ∈ C.
The condition (AR) reduces to condition (A) [20] if Ti = T for i = 1, 2, 3, ...,m. We shall use condition

(AR) instead of demicompactness of the mappings [20] for strong convergence of {xn} in (1.2).

Theorem 2.4. Let C be a nonempty closed and convex subset of a CAT(0) space X and {Ti : i ∈ I} be a finite
family of total asymptotically nonexpansive mappings satisfying condition (AR) where the sequences {cn,i}, {dn,i}

and functions φi satisfy the conditions (C1) and (C2). If {xn} is the sequence in (1.2), where T0 = I (the identity
mapping) and an,i ∈ [δ, 1 − δ] for some δ ∈

(
0, 1

2

)
with

∑m
i=0 an,i = 1, then {xn} converges strongly to a point in

F.

Proof. Set sn = α (1 − δ)
∑m

i=1 cn,i and tn = (1 − δ) (α
∑m

i=1 cn,i +
∑m

i=1 dn,i) . Obviously,
∑∞

n=1 sn < ∞
and

∑∞
n=1 tn <∞.

By taking infp∈F on both sides of (2.2), we obtain that

d (xn+1, F) 6 (1 + sn)d (xn, F) + tn. (2.8)

As a consequence of Lemma 1.2 and (2.8), we get that limn→∞ d(xn, F) exists.
Now by the condition (AR), we get

lim
n→∞g(d(xn, F)) 6

m∑
i=1

an,i lim
n→∞d(xn, Tixn) = 0.

Since g is a nondecreasing function and g(0) = 0, therefore limn→∞ d(xn, F) = 0. Next, we claim that
{xn} is a Cauchy sequence. Assume that

∑∞
n=1 sn = s and hence

∏∞
n=1 (1 + sn) = s. For ε > 0, there

exists n0 > 1 such that d(xn0 , F) < ε
4s+4 and

∑∞
n=n0

tn <
ε
4s .

Let m > n > n0 and p ∈ F. With the help of (2.8), we obtain

d (xm, xn) 6 d (xm, F) + d (xn, F)

6
m−1∏
i=n0

(1 + si)d (xn0 , F) +
m−1∏
i=n0

(1 + si)

m−1∑
n=n0

ti +

n−1∏
i=n0

(1 + si)d (xn0 , F) +
n−1∏
i=n0

(1 + si)

n−1∑
n=n0

ti
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6
∞∏

i=n0

(1 + si)d (xn0 , F) +
∞∏

i=n0

(1 + si)

∞∑
n=n0

ti +

∞∏
i=n0

(1 + si)d (xn0 , F) +
∞∏

i=n0

(1 + si)

∞∑
n=n0

ti

< 2
[
(1 + s)

ε

4s+ 4
+ s

ε

4s

]
= ε.

This proves that {xn} is a Cauchy sequence in C. Let limn→∞ xn = q. Then d (q, F) = d (limn→∞ xn, F) =
limn→∞ d (xn, F) = 0. As F is closed, so we obtain q ∈ F. Hence {xn} strongly converges to a point of F.

Since every Hilbert space is a CAT(0) space and Definitions (i)-(iv) are special case of (1.1), therefore
the following results can be seen as a corollary of our results.

Corollary 2.5. Let C be a nonempty closed and convex subset of a Hilbert space H and {Ti : i ∈ I} be a finite
family of uniformly continuous and total asymptotically nonexpansive mappings, where sequences {cn,i}, {dn,i},
and functions φi satisfy the conditions (C1) and (C2). If {xn} is the sequence defined by x1 ∈ C : xn+1 =∑m

i=0 an,iT
n
i xn, where T0 = I (the identity mapping) and an,i ∈ [δ, 1 − δ] for some δ ∈

(
0, 1

2

)
with

∑m
i=0 an,i =

1, then {xn} converges weakly to a point in F.

Corollary 2.6. Let C be a nonempty closed and convex subset of a Hilbert space H and {Ti : i ∈ I} be a finite
family of total asymptotically nonexpansive mappings satisfying the condition (AR) where the sequences {cn,i},
{dn,i}, and functions φi satisfy the conditions (C1) and (C2). If {xn} is the sequence defined by x1 ∈ C : xn+1 =∑m

i=0 an,iT
n
i xn, where T0 = I (the identity mapping) and an,i ∈ [δ, 1 − δ] for some δ ∈

(
0, 1

2

)
with

∑m
i=0 an,i =

1, then {xn} converges strongly to a point in F.

Corollary 2.7. Let C be a nonempty closed and convex subset of a CAT(0) space X and {Ti : i ∈ I} be a finite family
of uniformly continuous and asymptotically nonexpansive mappings in the intermediate sense with sequences {cn,i}

such that
∑∞

n=1 cn,i <∞. If {xn} is the sequence defined by x1 ∈ C : xn+1 =
⊕m

i=0 an,iT
n
i xn, where T0 = I (the

identity mapping) and an,i ∈ [δ, 1 − δ] for some δ ∈
(
0, 1

2

)
with

∑m
i=0 an,i = 1, then {xn} 4-converges to a point

in F.

Corollary 2.8. Let C be a nonempty closed and convex subset of a CAT(0) space X and {Ti : i ∈ I} be a finite
family of uniformly continuous and asymptotically nonexpansive mappings in the intermediate sense satisfying
condition (AR) with sequences {cn,i} such that

∑∞
n=1 cn,i < ∞. If {xn} is the sequence defined by x1 ∈ C :

xn+1 =
⊕m

i=0 an,iT
n
i xn, where T0 = I (the identity mapping) and an,i ∈ [δ, 1 − δ] for some δ ∈

(
0, 1

2

)
with∑m

i=0 an,i = 1, then {xn} converges strongly to a point in F.

Remark 2.9. We observe that:

1) The results of Abbas et al. [2] in Banach spaces depend on the condition d (x,Snx) 6 d (Snx, Tnx) on
two asymptotically nonexpansive mappings S and T , whereas we do not need such type of condition
for the larger class of total asymptotically nonexpansive mappings in CAT(0) spaces.

2) One can easily establish results of this paper for nonself total asymptotically nonexpansive mappings.
Hence the new results will be analogue of the results of Zhou et al. [23] in CAT(0) spaces for nonself
total asymptotically nonexpansive mappings.

3) Corollary 2.7 (resp. Corollary 2.8) generalizes Theorem 2.2 (resp. Theorem 2.4) in [1] for a finite family
of asymptotically nonexpansive mappings in the intermediate sense.

4) Theorems 2.3 and 2.4 are 4-convergence and strong convergence analogue of weak convergence The-
orem of Rhoades [19].

Open Problem: Devise an iterative algorithm in CAT(0) spaces for approximating common fixed point
of an infinite family of total asymptotically nonexpansive mappings.
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