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Abstract

Very recently, Fulga and Proca [A. Fulga, A. M. Proca, Abstr. Appl. Anal., (In press)] considered new Geraghty type
contraction mappings and established a fixed point theorem for such mappings in complete metric spaces. In this paper, we
prove the analogous result in the class of metric-like spaces which generalizes the main result of Karapinar et al. [E. Karapınar, H.
H. Alsulami, M. Noorwali, Fixed Point Theory Appl., 2015 (2015), 22 pages]. We give some examples illustrating the presented
result where [E. Karapınar, H. H. Alsulami, M. Noorwali, Fixed Point Theory Appl., 2015 (2015), 22 pages] is not applicable. An
application is also provided. c©2017 All rights reserved.
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1. Introduction and Preliminaries

Fixed point theory is an essential tool to resolve many problems in different branches of mathematics,
see [7, 11, 22]. Hitzler and Seda [12] are the first who considered the concept of metric-like (or dislocated
metric) spaces. Later, Amini-Harandi [4] established some fixed point results in the class of metric-like
spaces. Very recently, many fixed point results on metric-like spaces have been provided. For more
details, see [1–3, 5, 6, 8, 10, 13, 14, 16–19, 21, 23–25].

Definition 1.1. Let X be a nonempty set. A function σ : X× X → [0,∞) is said to be a metric-like (or a
dislocated metric) on X if for any x,y, z ∈ X, the following conditions hold:

(σ1) σ(x,y) = 0 =⇒ x = y;

(σ2) σ(x,y) = σ(y, x);
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(σ3) σ(x, z) 6 σ(x,y) + σ(y, z).

The pair (X,σ) is then called a metric-like (a dislocated metric) space.

Each metric-like σ on X generates a T0 topology τσ on X which has as a base the family open σ-balls
{Bσ(x, ε) : x ∈ X, ε > 0}, where Bσ(x, ε) = {y ∈ X : |σ(x,y) − σ(x, x)| < ε} for all x ∈ X and ε > 0.

Observe that a sequence {xn} in a metric-like space (X,σ) converges to a point x ∈ X with respect to
τσ, if and only if σ(x, x) = lim

n→∞σ(x, xn).

Definition 1.2. Let (X,σ) be a metric-like space.

(a) A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞σ(xn, xm) exists and is finite.

(b) (X,σ) is said to be complete if every Cauchy sequence {xn} in X converges with respect to τσ to a
point x ∈ X such that lim

n→∞σ(x, xn) = σ(x, x) = lim
n,m→∞σ(xn, xm).

Lemma 1.3 ([17]). Let (X,σ) be a metric-like space. Let {xn} be a sequence in X such that xn → x, where x ∈ X
and σ(x, x) = 0. Then, for all y ∈ X, we have

lim
n→∞σ(xn,y) = σ(x,y).

Now let F be the family of all functions β : [0,∞)→ [0, 1) which satisfy the condition

lim
n→∞β(tn) = 1 implies lim

n→∞ tn = 0.

In 2015, Karapinar et al. [15] proved the following particular result (it corresponds to s = 1 and ψ(t) = t
in Corollary 3.7 in [15]).

Theorem 1.4 ([15]). Let (X,σ) be a complete metric-like space and T : X → X be a mapping. Suppose that there
exists β ∈ F such that

σ(Tx, Ty) 6 β(σ(x,y))σ(x,y),

for all x,y ∈ X. Then T has a unique fixed point u ∈ X with σ(u,u) = 0.

On the other hand, very recently Fulga and Proca [9] considered a new type of Geraghty contractions
given as follows.

Definition 1.5. Let (X,d) be a metric space. A mapping T : X→ X is said to be a ϕE-Geraghty contraction
on (X,d) if there exists ϕ ∈ F such that:

d(Tx, Ty) 6 ϕ(E(x,y))E(x,y),

for all x,y ∈ X, where E(x,y) = d(x,y) + |d(x, Tx) − d(y, Ty)|.

In this paper, we consider the analogous of Definition 1.5 in the class of metric-like spaces and we
establish a fixed point result for this new Geraghty type contractive mapping. By presenting some illus-
trated examples, we will show that Theorem 1.4 is not applicable. At the end, we provide an application
on the existence of a unique solution of an integral equation.

2. Main results

Our main result is as follows.

Theorem 2.1. Let (X,d) be a complete metric-like space and T : X → X be a given mapping. Suppose there exists
β ∈ F such that

σ(Tx, Ty) 6 β(F(x,y)) F(x,y), (2.1)

for all x,y ∈ X, where F(x,y) = σ(x,y) + |σ(x, Tx) − σ(y, Ty)|. Then T has a unique fixed point u ∈ X with
σ(u,u) = 0.
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Proof. Let x0 ∈ X. We define a sequence {xn} in X by xn+1 = Txn = Tn+1x0 for all n > 0. Suppose that
σ(xn0 , xn0+1) = 0 for some n0, so the proof is completed. Consequently, throughout the proof, we assume
that

σ(xn, xn+1) 6= 0 for all n.

From (2.1), we have

0 < σ(xn, xn+1) = σ(Txn−1, Txn) 6 β(F(xn−1, xn)) F(xn−1, xn), n > 1. (2.2)

Note that

F(xn−1, xn) =σ(xn−1, xn) + |σ(xn−1, Txn−1) − σ(xn, Txn)| = σ(xn−1, xn) + |σ(xn−1, xn) − σ(xn, xn+1)|.

Take σn = σ(xn−1, xn) and (2.2) becomes

σn+1 6 β(σn + |σn − σn+1|) (σn + |σn − σn+1|). (2.3)

Assume that there exists n > 0 such that σn 6 σn+1. By (2.3), we get

σn+1 6 β(σn+1)σn+1 < σn+1,

which is a contradiction. Thus, for all n > 0, σn > σn+1. Therefore (2.3) becomes

0 < σn+1 6 β(2σn − σn+1) (2σn − σn+1), ∀n > 0. (2.4)

The real sequence {σn} is decreasing, so there exists α such that lim
n→∞σn = α. Suppose that α > 0. Take

n→∞ in (2.4) to write

α = lim
n→∞σn+1 6 lim

n→∞[β(2σn − σn+1) (2σn − σn+1)] 6 lim
n→∞(2σn − σn+1) = α.

We obtain
lim
n→∞β(2σn − σn+1) = 1.

Since β ∈ F, we get
α = lim

n→∞(2σn − σn+1) = 0,

which is a contradiction. Thus
lim
n→∞σ(xn, xn+1) = 0. (2.5)

We shall prove that {xn} is a Cauchy sequence in (X,σ). We will prove that

lim
n,m→∞σ(xn, xm) = 0. (2.6)

We argue by contradiction. Then, there exists ε > 0 for which we can find subsequences {xm(k)} and
{xn(k)} of {xn} with m(k) > n(k) > k such that for every k

σ(xm(k), xn(k)) > ε. (2.7)

Moreover, corresponding to n(k) we can choose m(k) in such a way that it is the smallest integer with
m(k) > n(k) and satisfying (2.7). Then

σ(xm(k)−1, xn(k)) < ε. (2.8)

Using (2.7) and (2.8)

ε 6 σ(xm(k), xn(k)) 6 σ(xm(k), xm(k)−1) + σ(xm(k)−1, xn(k)) < σ(xm(k), xm(k)−1) + ε.
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By (2.5), we get
lim
k→∞σ(xm(k), xn(k)) = ε. (2.9)

On the other hand, it is easy to see that

|σ(xm(k)−1, xn(k)−1) − σ(xm(k), xn(k))| 6 σ(xm(k)−1, xm(k)) + σ(xn(k), xn(k)−1).

Again, by (2.5) and (2.9),
lim
k→∞σ(xm(k)−1, xn(k)−1) = ε. (2.10)

We go back to (2.1) to have

ε 6 σ(xm(k), xn(k)) =σ(Txm(k)−1, Txn(k)−1) 6 β(F(xm(k)−1, xn(k)−1)).F(xm(k)−1, xn(k)−1),

where
F(xm(k)−1, xn(k)−1) = σ(xm(k)−1, xn(k)−1) + |σ(xm(k)−1, xm(k)) − σ(xn(k)−1, xn(k))|.

By (2.5) and (2.10),
lim
k→∞ F(xm(k)−1, xn(k)−1) = ε. (2.11)

We deduce
lim
k→∞β(F(xm(k)−1, xn(k)−1)) = 1.

Since β ∈ F, we have
lim
k→∞ F(xm(k)−1, xn(k)−1) = 0,

which is a contradiction with respect to (2.11). Thus {xn} is Cauchy in the complete metric-like space
(X,σ). So there exists u ∈ X such that

lim
n→∞σ(xn,u) = σ(u,u) = lim

n,m→∞σ(xn, xm).

By (2.6), we write
lim
n→∞σ(xn,u) = σ(u,u) = 0.

We shall prove that u is a fixed point of T . Assume that u 6= Tu, so σ(u, Tu) > 0. From (2.1), we have

σ(xn+1, Tu) = σ(Txn, Tu) 6 β(F(xn,u)).F(xn,u) 6 F(xn,u), (2.12)

where
F(xn,u) = σ(xn,u) + |σ(xn, xn+1) − σ(u, Tu)|→ σ(u, Tu),

as n→∞. Letting again n→∞ in (2.12) and using Lemma 1.3,

0 < σ(u, Tu) 6 lim
n→∞β(F(xn,u)).σ(u, Tu) 6 σ(u, Tu).

So lim
n→∞β(F(xn,u)) = 1 which implies that

lim
n→∞ F(xn,u) = 0,

which is a contradiction. Thus σ(u, Tu) = 0 and so u = Tu, that is, u is a fixed point of T with σ(u,u) = 0.
We shall prove that such u verifying σ(u,u) = 0 is the unique fixed point of T . We argue by contradiction.
Assume that there exists u 6= v (so σ(u, v) > 0) such that

u = Tu, v = Tv, σ(u,u) = σ(v, v) = 0.
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We have
F(u, v) = σ(u, v) + |σ(u, Tu) − σ(v, Tv)| = σ(u, v) + |σ(u,u) − σ(v, v)| = σ(u, v).

By (2.1), we get

0 < σ(u, v) = σ(Tu, Tv) 6 β(F(u, v)).F(u, v) = β(σ(u, v)).σ(u, v) < σ(u, v),

which is a contradiction. Thus, there exists a unique u ∈ X such that u = Tu with σ(u,u) = 0.

Remark 2.2. Theorem 2.1 is the analogous of the main result of [9] in the class of metric-like spaces.

3. Examples

In this section, we present some examples where known results (in particular Theorem 1.4) in literature
are not applicable.

Example 3.1. Let X = {0, 1, 2} be endowed with the metric-like σ given by

σ(0, 0) = σ(1, 1) = 0, σ(2, 2) =
1
2

, σ(0, 1) = σ(1, 0) = 1, σ(0, 2) = σ(2, 0) =
3
2

, σ(1, 2) = σ(2, 1) =
8
5

.

Consider T : X→ X as T0 = T1 = 0 and T2 = 1. Take

β(t) =


1

1 + 5
11t

, if t > 0,

1
3

, if t = 0.

We shall prove that (2.1) holds. By symmetry of (2.1), we need the following cases:

Case 1: (x,y) = (0, 2). Since F(0, 2) = 3
2 + |0 − 8

5 | =
31
10 ,

σ(T0, T2) = 1 6
341
265

=
1

1 + 5
11 . 31

10

31
10

= β(F(0, 2)).F(0, 2).

Case 2: (x,y) = (1, 2). We have F(1, 2) = 8
5 + |1 − 8

5 | =
11
5 . Also

σ(T1, T2) = 1 6
11
10

=
1

1 + 5
11 . 11

5

11
5

= β(F(0, 2)).F(0, 2).

Case 3: (x,y) = (0, 1) or x = y. In this case, we have σ(Tx, Ty) = 0.
So (2.1) holds for all x,y ∈ X. All hypotheses of Theorem 2.1 are satisfied, so T has a unique fixed

point, which is u = 0 and σ(0, 0) = 0.
Note that Theorem 1.4 could not happen. Indeed, for x = 0 and y = 2, we have

σ(T0, T2) = 1 >
33
37

=
1

1 + 5
11 . 3

2

3
2
= β(σ(0, 2)).σ(0, 2).

Example 3.2. Take X = [0, 1]. Consider the metric-like σ : X×X→ [0,∞) as

σ(x,y) = x+ y.

Let T : X→ X be defined by

Tx =

{
0, if x ∈ [0, 1

2),
1

2e2 , if x ∈ [ 1
2 , 1].

Take

β(t) =

{
e−t, if t > 0,
1
2 , if t = 0.

We shall prove that (2.1) holds. We need the following cases:
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Case 1: x,y ∈ [0, 1
2). Here Tx = Ty = 0, so (2.1) holds.

Case 2: x ∈ [0, 1
2) and y ∈ [ 1

2 , 1]. We have

F(x,y) = x+ y+ |x− (y+
1

2e2 )| = 2y+
1

2e2 .

Then

σ(Tx, Ty) =
1

2e2 6 e−(2+ 1
2e2 ).(1 +

1
2e2 ) 6 e

−(2y+ 1
2e2 ).(2y+

1
2e2 ) = β(F(x,y)).F(x,y).

Case 3: x,y ∈ [ 1
2 , 1]. Here we have

F(x,y) = x+ y+ |x− y|.

It suffices to treat the subcase x 6 y (the other subcase is the same). So we have F(x,y) = 2y. Moreover

σ(Tx, Ty) =
1
e2 = e−2 6 e−2y.(2y) = β(F(x,y)).F(x,y).

In all cases, (2.1) holds for all x,y ∈ X. All hypotheses of Theorem 2.1 are satisfied, so T has a unique
fixed point, which is u = 0 and σ(0, 0) = 0.

Example 3.3. Take X = {1, 2, 3} and consider the metric-like σ : X×X→ [0,∞) given by

σ(1, 1) = 0, σ(2, 2) = 1, σ(3, 3) =
2
3

, σ(1, 2) = σ(2, 1) =
3
5

, σ(2, 3) = σ(3, 2) =
4
5

, σ(1, 3) = σ(3, 1) =
7

10
.

Since σ(1, 1) 6= 0, so σ is not a metric. Consider T1 = T3 = 1 and T2 = 3. Take β(t) = 8
9 . We distinguish

the following cases:

Case 1: (x,y) = (1, 2). We have F(x,y) = 7
5 . Then

σ(Tx, Ty) =
7

10
6

8
9

.
7
5
= β(F(x,y)).F(x,y).

Case 2: (x,y) = (2, 3). We have F(x,y) = 9
10 . Then

σ(Tx, Ty) =
7
10

6
8
9

.
9
10

= β(F(x,y)).F(x,y).

Case 3: (x,y) = (1, 3) or x = y. We have σ(Tx, Ty) = 0.
By symmetry, (2.1) holds for all x,y ∈ X. All hypotheses of Theorem 2.1 hold, so T has a unique fixed

point, which is u = 1 and σ(1, 1) = 0.
Mention that Theorem 1.4 is not applicable for any β ∈ F. Indeed, for x = 1 and y = 2, we have

σ(T1, T2) =
7
10
>

3
5
> β(σ(1, 2)).σ(1, 2).

4. Application

Let X = C([0, 1], R) be the set of real continuous functions defined on [0, 1]. Take the metric-like
σ : X×X→ [0,∞) given by

σ(x,y) =‖ (x− y) ‖∞= sup
t∈[0,1]

|x(t) − y(t)|,

for all x,y ∈ X. Then (X,σ) is a complete metric-like space. We consider the following integral equation

x(t) = P(t) +

∫ 1

0
S(t,u)f(u, x(u))du, t ∈ [0, 1], (4.1)
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where f : [0, 1]×R→ R and P : [0, 1]→ R are two continuous functions and S : [0, 1]× [0, 1]→ [0,∞) is a
function such that S(t, .) ∈ L1([0, 1]) for all t ∈ [0, 1].

Consider the operator T : X→ X defined by

T(x)(t) = P(t) +

∫ 1

0
S(t,u)f(u, x(u))du, t ∈ [0, 1]. (4.2)

Theorem 4.1. Suppose that the following conditions are satisfied:

(i) there exists η : X×X→ [0,∞) such that for all u ∈ [0, 1] and for all x,y ∈ X

0 6 |f(u, x(u)) − f(u,y(u))| 6 η(x,y)|x(u) − y(u)|,

(ii) there exists β : [0,∞)→ [0, 1) such that

lim
n→∞β(tn) = 1 implies lim

n→∞ tn = 0,

and ∥∥∥∥∥
∫ 1

0
S(t,u)η(x,y)du

∥∥∥∥∥∞ 6 β(‖ x− y ‖∞ + ‖ x− Tx ‖∞ + ‖ y− Ty ‖∞).
Then the integral equation (4.1) has a unique solution in X.

Proof. Clearly, any fixed point of (4.2) is a solution of (4.1). By conditions (i) and (ii), we obtain

|T(x)(t) − T(y)(t)| =

∣∣∣∣∣
∫ 1

0
S(t,u)[f(u, x(u)) − f(u,y(u))]du

∣∣∣∣∣
6
∫ 1

0
S(t,u)|f(u, x(u)) − f(u,y(u))|du

6
∫ 1

0
S(t,u)η(x,y)|x(u) − y(u)|du

6
∫ 1

0
S(t,u)η(x,y) ‖ x− y ‖∞ du

6 F(x,y)
∫ 1

0
S(t,u)η(x,y)du

6 F(x,y)β(F(x,y)),

where F(x,y) = ‖ x− y ‖∞+ ‖ x− Tx ‖∞ + ‖ y− Ty ‖∞. Then we have

‖ (T(x) − T(y)) ‖∞ 6 F(x,y)β(F(x,y)).

Thus for all x,y ∈ X, we obtain
σ((T(x), T(y))) 6 F(x,y)β(F(x,y)).

This implies that the hypotheses of Theorem 2.1 hold. Thus the operator T has a unique fixed point, that
is, the integral equation (4.2) has a unique solution in X.

We provide the following example illustrating Theorem 4.1.

Example 4.2. Consider the following functional integral equation

x(t) =
t2

1 + t2 +
1
27

∫ 1

0

u cos t
54(1 + t)

|x(u)|

1 + |x(u)|
du, (4.3)
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for t ∈ [0, 1]. Observe that this equation is a special case of (4.1) with

P(t) =
t2

1 + t2 , S(t,u) =
u

3(1 + t)
, f(t, x) =

cos t
18

|x|

(1 + |x|)
.

Consider the operator T : X→ X defined by

T(x)(t) = P(t) +

∫ 1

0
S(t,u)f(u, x(u))du, t ∈ [0, 1].

Moreover, take β : [0,∞)→ [0, 1) by the following

β(t) =
1
2

for t = 0 and β(t) =
t2 + 1
2t2 + 1

for t > 0.

Let η(x,y) = 1. For arbitrary fixed x,y ∈ R, we obtain

|f(t, x) − f(t,y)| = |
cos t
18

|x|

(1 + |x|)
−

cos t
18

|y|

(1 + |y|)
| 6

1
18

|x− y| 6 |x− y|

and ∥∥∥∥∥
∫ 1

0
S(t,u)η(x,y)du

∥∥∥∥∥∞ =
1
6
6 β(‖ x− y ‖∞ + ‖ x− Tx ‖∞ + ‖ y− Ty ‖∞).

By using Theorem 4.1, the integral equation (4.3) has a unique solution in C([0, 1], R).
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