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Abstract

In this paper, we introduce one multistep relaxed implicit extragradient-like scheme and another multistep relaxed explicit
extragradient-like scheme for finding a common element of the set of solutions of the minimization problem for a convex and
continuously Fréchet differentiable functional, the set of solutions of a finite family of generalized mixed equilibrium problems
and the set of solutions of a finite family of variational inequalities for inverse strongly monotone mappings in a real Hilbert
space. Under suitable control conditions, we establish the strong convergence of these two multistep relaxed extragradient-like
schemes to the same common element of the above three sets, which is also the unique solution of a variational inequality
defined over the intersection of the above three sets. ()2017 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, C be a nonempty closed convex
subset of H and P¢ be the metric projection of H onto C. Let T : C — C be a self-mapping on C. We
denote by Fix(T) the set of fixed points of T and by R the set of all real numbers. A mapping A: H — H
is called y-strongly positive on H, if there exists a constant ¥ > 0 such that

(Ax,x) = ¥|[x|?, Vx € H.
A mapping F: C — H is called L-Lipschitz continuous, if there exists a constant L > 0 such that

IFx—=Fyll <Llx—yl, wxyeC
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In particular, if L = 1 then F is called a nonexpansive mapping, if L € [0,1) then F is called a contraction. A
mapping T : C — C is called k-strictly pseudocontractive (or a k-strict pseudocontraction), if there exists
a constant k € [0,1) such that

T = Ty|* < [lx =yl +KI(IT-T)x = (I=Ty|?, vx,yeC.
In particular, if k = 0, then T is a nonexpansive mapping. The mapping T is pseudocontractive, if and
only if
(Tx—Ty,x—y) < |[x—yl>, VvxyeC.
T is strongly pseudocontractive, if and only if there exists a constant A € (0, 1) such that
(Tx—Ty,x—y) <Ax—y|% VxyecC.

Let A : C — H be a nonlinear mapping on C. The variational inequality problem (VIP) associated with
the set C and the mapping A is stated as follows: find x* € C such that

(Ax*,x—x*) >0, V¥xeC. (1.1)

The solution set of VIP (1.1) is denoted by VI(C, A).
There are many applications of VIP (1.1) in various fields. In 1976, Korpelevich [18] proposed an
iterative algorithm for solving VIP (1.1) in Euclidean space R™:

Yn = Pc(xn — TAXR),
XTL+1 - PC (XTL _T‘Ayﬂ.)/ vn 2 O/

with T > 0 a given number, which is known as the extragradient method. The literature on the VIP is
vast and Korpelevich’s extragradient method has received great attention given by many authors, who
improved it in various ways; see e.g., [7-9, 11, 13, 15, 21] and references therein.

On the other hand, let ¢ : C — R be a real-valued function, A : C — H be a nonlinear mapping and
® : C x C — R be a bifunction. In 2008, Peng and Yao [21] introduced the following generalized mixed
equilibrium problem (GMEP) of finding x € C such that

Oxy)+ey)—ekx)+Ax,y—x) =20, VyeC. (1.2)

We denote the set of solutions of GMEP (1.2) by GMEP(®, ¢, A). The GMEP (1.2) is very general in the
sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems,
Nash equilibrium problems in noncooperative games and others. The GMEP (1.2) contains GEP [8],
MEP [14] and EP [27] as particular cases.

It was assumed in [21] that © : C x C — R s a bifunction satisfying conditions (A1)-(A4)and ¢ : C = R
is a lower semicontinuous and convex function with restriction (B1) or (B2), where

(A1) O(x,x) =0, forall x € C;
(A2) O is monotone, i.e.,, O(x,y) +O(y,x) <0, for any x,y € C;
(A3) © is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup O(tz+ (1 —t)x,y) < O(x,y);

t—0*
(A4) O(x,-) is convex and lower semicontinuous for each x € C;

(B1) for each x € H and r > 0, there exists a bounded subset Dx C C and yx € C such that for any
z € C\ Dy,

Oz, y0) + 0lys) — 0(z) + ~(y —2,2—x) < 0;

(B2) C is a bounded set.
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Given a positive number r > 0, let T.%®) . H - C be the solution set of the auxiliary mixed equilibrium
problem, that is, for each x € H,

1
Tr(Q’(p)(x) ={yeC:0(y,z)+o(z)—oy)+ ;(y —x,z—y) >0,vz € C}.
In particular, if ¢ = 0 then Tr(g’q’) is rewritten as Tf) :H—C, e,

1
T9x) ={y e C:0O(y,2) +;(y—x,z—y) >0,vz € CL

Furthermore, let f : C — R be a convex and continuously Fréchet differentiable functional. Consider

the convex minimization problem (CMP) of minimizing f over the constraint set C
minf(x), (1.3)
xeC

(assuming the existence of minimizers). We denote by = the set of minimizers of CMP (1.3).

Motivated and inspired by the above facts, we introduce one multistep relaxed implicit extragradient-
like scheme and another multistep relaxed explicit extragradient-like scheme for finding a common ele-
ment of the set of solutions of the CMP (1.3) for a convex functional f : C — R with L-Lipschitz continuous
gradient VT, the set of solutions of a finite family of GMEPs and the set of solutions of a finite family of
variational inequalities for inverse-strongly monotone mappings in a real Hilbert space. Under suitable
control conditions, we establish the strong convergence of these two multistep relaxed extragradient-like
schemes to the same common element of the above three sets, which is also the unique solution of a
variational inequality defined over the intersection of the above three sets. We also refer readers to [1-
3,5, 6,12, 16] and references therein for some more related papers published recently.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and norm are
denoted by (-, -) and || - ||, respectively. Let C be a nonempty closed convex subset of H. We write x,, — x
to indicate that the sequence {x,} converges weakly to x and x, — x to indicate that the sequence {x,}
converges strongly to x. Moreover, we use w., (xn) to denote the weak w-limit set of the sequence {xn},
ie.,

Wy (Xn) ={x € H:xpn, — x for some subsequence {xn,} of {xn}}.

The metric (or nearest point) projection from H onto C is the mapping Pc : H — C which assigns to
each point x € H the unique point Pcx € C satisfying the property

—P = i f - ::d /C .
[[x —Pcx|| ylrelCHx y|| (x,C)

The following properties of projections are useful and pertinent to our purpose.
Proposition 2.1. Given any x € H and z € C, one has
(i) z=Pcx & (x—z,y—z) <0, Yy eC;
(i) z=Pcx & [x—z|> <Ix—yl?—lly—zl* vy e C
(iii) (Pcx—Pcy,x—Yy) = |[Pcx—Pcy||?, Yy € H, which hence implies that P is nonexpansive and monotone.

Definition 2.2. A mapping T : H — H is said to be firmly nonexpansive, if 2T — I is nonexpansive, or
equivalently if T is 1-inverse strongly monotone (1-ism),

(x—y,Tx—Ty) > ||Tx—TyH2, vx,y € H,

alternatively, T is firmly nonexpansive, if and only if T can be expressed as
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1
T=2(1+9),

where S : H — H is nonexpansive, projections are firmly nonexpansive.
Definition 2.3. A mapping F: C — H is said to be

(i) monotone, if
(Fx—Fy,x—y) >0, Vx,yeC

(ii) n-strongly monotone, if there exists a constant 1 > 0 such that

(Fx—Fy,x—y) >nlx—yl*>, VxyeC;

(iii) a-inverse-strongly monotone, if there exists a constant « > 0 such that

(Fx—Fy,x—y) > oc||Fx—Fy||2, vx,y € C.

It can be easily seen that if T is nonexpansive, then I — T is monotone. It is also easy to see that the
projection Pc is 1-ism. Inverse strongly monotone (also referred to as co-coercive) operators have been
applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if F : C — H is a-inverse-strongly monotone, then F is monotone
and %-Lipschitz continuous. Moreover, we also have that, for all u,v € Cand A > 0,

(T =AF)u— (I—AF)V||* < [lu—v||* + A(A — 2«) ||Fu — Fv]|%.

So, if A < 2«, then I — AF is a nonexpansive mapping from C to H.
Next we list some elementary conclusions for the MEP whose solution is denoted by MEP(O, ¢).

Proposition 2.4 ([14]). Assume that @ : C x C — R satisfies (Al)-(A4) and let @ : C — R be a proper lower
semicontinuous and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a

mapping T H > Cas follows:

1

or all x € H. Then the following hold:
8
(i) for eachx € H, TL%) (x) is nonempty and single-valued;
(i) T is firmly nonexpansive, that is, for any x,y € H,

o, o, o, o,
[T =Ty P < (R =Ty x —y);

(iii) Fix(T.%®)) = MEP(O, ¢);
(iv) MEP(O, @) is closed and convex;

(v) |TEO@)x —TLO@)y 2 < s=t(Tl@@)y _T(@@)y TIO®) ) forall s,t > 0and x € H.

S

Definition 2.5. A mapping T : H — H is said to be an averaged mapping, if it can be written as the
average of the identity I and a nonexpansive mapping, that is,

T=(1-a)l+aS,

where o« € (0,1) and S : H — H is nonexpansive. More precisely, when the last equality holds, we
say that T is a-averaged. Thus firmly nonexpansive mappings (in particular, projections) are 1-averaged

mappings.
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Definition 2.6 ([4]). Let S, T,V : H — H be given operators.

(@) T =(1-a)S+ aV for some « € (0,1) and if S is averaged and V is nonexpansive, then T is
averaged.

(ii) T is firmly nonexpansive, if and only if the complement I — T is firmly nonexpansive.

(iii) T = (1—0)S+ «V for some o € (0,1) and if S is firmly nonexpansive and V is nonexpansive, then
T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the mappings
{Ti}.lN:1 is averaged, then so is the composite T; - - - Ty. In particular, if Ty is xj-averaged and T, is
op-averaged, where «, &y € (0,1), then the composite T T, is x-averaged, where o« = 1 + &g — oxq 0tp.

(v) If the mappings {T;}}\ ; are averaged and have a common fixed point, then
N
() Fix(Ty) = Fix(Ty - - - T).
i=1
The notation Fix(T) denotes the set of all fixed points of the mapping T, that is, Fix(T) = {x € H :
Tx = x}.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.
Lemma 2.7. Let X be a real inner product space. Then there holds the following inequality
e+ yl? < I +2y,x+y), vxyeX
Lemma 2.8. Let H be a real Hilbert space. Then the following hold:
@) [x=yl? = x> = l[yl* = 2(x —y,y), for all x,y € H;
(b) [Ax+ wy||? = Allx||? + wly|® — Apllx —y||? forall x,y € Hand A\, € [0,1] with A\ +p = 1;
(c) If {xn} is a sequence in H such that x,, — x, it follows that

limsup [[xn —y||* =limsup [Jxn — x|+ x—y[? vy e H.

n—oo n—oo

It is clear that, in a real Hilbert space H, T : C — C is k-strictly pseudocontractive, if and only if the
following inequality holds:

1-k
(Tx =Ty, x—y) < [lx—y|? = ——|(I-Thx=(I-Thy|?, ¥xyeC.

Lemma 2.9 ([20, Proposition 2.1]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T:C — C be a mapping.
(i) If T is a k-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition

1+k
1-k

Tx=Ty|| < Ix=yll, vxyeC

(i) If T is a k-strictly pseudocontractive mapping, then the mapping 1 —T is semiclosed at 0, that is, if {xn} is a
sequence in C such that x, — X and (I1—T)xn — 0, then (I—-T)Xx = 0.

(iii) If T is k-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is closed and convex so that the
projection Priy (1) is well-defined.
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Lemma 2.10 ([26]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C be a
k-strictly pseudocontractive mapping. Let 'y and & be two nonnegative real numbers such that (y + 6)k < y. Then

[y(x —y) +8(Tx —Ty)|| < (v +8)[x—vy|, ¥xyeC.

Lemma 2.11 ([17, Demiclosedness principle]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let S be a nonexpansive self-mapping on C. Then 1 —S is demiclosed. That is, whenever {xn} is a sequence
in C weakly converging to some x € C and the sequence {(I1 — S)xn} strongly converges to some vy, it follows that
(I—S)x =vy. Here 1 is the identity operator of H.

Lemma 2.12. Let A : C — H be a monotone mapping. In the context of the variational inequality problem the
characterization of the projection (see Proposition 2.1 (i)) implies

ueVIC,A) < u=Pc(u—AAu), A>0.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations.
Let A be a number in (0,1] and let p > 0. Associating with a nonexpansive mapping T : C — C, we define
the mapping T* : C — H by

T :=Tx — AuF(Tx), ¥x e C,

where F : C — H is an operator such that, for some positive constants k,n > 0, F is k-Lipschitzian and
n-strongly monotone on C, that is, F satisfies the conditions:

[Fx —Fy|| < k[x—y|, and (Fx—Fy,x—y) =nlx—yl?
for all x,y € C.

Lemma 2.13 ([25, Lemma 3.1]). T? is a contraction provided 0 < p < i—’;, that is,

||T)‘X—T7‘y\| < (1—=M)|lx—vyll, ¥x,yeC,

where T =1— /1 —u(2n — pux2) € (0,1].
Lemma 2.14 ([24, Lemma 2.1]). Let {an} be a sequence of nonnegative real numbers satisfying
nt1 < (1—wn)an +wndn +1n, VN >0,

where {wn }, {dn} and {rn} satisfy the following conditions:

(i) {wn} C[0,1] and Zf:o Wn = 00;

o0

n=0 Wnldn| < oo;

(ii) either limsup, ,  dn <0or )
(iii) Tn = 0foralln >0,and ) 7 ;mn < c0.
Then, im0 . = 0.

Lemma 2.15 ([19]). Assume that A is a y-strongly positive bounded linear operator on H with 0 < p < ||A[| =L
Then ||I—pA| < 1—pY.

Let LIM be a Banach limit. According to time and circumstances, we use LIM, a,, instead of LIMa for
every a = {an} € 1. The following properties are well-known:

(i) forallm > 1, an < cn implies LIMpan < LIMpcp;
(ii) LIMnan4+~n = LIMyay, for any fixed positive integer N;

(iii) liminf, ;o an < LIMpan <limsup,, ,  an for all {a,} € 1*°.
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The following lemma was given in [23, Proposition 2].

Lemma 2.16. Let a € R be a real number and let a sequence {an} € 1°° satisfy the condition LIMy an, < a for all
Banach limit LIM. If limsup,, _, (an41—an) <0, then limsup,,_, an < a.

Recall that a set-valued mapping T: D(T) C H — 2M is called monotone, if for all x,y € D(T), feTx

and g € Ty imply
(f—g,x—y) >0.

A set-valued mapping T is called maximal monotone, if T is monotone and (I+AT)D(T) = H for each
A > 0, where I is the identity mapping of H. We denote by G(T) the graph of T. It is known that a
monotone mapping T is maximal, if and only if for (x,f) € Hx H, (f—g,x—y) > 0 for every (y, g) € G(T)
implies f € Tx. Next we provide an example to illustrate the concept of maximal monotone mapping.

Let A : C — H be a monotone and Lipschitz-continuous mapping and let Ncv be the normal cone to
Catve(C,ie,

Nev={ueH:{(v—p,u) >0, Vp € CL

Define
=~ [ Av+Ney, ifveC,
Tv= { 0, ifveC.

Then, it is known in [22] that T is maximal monotone and 0 € Tv if and only if v € VI(C, A).

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H and let M, N be two integers.
Throughout this section, we always assume the following:

e I : C — His a k-Lipschitzian and n-strongly monotone operator with positive constants k,n1 > 0,
and f: C — R is a convex functional with L-Lipschitz continuous gradient Vf;

e A;: C — H is ni-inverse strongly monotone for eachi = 1,---,N, and B; : C — H is p;-inverse
strongly monotone for eachj=1,--- ,M;

e A is a y-strongly positive bounded linear operator on H with ¥ € (1,2) and V : C — H is an
l-Lipschitzian mapping with 1 > 0;

e O; : C x C — Ris a bifunction satisfying conditions (A1)-(A4) and ¢; : C — RU {400} is a proper
lower semicontinuous and convex function with restrictions (B1) or (B2) foreachj =1,--- ,M;

° O<u<%‘and0<71<'twithfr:1—\/1—u(2r|—pu<2);

o Pc(I—A¢VAf) = s¢I+ (1 —s¢) T, where Ty is nonexpansive, sy = Z*Z“L € (0, %) and A¢ : (0,1) — (O, %)
with lim¢_,0 At = % ;
o Pc(I—AnVSf) = sy I+ (1 —sn)Tn, where T, is nonexpansive, s, = % € (0, %) and {An} C (0, %)

with im0 A = % ;

e AN :C > Cisa mapping defined by ANx = Pc(I —ANtAN) - Po(I—AtAr)x,t € (0,1), for
{}\"L,t} C [a‘i.l bl] C (Olzni)/ i= 1/ e /N;

e AN : C — C is a mapping defined by ANx = Pc(I —AnnAN) -+ Pc(I—AnA7)x with Ajn} C
[ai, bi] C (0,2n;) and limp 0 Ain = Ay, foreachi=1,--- ,N;

o A]t\/l : C — C is a mapping defined by Alt\/lx = Tr(g,“f’(pM)(I —TM,tBm) - ~TT(1(21’¢’1)(I —T14B1)x,t €
(0/1)/ for {‘rj,t} - [Cj/ d]] C (0/2H])/ J = 1/ e /M/
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e AM: C — Cis a mapping defined by AMx = Tﬁﬁﬁf""w(l —TMnBM) - TOve (1 —T1nB1)x with

{rjn} Clcj, d;] € (0,2y;) and limyy o0 T, =7, foreachj =1,--- ,M; o
e ()= ﬂj’\ilGMEP(@j, @;,B;) N ﬂiN:1VI(C, Ai) N E # () and Pg, is the metric projection of H onto 2;
e {an} C (0,1, {sn} C (0,min(}, |A|~!}) and {St}te(o,min{l,f%jl}) C (0, min{3, [|[A[|71}).
Next, put

A =Pe(I—AADPC(T—A14A 1) - Pe(I—ApAy), Vi€ (0,1),
AL =Pc(I=AinAd)Pc(I=Ai1nAi 1) Pc(I=A1nAl), Vn >0,
A, =T L1y BT (L= 1y, Byog) - TV (1—11,B1), Wt e (0,1),

Tt Ti—1,t Tt
~ 0;,0; 051,05 o1,
A =T (= BT O (T =15 g By 1) TP (T =11 0By), V>0,

fori=1,---,N,j=1,---, M, A(t’ = A% =T and A% = A(T)L = I, where I is the identity mapping on H.

It is clear that Fix(Ty) = Fix(T,,) = Z. It is also easy to see that Al:C—C, AL :C—C, Ai :C—=C
and A}, : C — C are all nonexpansive.

In this section, we introduce the first multistep relaxed implicit extragradient-like scheme that gener-

ates a net {xt}, € (Omin{1, 2% ) in an implicit manner:

Om, OM-1,9M—
Uy = TT(MI\;l @M)(I - TM,tBM)TT(MILAl,tl om) (I _TM—LtBM—l) B
oy,
T @ (111, B1)xe, (3.1)

Vi = Pc(I—=ANAANIPc(I—AN—1tAN—1) - - Pc(I—= At Aq)uy,
Xt = PC [(I — StA)TtVt + St(t’YVXt + (I — tp.F)TtVt)]

We prove the strong convergence of {x¢} as t — 0 to a point X € 2 which is a unique solution to the VIP
(A=Dx,p—%x) >0, Vpe. (3.2)

For arbitrarily given xg € C, we also propose the second multistep relaxed explicit extragradient-like
scheme, which generates a sequence {x,,} in an explicit way:

OMm, Om-_1, _
Un = TY(MAT/LL o (I - rM,nB7\/[)-]}(7\/1)\7/[1,111 o) (I - TM_L“BM_l) B
01,
T‘r(Lnl °)(1— T1,nB1)Xn,
Vi = Pc(I—=ANnAN)Pc(I=AN_1nAN-_1) - Pc(I—ApnAr)un, (3.3)

Yn = anYVxn + (I - ‘an-F)TnVn/
Xnt1 = PclI=snA)Tovn +snynl, ¥n >0,

and establish the strong convergence of {xn} as n — oo to the same point X € (2, which is also the unique
solution to VIP (3.2).

Now, for t € (0, min{1, 2=

T—vyl

), and st € (0, min{%, |A||~1}), consider a mapping Q¢ : C — C defined by
Qix = Pcl(I— st A)TANAMx 4 s (tyVx + (I — tuF) TL AN AMX)], Vx € C.

It is easy to see that Q. is a contractive mapping with constant 1 — s¢(y —1 + t(t —yl)). By the Banach
contraction principle, Q¢ has a unique fixed point, denoted by x¢, which uniquely solves the fixed point
equation (3.1).

We summary the basic properties of {x.}. The argument techniques in [10] can be extended to develop
the new argument ones for these basic properties whose proofs will be omitted.

Proposition 3.1. Let {x} be defined via (3.1). Then
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(i) {x¢} is bounded for t € (0, min{1, 2 = Yl})

(ii) limg g [Ix¢ — Texe|l = 0, limy_yo |[xt — ANx¢|| = 0 and limy_q ||} — AMx¢|| = 0 provided lim¢_0 Ay =
g (& lim¢,os¢ =0);

(i) x¢ : (O, min{1, 2 — yl}) — H is locally Lipschitzian provided s¢ : (0, min{1, 2 — yl}) — (0, min{%, A~

is locally szschztzzan At s (O, min{1, 2 - vl}) lai, bil is locally Lipschitzian for eachi =1,--- ,N and
: (0, min{1, 2

— yl}) [cj, d;] is locally Lipschitzian for eachj =1,--- ,M;

) into H provided

(iv) xt
25 1

s¢ ¢ (0, min{1, J}) — (0, min{~, [|A|7Y)
T—vl 2

Y1) — [ai, byl is continuous for eachi=1,--- ,N, and

is continuous, ?\lt (0 min{1, 2
: (0, min{1, 2

/ T— yl
Y1) — [cj, dj] is continuous for eachj =1,--- , M.

/ T— yl
We prove the following theorem for strong convergence of the net {x{} as t — 0, which guarantees the
existence of solutions of the variational inequality (3.2).

Theorem 3.2. Let the net {x} be defined via (3.1). If lim¢_,0 s¢ = 0, then x converges strongly to a point X € (2
as t — 0, which solves the VIP (3.2). Equivalently, we have P (21 — A)X = X.

Proof. We first note that we have the uniqueness of solutions of the VIP (3.2) which is indeed a conse-
quence of the strong monotonicity of A —1I.
Next, we prove that x; — % as t — 0. Observing Fix(T¢) = 5, from (3.1) we write for given p € (2,

Xt =P =Xt — Wt +W¢—P
=xt — Wi + (I = st A)Teve + s¢(tyVxy + (I —tuF)Teve) — p
=xt — Wit + (I —s¢A)(Teve — Tep) + seltyVxe + (I — tuF) Teve — pl + s¢(I— A)p
=xt =W + (I =5¢A) (Teve — Tep) + selt(y Ve — uFp) + (I — tpF) Teve — (I — tuF)pl
+s¢(I—A)p,

where wy = (I —s¢A)Tyve + s¢(tyVxe + (I —tuF)Tyve). Then, by Proposition 2.1 (i), we have

Xt —PH2 (xt =W, xt —p) + (I = st A)(Teve — Tep), x¢ —p) + se[t{yVxe — uFp, x¢ —p)
+ (I —tuF)Teve — (I—tuF)p, xe —p)l + s ((I— A)p, xt —p)
< (1= se¥)lIxe — I + sel(1 = t0)||xe — plI> + tylxe — plI?
+t{((vV — puF)p, x¢ —p)l +s¢{(I = A)p, x¢ —p)
=1 —s¢(y =1+ tlr—y)]fxe —pl* + se(H{(yV — uF)p, x¢ —p) + (I— A)p, x¢ — P)).

Therefore,
1

y—1+t(t—vyl
Since the net {xt}t € (0,min{1,22) is bounded (due to Proposition 3.1 (i)), we know that if {t,} is a subse-

Ixe —pl* < )(t<(W—uF)p,xt—p>+<(I—A)p,xt—p>)- (3.4)

quence in (0, , T_Y]-}) such that t, — 0 and x¢, — x*, then from (3.4), we obtain x, — x*. Let us
show that x* € . Indeed, by Proposition 3.1 (ii), we know that limp o ||, — Tt, Xt, || = 0. Observe that

[Pc(I—Ae, VE)xe, —xt, || = lIstaxt, + (1 —s¢, )T X, — X, ||
= (1= st,) [ Tep Xt — Xt ||
< ||Ttnxtn 7th||/
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where s¢, = # e (0, %), for A, € (0, %). Hence we have

2 2
HPC(I — KVf)th —thH S HPC(I — KVf)th — PC(I —)\thf)thH + HPC(I — }\thf)th —thH

2
< ’ (I — in)th — (I —}\thf)thH + HPC(I —)\thf)th —thH

2
< (i _}\tn)HVf(th)H + ”Ttnxtn _th”'
From the boundedness of {xy, }, st, — 0 (& A, — 2) and || Ty, x¢, — Xt || = 0, it follows that
. 2 R : 2
|Ix* —Pc(I—=Vf)x*|| = lim ||x¢, —Pc(I—=Vf)x¢, | =0.
L n—o0 L

So, x* € VI(C,Vf) = &. .
Furthermore, it can be shown that A{nxtn — x*, Aftug, — X", w, — x* and v, — x* where
jel{l,---,M}, me{l,---,N}. Let

=~ | Anv+Nceyv, ve(,
Tm\)—{@/ Ve,

where m € {1,--- ,N}. By a standard argument, we can show that
(v—x*,u) > 0.

Since T, is maximal monotone, we have x* € Tnle and hence x* € VI(C,A),m = 1,2,---,N, which
implies x* € ﬂﬁleI(C, Am). Next we prove that x* € ﬂjl\ilGMEP(@j, ®j, Bj). Since A}cnxtn — Tr[ﬁjn""”(l -
15,6.B5)A) xt,.,j €{1,--+, M}, we have

n

J j—1
Atnxtn - A’cTl Xty

O5(AL xe,,y) + @5 (y) — @5(A) xe,) + (BjAL xe,y — AL xi,) + (y— AL xq,, ) >0

Tjtn

By (A2), we have

j j—1
Atnxtn — Atn Xt

05 (y) — 05 (A xe,) + (BjA] "xe, y— AL xe) + (Y — A xe,, ) > 05(y, A xi,).

Tjtn
Letz¢ =ty + (1 —t)x* forall t € (0,1] and y € C. This implies that z; € C. Then, we have

<Zt - Ainxtn, let> = P; (Ainxtn) — Q5 (z¢) + <Zt - Ainxtn, Bj2t> - <Zt - Ajtnxtn, BjA];lth)

A] Xty — Ajflxtn :
th th > + @] (Zt/ A‘]tnxtn)

Az — AN x ,
< t th Min Tj,tn
= @ (A)tnxtn) — ©j (z¢) + (z¢ — Ainxtn, Bjz¢ — BjA{nXtTJ

J j—1
Atnxtn - Atn Xt

j AJ AL j
+ (20 = By, X, BjAL e, = BiAL Txe) — (20 — Ay xey,

)

Tjtn
+ @J (Zt, A{nxtn).

Note that HBinnxtn — Binzlxtn | = 0 as n — oo. Furthermore, by the monotonicity of Bj, we obtain
(zy — AJtnth, Bjzy — BjAJtnxtn> > 0. Then, by (A4) we obtain

(zt =X, Bjzt) = @j(x") — @j(zt) + Oj(z¢, x™). (3.5)
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Utilizing (A1), (A4) and (3.5), we obtain

0= 0j(z¢, z¢) + @j(zt) — @j(z¢)
<105(zt,y) + (1 =1)Oj(z¢, x™) + to;(y) + (1 —t)@; (x™) — @j(zt)
< tO5(ze,y) + @5 (y) — @j(zd)] + (1 —t)(ze — X7, Bjzy)
= t[Oj(zt,y) + 05 (y) — @j(z)] + (1 = t)t(y — x*, Bjzy),
and hence
0 < 0j(ze,y) + @j(y) — @j(z¢) + (1 —t){y —x", Bjzy).
Letting t — 0, we have for eachy € C,

0 < O;(x",y) + @j(y) — @;j(x*) + (y —x*, Bjx™).
This implies that x* € GMEP(0;, ¢;, Bj) and hence x* ﬂj’\ilGMEP( Oj, ¢j, Bj). Therefore,
x* € NM,GMEP(65, ;, B;) NNIL, VI(C, Ay NE = Q.

Next, we prove that x; — % as t — 0. First, let us assert that x* is a solution of the VIP (3.2). As a
matter of fact, since

Xt = Xt — Wt + (I — StA)TtA.lt\IAZEVlXt + St(tYVXt + (I — tHF)TtAtNA.]t\AXt),
we have
Xt — TtAtNAltlet =Xt —W¢ + St(I — A)TtAtN Ailet + Stt('YVXt — }/L‘FTJ[/\:T[\J AJTC\AXt).

Since T;, A} and AM are nonexpansive mappings, I — T AN AM is monotone. So from the monotonicity
of I - TLANAM, it follows that, for p € (2,

Xt — Wi, Xt —P) + st (I = A)TLANAMx, ¢ —p) + set(yVxe — WFTL AN AM, x¢ —p)
< se((T— A)T AN AMxy, ¢ — p) + set(yVxe — RFTLAY AMx, x¢ — )
= s (I—A)xe, xe —P) + st ((I— A) (T ANAM — Dxe, x¢ —p)
+ set{yVxe — uFTtAtN Af[v{xt,xt —P).

0 < (I-TANAM)x( — (I =T ANAM)p, x¢ —p) = (I = TLANAM)x, x¢ — )
=

This implies that
(A=Dxe,xe—p) < ((I—A) (Tt/\][\1 A?A — Dx¢, x¢ —p) + t{yVx¢ — uFTtAtN Ai\/lxt,xt —p).

That is,
((A=TDxe,x¢ —p) < ((T—A)(Teve —x), x¢ —p) + t{yVxe — uFTeve, x¢ — ). (3.6)

Now, replacing t in (3.6) with t,, and letting n — oo, noticing the boundedness of {yVx, — uFT¢, vy, } and
the fact that (I — A)(T¢, vi,, —Xt,,) — 0 as n — oo, we obtain

((A—=T)x*,x*—p) <O0.

That is, x* € 2 is a solution of the VIP (3.2), hence x* = X by uniqueness. In summary, we have proven
that each cluster point of {x.} (as t — 0) equals X. Consequently, xy — % as t — 0. O

Now, we prove the following result in order to establish the strong convergence of the sequence {xn}
generated by the multistep relaxed explicit extragradient-like scheme (3.3).
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Theorem 3.3. Let {xn} be the sequence generated by the explicit scheme (3.3), where {otn} and {sn} satisfy the
following condition:

(C1) {an} C (0,11, {sn} C (O, %) and o, — 0, sp — 0asn — oo.
Let LIM be a Banach limit. Then
LIMp ((A —DX,X—xn) <0,

where X = limy_,o+ x¢ with x¢ being defined by
xt = Pel(I— st A) TANAMx + s (ty Vx + (I — tuF) TAN AMx )], (3.7)
where T, AN, AM . C — C are defined by

2
Tx =Pc(I— tVf)x,

ANx = Pc(I=ANAN) -+ Pe(I— A A7)
and

AMx = TP (L -1y Bag) - TV (1- 1By )x,

for Ay € lag, bi] € (0,2n3),i=1,--- ,Nandrj € [¢j,d;] C (0,215),j =1,--- , M.

Proof. First, note that from the condition (C1), without loss of generality, we may assume that 0 < s, <
|A||7! for all n > 0. Let {x(} be the net generated by (3.7). Since T, AN and AM are nonexpansive
self-mappings on C, by Theorem 3.2 with Ty =T, AtN = AN and AIEV[ = AM | there exists lim¢_,0x¢ € Q.
Denote it by X. Moreover, X is the unique solution of the VIP (3.2). From Proposition 3.1 (i) with Ty =
T, AtN = AN and AZt\A =AM we know that {x{} is bounded and so are the nets {Vx}, {AMx¢}, {ANAMx}
and {FTANAMx,}.

First of all, let us show that {xy,} is bounded. To this end, take p € (2. Then we get

[yn =P = lanyVxn + (I— canpF) Tn AN AMX, —p]|
= [lotn (YVxn — 1Fp) + (I — o tF) To AN AN — (I — an uF) To AN AN p ||
< oanYUxn =Pl + anl|(yV — uF)p| + (1 — anT) X0 — ||
= (1 —on(T=y))Ixn =Pl + an | (yV —uF)pl,
which together with Lemma 2.15, implies that

[xnt1 =Pl = [[PcllI— STIA)TT'LAT]:IAT]\LAX“ + snynl —pl|
< (1= snA)To AN A %0 + Bryn — Pl
= (1= sn A) T AN AN xn — (1= s A) TR AN AP + s0 (Yn — P) + sn(I— A)p||
< (1= sn A) T AR AN i — (1= sn A)T AT AR D[ + s [[yn — Pl + snllT—All[Ip]
< (T =sn¥)|xn —pll +snl(l = on(t—yD)[[xn — Pl
+ o || (YV — uF)p ||l + sn [[T— All|lp]l
S (@ =sn(¥y =1D)lxn =Pl + snll|(¥V —uF)p[|+ [I-Al/p])
Y [(vV— th_Dll + [IT=Alllpll
v—1

= (1=sn(y =Dlxn =Pl +sn(¥

| [(yV—uF)pl + HI—AHHPH}
7 ?_1 .

< max{|xn —p|

By induction

| [(yV —uF)p| + [T —AHHPII}

[Pen =Pl < max{][xo —p| v 1

, Yn>0.
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This implies that {xn } is bounded and so are {Vxn}, {un}, {vn},{FTnvn} and {yn}. Thus, utilizing the control
condition (C1), we get

Hxn+1 - TnVnH = HPC[(I - SnA)Tnvn + Snyn] - TnvnH
< H(I - SnA)TnVn + Snyn - TnVnH
=sn|lyn —ATavn| = 0 asn — co.

One can show that
—~ 2
I TANAMx — TR ANAM || < IANAM X, — ANAMY [+ M|i —Anl, (3.8)
where sup, - {L||Pc(I— 2VE)vn || + 4[| VE(vn) || + Llvall} < M for some M > 0. Also it is not difficult to
derive that

N
AN AMx — ANAM x| < Mo Y~ N = Al + 1AM — AN x|, (3.9)
i=1
where supn>O{Z{\1:1 [ALATIAMX 1} < My for some Mg > 0. Observe that

M
[AM X — ANl < My ) Ir5 =Ty, (3.10)
j=1

where sup,, 5o{3" M, [|B; A1 xn || + %HTT(?J"“’”(I —75B§) A Txy — (1—75B;) A1 Ixn |1} < My for some M >
0. In terms of (3.8), (3.9), (3.10) we calculate

—~2
[ TANAMx — TR ANAM | < IANAMx — ANAMS |+ M|E — A

N
—~ — 2
< [ AMx, — AMxL |+ Mo g : At —Apnl+ M'f — Al
1=
<M ]; [t —15,n] + Mo ;—1 A=Al + MIZ = Agl.

Consequently,, it is not hard to find that

I TANAMx ¢ — x| < [[TANAMx — TANAMx |
+ ITANAM X, — TR ANAMS T+ [T AN AM Y — x|

M N
< e = xnll M1 D5 —Tinl+Mod_ A —Apnl (3.11)
j=1 i=1
_2
+ M|f —Anl+ HTnVn _Xn+1||

=[xt —xn| + €n,

—~ M —~ N —~
where €, = My Z]-:1 Ir5 —7iml + Mo i AL —Aynl + MI% —Anl+ [|[Thvn —xn41|l = 0 as n — co. Also
observing that A is strongly positive, we have

(Axt — Axn, Xt —Xn) = (A(Xt —Xn), Xt —Xn) = V||xt — xn||2. (3.12)

For simplicity, we write wy = (I — seA)TANAMx + s (tyVxe + (I — tuF) TANAMx,). Then we obtain
thatxy = Pcw; and
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Xt — Xni1 = Xt — Wi + (I — st A) TANAMx + s (ty Ve + (I —tuF) TANAMX) —xpiq
= (I—s¢ A)TANAMx, — (T —s¢A)xnq1 + se(tyVxe + (I —tuF) TANAMx, — Ax 1)
+ Xt — wy.
Applying Lemma 2.7, we have
[t = Xna1l|? < [(T= st A)TANAMx, — (I — i A) x|
+ 25 (TANAMx, — t(uFTANAM
—YVxt) — AXni1, Xt — Xn+1) +2(Xt — Wi, Xt — Xn41)
< (I — st A)TANAMx — (T — s¢A)xn 1) (3.13)
+ 25 (TANAMx —t(WFTANAM X —yVxt) — AXnp1, Xe — Xnt1)
<(1- StT/)ZHTANAMXt —Xn+1 ||2 + 25t<TANAMXt —Xt, Xt = Xn11)
- ZStt<pFTANAMxt —YVXt, Xt —Xn+1) + 28t (Xt — AXn41, Xt — Xnt+1)-
By using (3.11) and (3.12) in (3.13), we obtain
[t —Xn+1 ”2 <(1- StT/)zHTANAMXt —Xn+1 HZ + 23t<TANAMXt —Xt, Xt — Xn+1)
+ 28t (yVx¢ — WFTANAMx,, x¢ — Xn+1) + 28t (Xt — AXn41, Xt — Xn+1)
< (1= s¢9)2([Ixe — xn || + €n)? + 25¢ [ TANAMx . —x¢ ||| x¢ — Xnp1 ]|
+ 2s¢t|ly Ve — WFTANAMx|[1xe — Xmt || 4 25¢ (Xt — AXng1, Xt — Xng1)
= (577 = 2s)¥[xe = xn[* + [Ixe —xn
+ (1= s¢7)2)|xt — xn[len 4 €3]+ 25¢ [TANAMx —x¢ || [Ixe — Xn 1l
+ 25ty Vxe — WFTANAM S [[1xe — Xnp1]] 4 25¢ (6 — AXng1, Xt — Xnt1)
= (537 — 250)¥[xe = xnll* + e = xnl® + (1= s¢¥)?2]x¢ — xnlen + €3]
+25¢ [ TANAMx, — x|l Ixe — Xt || + 251t ][y Ve — tFTANAMx % — X1 |
+ 28t (Xt — AXn 41, Xt — Xni1) (3.14)
< (829 — 25¢) (Axt — Axn, Xt — Xn) + [[xe — xn||2 4 (1 — s¢7)2[2]|x¢ — Xn || €n + €2]
4 25¢[[TANAMx — x |[[|xe = Xng || + 2set ][y Vxe — uFTAN AM[]1xe — X |
+2s¢ (Xt — AXnt1, Xt — Xn41)
= sp¥ (Axe — Axn, X = Xn) + [xe = xn[? + (1= s¢7)? 2] x¢ — xnllen + €3]
+28¢ [ TANAMxy —x¢ || [[xe — Xn1 || + 2set|[ Y Ve — iFTAN AMx[[[xe — x|
+ 2s¢ [(xt — AXn1, Xt — Xn41) — (AXt — AXn, Xt — Xn )]
= sV (A(xe —xn), xe = xXn) + [xe = xn >+ (1 = s07)?2][x¢ —xn[[en + €3]
+ 25 [[TANAMx — x¢ |[[Ixe = Xng1 || + 25et ][y Vxe — uFTAN AMx[1x ¢ — Xnp |
+ 28t [{((IT—A)xe, Xt —Xn41) + (A (Xt —Xn+1), Xt —Xn+1) — (A (Xt —Xn), Xt —Xn ).
Applying the Banach limit LIM to (3.14), from e,, — 0 we have
LIMn |[x¢ — Xn1]]* < sTYLIMn (A (x¢ — Xn), Xt —Xn) + LIMp [[x¢ — xn ||?
+25¢ [ TANAMx ¢ —x¢ |[LIMp |[x¢ — X || + 2se ][y Ve
— uWFTANAM ILIMp [|x¢ — X1 | (3.15)

+25¢ [LIMn ((I— A)xt, Xt —Xn41) + LIMn (A(xt = Xn41), Xt — Xn41)
—LIMn (A(xt —xn), xt —xn)l.
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Utilizing the property LIM;,,a,, = LIM, a, 41 of the Banach limit in (3.15), we obtain
LIMn (A — Dx¢, %t —Xn) = LIMn ((A — I)x¢, X¢ — Xn41)

< %LIMH(A(M —Xn), Xt —Xn)
1 2 2
—s—E[LIMont—XnH —LIMn|[xt = Xnq1]”]
+ [ TANAMx =X [LIMy [[xt — x| (3.16)

+tllyVxe — tFTAN AMx |[LIMy, [ x4 — xn |
+ LIMpn (A(xt —Xng1), Xt —Xna1) — LIMn (A (Xt —Xn), Xt — Xn)
< SVLIMy (A e = xn), x4 — ) + [ TANAMxg = x LIM e = x|
+tllyVxe — tFTAN AMx[LIMp [ x¢ — xn |-
Sinceast — 0,
st{A(xe —Xn), Xt —Xn) < s¢l|A][|xe — xn]|? < s¢K =0, (3.17)

where ||A[|[|xt —xn ||> <K,
[TANAMx, —x¢|]| = 0, and t|yVxi —uFTANAMX | -0 ast—0, (3.18)
we conclude from (3.16), (3.17), (3.18) that
LIM;, ((A — DX, X —xn) < limsupLIMy ((A — I)x¢, X¢ —Xn)

t—0

St

< limsup ZVLIMn(A(Xt —Xn), Xt — Xn)

t—0
+limsup || TANAMx¢ — x¢||[LIMp, || x¢ — X |

t—0
+ lim supt||yVx¢ — uFTAN AMx ||[LIMy, [|x¢ — x|
t—0
=0.
This completes the proof. O

Now, using Theorem 3.3 we can establish the following strong convergence of the sequence {xn}
generated by the multistep relaxed explicit extragradient-like scheme (3.3) to a point X € (2, which is also
the unique solution of the VIP (3.2) whose proof is omitted.

Theorem 3.4. Let {xn} be the sequence generated by the explicit scheme (3.3), where {otn} and {sn} satisfy the
following conditions:

(C1) {an} € (0,11, {sn} C (O, %) and o, — 0, sp = 0asn — oo;

(C2) Y gsn = oo

If {xn} is weakly asymptotically reqular (i.e., Xn+1 —Xn — 0), then x,, converges strongly to a point X € (2, which
is the unique solution of the VIP (3.2).
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