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Abstract

This paper is devoted to present the approximate solutions with helping of an efficient numerical method for the non-
linear coupled system of dynamical marriage model in the fractional of Riemann-Liouville sense (FDMM). The proposed system
describes the dynamics of love affair between a couple. The proposed method is dependent on the use of useful properties of the
operational matrices of Bernstein polynomials. The operational matrices for the fractional integration in the Riemann-Liouville
sense and the product are used to reduce FDMM to the solution of non-linear system of algebraic equations using Newton
iteration method. Numerical simulation is given to show the validity and the accuracy of the proposed algorithm. We introduce
a comparison with the obtained solution using Runge-Kutta method. c©2017 all rights reserved.
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1. Introduction

Fractional differential equations (FDEs) have been focused in many studies due to their frequent ap-
pearance in various applications in fluid mechanics, biology, physics and engineering [18]. Consequently,
considerable attention has been given to the solutions of FDEs and integral equations of physical interest.
In last decades, fractional calculus has drawn a wide attention from many physicists and mathematicians,
because of its interdisciplinary application and physical meaning [16]. Fractional calculus deals with
the generalization of differentiation and integration of non-integer order. Most FDEs do not have exact
solutions, so approximate and numerical techniques ([6–13, 22–24]) must be used.
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In recent decades the study of interpersonal relationships has begun to be popular. Interpersonal
relationships appear in many contexts, such as in family (marriage), kinship, acquaintance, work and
clubs [3]. Mathematical modeling in interpersonal relationships is very important for capturing the dy-
namics of people. But there are few models in this area and models have been restricted to integer order
differential equations. Marriage has been studied scientifically for the past sixty years, and we can draw
some general conclusions that guide our modeling of marital interaction [5]. Researchers are motivated
by trying to understand why some couples divorce, but others do not, and why, among those who remain
married, some are happy and some are miserable with one another. There are high levels of divorce in
today’s world. In the United States the current estimate is that within a forty year span approximately
50% to 67% percent of firs marriages will end in divorce; the figure is 10% higher for second marriage [15].
Although the United States has the highest raw divorce over time exist worldwide. Since experiments in
these areas are difficult to design and may be constrained by ethical considerations, mathematical models
can play a vital role in studying the dynamics of marriage and behavioral features.

The earliest known linear model of marriage is Romeo and Juliet model [21]. Suppose that at any
time t, we could measure Romeo’s love or hate for Juliet, R(t), and Juliet’s love or hate for Romeo,
J(t). Positive values of these functions indicate love, and negative values indicate hate. A very simple
assumption would be that the change in Romeo’s love for Juliet is a fraction of his current love plus a
fraction of her current love. Similarly, Juliet’s love for Romeo will change by a fraction of her current love
for Romeo and a fraction of Romeo’s love for her. This assumption leads us to the model equations

dR

dt
= aR(t) + bJ(t),

dJ

dt
= cR(t) + dJ(t),

where a, b, c, and d are constants.
Bernstein polynomials (BPs) are widely used in numerical computation. One of the advantages of us-

ing Bernstein polynomials as a tool for expansion functions is the good representation of smooth functions
by finite Bernstein expansion provided that the function u(t) is infinitely differentiable. The Bernstein col-
location method reduces the problem to a system of non-linear algebraic equations.

The main aim of the presented paper is concerned with the application of the Bernstein collocation
method to introduce the numerical simulation of the system of coupled non-linear fractional dynamical
model of marriage.

2. Preliminaries and notations

In this section, we present some necessary definitions and mathematical preliminaries of the fractional
calculus theory and the Bernstein polynomials that will be required in the present paper.

2.1. The fractional integral and derivative operators
Definition 2.1. The Riemann-Liouville fractional integral operator Jαa of order α is defined on L1[a,b] as

Jαaf(t) =
1
Γ(α)

∫t
a

(t− ξ)α−1f(ξ)dξ, α > 0, a 6 t 6 b.

Definition 2.2. The Riemann-Liouville fractional derivative operator Dαa of order α (n − 1 < α 6 n),
n ∈N is defined in the following form

Dαaf(t) =
1

Γ(n−α)

dn

dtn

∫t
a

(t− ξ)n−α−1f(ξ)dξ, α > 0, a 6 t 6 b.

Definition 2.3. The Caputo fractional derivative operator cDαa of order α (n − 1 < α 6 n), n ∈ N is
defined in the following form

cDαaf(t) =
1

Γ(n−α)

∫t
a

(t− ξ)n−α−1f(n)(ξ)dξ, α > 0, a 6 t 6 b.
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For more details on fractional derivatives definitions and its properties see [16, 18].

Lemma 2.4. If α > 0, n = dαe and a 6 t 6 b, then
cDαaJ

α
af(t) = f(t),

Jαa
cDαaf(t) = f(t) −

n−1∑
i=0

f(i)(a)

i!
(t− a)i, (2.1)

cDαaf(t) = D
α
af(t) −

n−1∑
i=0

f(i)(a)

Γ(i−α+ 1)
(t− a)i. (2.2)

2.2. Bernstein polynomials and their properties
Definition 2.5. The n+ 1 Bernstein polynomials of degree n are defined on the interval [0, 1] as follows [4]

Bi,n(x) =

(
n

i

)
xi(1 − x)n−i, i = 0, 1, ...,n,

where
(
n

i

)
is a binomial coefficient.

The first few Bernstein basis polynomials are

B0,0(x) = 1,
B0,1(x) = 1 − x, B1,1(x) = x,

B0,2(x) = (1 − x)2, B1,2(x) = 2x(1 − x), B2,2(x) = x
2,

B0,3(x) = (1 − x)3, B1,3(x) = 3x(1 − x)2, B2,3(x) = 3x2(1 − x), B3,3(x) = x
3.

The Bernstein polynomials have the following properties:
1. Bk,n(x) = 0, if k < 0 or k > n;
2. Bk,n(0) = δk,0 and Bk,n(1) = δk,n where δ is the Kronecker delta function;
3. Bk,n(x) > 0, for x ∈ [0, 1];
4.

∑n
k=0 Bk,n(x) = 1;

5. they satisfy symmetry Bk,n(x) = Bn−k,n(1 − x);
6. B ′k,n(x) = n(Bk−1,n−1(x) −Bk,n−1(x));
7.

∫1
0 Bk,n(x)dx =

1
n+1 , ∀ k = 0, 1, ...,n.

Since the set {Bi,m(x)}mi=0 in Hilbert space L2[0, 1] is a complete basis, so, we can write any polynomial
u(x) of degree m in terms of linear combination of {Bi,m(x)}mi=0 as in the following form

u(x) '
m∑
k=0

ckBk,m(x).

We can write Ψm(x) = [B0,m(x),B1,m(x), ...,Bm,m(x)]T = ABm(x), where A is an upper triangular matrix,
Bm(x) = [1, x, x2, ..., xm]T . For more details about the definition, properties and the convergence analysis
of Bernstein polynomials see [2].

3. Mathematical model

In this paper, we study the behavior of the approximate solution of a fractional order system for the
dynamics of love affair between a couple [17]. The system which describes this model is given in the
following form

Dαu(t) = −λ1u(t) + µ1v(t)(1 − εv2(t)) + ν1,

Dαv(t) = −λ2v(t) + µ2u(t)(1 − εu2(t)) + ν2, t ∈ (0,L),
(3.1)

with the initial conditions
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u(0) = u0, v(0) = v0, (3.2)

where 0 < α 6 1, λi > 0, µi, and νi (i = 1, 2) are real constants. These parameters are oblivion, reaction
and attraction constants, respectively. In the equations above, we assume that feelings decay exponentially
fast in the absence of partners. The parameters specify the romantic style of individuals 1 and 2.

Recently, several authors, for example [3, 5] have investigated the nonlinear FDMM and its special
properties. For more details on the proposed model see [15, 17].

4. BPs operational matrix of Riemann-Liouville fractional integration

Theorem 4.1 ([2]). The Bernstein polynomials operational matrix Fα from order (m + 1) × (m + 1) for the
Riemann-Liouville fractional integral is defined as follows

JαaΨm(x) =
1
Γ(α)

∫t
a

(t− ξ)α−1Ψm(ξ)dξ ≈ FαΨm(x). (4.1)

Definition 4.2. We can define the dual matrix Q(m+1)×(m+1) on the basis of Bernstein polynomials of
mth degree as follows

Q =

∫ 1

0
Ψ(x)(Ψ(x))Tdx,

where

(Q)i+1,j+1 =

∫ 1

0
Bi,m(x)Bj,m(x)dx =

(m!)2(2m− i− j)!(i+ j)!
(2m+ 1)(2m)!(m− i)!(m− j)! i! j!

, i, j = 0, 1, ...,m.

Lemma 4.3 ([14]). Let L2[0, 1] be a Hilbert space with the inner product 〈f,g〉 =
∫1

0 f(x)g(x)dx and u(x) ∈
L2[0, 1]. Then, we can find the unique vector c = [c0, c1, ..., cm]T such that CTΨm(x) is the best approximation
of u(x) from space Sm = Span[B0,m(x), B1,m(x), ..., Bm,m(x)]. Moreover, one can get Q−1〈u(x),Ψm(x)〉 such that
〈u(x),Ψm(x)〉 = [〈u,B0,m(x)〉, 〈u,B1,m(x)〉, ..., 〈u,Bm,m(x)〉]T .

Definition 4.4. Let u(x) be a continuous function on the interval [0, 1]. Then we can approximate u(x) in
the following polynomial of degree n in Bernstein form [2]

B̄n(u)(x) =

n∑
i=0

u

(
i

n

)
Bi,n(x).

It can be shown that it is uniformly convergent on the interval [0, 1],

lim
n→∞ B̄n(u)(x) = u(x).

Theorem 4.5. Given a function u(x) ∈ C[0, 1] and any δ > 0, there exists an integer N such that [2]

|u(x) − B̄n(u)(x)| < δ, ∀n > N, x ∈ [0, 1].

The Bernstein polynomials operational matrix are used for solving many class of fractional differential
equations, they used to solve numerically the fractional heat-and wave-like equations [20] and the multi-
term orders fractional differential equations [19] and others [1].

5. Implementation of Bernstein polynomials operational matrix for solving FDMM

In this section, we introduce a numerical algorithm using Bernstein polynomials operational matrix
method for solving the system of coupled non-linear fractional dynamical model of marriage (3.1). The
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proposed technique will be applied as in the following steps:

1. We use the initial conditions (3.2) to reduce the given problem (3.1) to a problem with zero initial
conditions. So, we define

u(t) = û(t) + ū(t), v(t) = v̂(t) + v̄(t), (5.1)

where û(t) and v̂(t) are some known functions that satisfied the initial conditions (3.2) and ū(t) and
v̄(t) are new unknown functions.

2. Substituting (5.1) in (3.1) and (3.2), we have an initial-value problem as follows

Dα0 ū(t) = −λ1ū(t) + µ1v̄(t) − µ1ε(p1(t)v̄(t) + p2(t)v̄
2(t) + v̄3(t)) + p3(t),

Dα0 v̄(t) = −λ2v̄(t) + µ2ū(t) − µ2ε(q1(t)ū(t) + q2(t)ū
2(t) + ū3(t)) + q3(t),

(5.2)

where

p1(t) = 3v̂2(t), p2(t) = 3v̂(t), p3(t) = −λ1û(t) − µ1v̂(t) − µ1εv̂
3(t) + ν1,

q1(t) = 3û2(t), q2(t) = 3û(t), q3(t) = −λ2v̂(t) − µ2û(t) − µ2εû
3(t) + ν2,

subject to the initial conditions
ū(0) = 0, v̄(0) = 0. (5.3)

3. Using (2.2) in Lemma 2.4 we can write

cDα0 ū(t) = D
α
0 ū(t),

cDα0 v̄(t) = D
α
0 v̄(t). (5.4)

4. Using Lemma 3.3 in [2], the inputs pi(t), qi(t) (i = 1, 2, 3), Dα0 ū(t) and Dα0 v̄(t) can be approximated
as follows

Dα0 ū(t) ≈ CT1 Ψm(t), Dα0 v̄(t) ≈ CT2 Ψm(t),

pi(t) ≈ PTi Ψm(t), qi(t) ≈ QTi Ψm(t),
(5.5)

where Pi and Qi (i = 1, 2, 3) are known (m+ 1)× 1 column vectors, and C1 and C2 are unknown
(m+ 1)× 1 column vectors.

5. From (2.1), (4.1), (5.3), (5.4), and (5.5), we have

ū(t) = Jα0
cDα0 ū(t) +

n−1∑
i=0

ū(i)(0)
i!

ti = Jα0
cDα0 ū(t) = J

α
0 D

α
0 ū(t)

= Jα0 (C
T
1 Ψm(t)) ≈ CT1 Jα0 Ψm(t) ≈ CT1 F1αΨm(t) = CT1αΨm(t),

(5.6)

v̄(t) = Jα0
cDα0 v̄(t) +

n−1∑
i=0

v̄(i)(0)
i!

ti = Jα0
cDα0 v̄(t) = J

α
0 D

α
0 v̄(t)

= Jα0 (C
T
2 Ψm(t)) ≈ CT2 Jα0 Ψm(t) ≈ CT2 F2αΨm(t) = CT2αΨm(t),

(5.7)

where CTiα = CTi Fiα, (i = 1, 2).
6. By substituting (5.5)-(5.7) into (5.2), we obtain

CT1 Ψm(t) = −λ1C
T
1αΨm(t) + µ1C

T
2αΨm(t) − µ1ε(P

T
1 Ψm(t)(Ψm(t))TC2α

+ PT2 Ψm(t)CT2αΨm(t)(Ψm(t))TC2α + (CT2αΨm(t))3) + PT3 Ψm(t),
(5.8)

CT2 Ψm(t) = −λ2C
T
2αΨm(t) + µ2C

T
1αΨm(t) − µ2ε(Q

T
1 Ψm(t)(Ψm(t))TC1α

+QT2 Ψm(t)CT1αΨm(t)(Ψm(t))TC1α + (CT1αΨm(t))3) +QT3 Ψm(t),
(5.9)
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7. Then, from Lemma 3.5 in [2] we have

CTiαΨm(t)(Ψm(t))T = (Ψm(t))T Ĉiα, i = 1, 2, (5.10)

PTi Ψm(t)(Ψm(t))T = (Ψm(t))T P̂i, i = 1, 2, 3, (5.11)

QTi Ψm(t)(Ψm(t))T = (Ψm(t))T Q̂i, i = 1, 2, 3. (5.12)

Therefore we can reduce (5.8) and (5.9) by using (5.10)-(5.12) as the following non-linear system of
algebraic equations

C1 = −λ1C1α + µ1C2α − µ1ε[P̂1C2α + P̂2Ĉ2αC2α + (C2α)
3] + P̂3,

C2 = −λ2C2α + µ2C1α − µ2ε[Q̂1C1α + Q̂2Ĉ1αC1α + (C1α)
3] + Q̂3.

8. By solving this system we can obtain the vectors C1 and C2. Then, we can get

u(t) ≈ û(t) +CT1 F1αΨm(t), v(t) ≈ v̂(t) +CT2 F2αΨm(t).

6. Numerical simulation

In this section, we implement the proposed method to solve the system of coupled non-linear fractional
dynamical model of marriage (3.1) with different values of the constants λ1, λ2, µ1, µ2, ε, ν1, and ν2,
different values of the fractional derivative α and different initial values.

The obtained approximate solutions by means of the proposed method are shown in Figures 1-9,
where in Figures 1-3, we presented the behavior of the approximate solution with different values of
initial values (u0, v0) = (2, 4), (u0, v0) = (1, 2), and (u0, v0) = (0.5, 1), respectively, and m = 5 with final
time t = 600.

Figure 1: The behavior of the approximate solution with α = 0.6, u0 = 2, v0 = 4 and λ1 = 0.001, λ2 = 0.004, µ1 = 0.005, µ2 =
−0.001, ε = 0.01, ν1 = 0.02, ν2 = 0.03.

In Figures 4-9, we presented the behavior of the approximate solution at α = 0.9 with different values
of the other constants. From these figures, we can conclude that the obtained solution u(t), v(t) confirms
the natural behavior of the proposed system.

Also, in Figure 10, we presented the behavior of the approximate solution using the proposed method
with the numerical solution obtained using fourth order Runge-Kutta method at α = 1, u0 = v0 = 0 and
λ1 = 0.003, λ2 = 0.006, µ1 = 0.005, µ2 = −0.001, ε = 0.01, ν1 = 0.05, ν2 = 0.05. From this figure, we can
conclude that this method gives results with an excellent agreement with the obtained solution u(t), v(t)
using Runge-Kutta method.
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Figure 2: The behavior of the approximate solution with
α = 0.6, u0 = 1, v0 = 2 and λ1 = 0.001, λ2 = 0.004, µ1 =
0.005, µ2 = −0.001, ε = 0.01, ν1 = 0.02, ν2 = 0.03.

Figure 3: The behavior of the approximate solution with
α = 0.6, u0 = 0.5, v0 = 1 and λ1 = 0.001, λ2 = 0.004, µ1 =
0.005, µ2 = −0.001, ε = 0.01, ν1 = 0.02, ν2 = 0.03.

Figure 4: The behavior of the approximate solution with α =
0.9, u0 = v0 = 5 and λ1 = 0.001, λ2 = 0.004, µ1 = 0.005, µ2 =
−0.001, ε = 0.01, ν1 = 0.02, ν2 = 0.03.

Figure 5: The behavior of the approximate solution with α =
0.9, u0 = v0 = 2 and λ1 = 0.001, λ2 = 0.004, µ1 = 0.005, µ2 =
−0.001, ε = 0.01, ν1 = 0.02, ν2 = 0.03.

Figure 6: The behavior of the approximate solution with α =
0.9, u0 = v0 = 0 and λ1 = 0.001, λ2 = 0.004, µ1 = 0.005, µ2 =
−0.001, ε = 0.01, ν1 = 0.07, ν2 = 0.09.

Figure 7: The behavior of the approximate solution with α =
0.9, u0 = v0 = 1 and λ1 = 0.001, λ2 = 0.004, µ1 = 0.005, µ2 =
−0.001, ε = 0.01, ν1 = 0.0, ν2 = 0.0.
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Figure 8: The behavior of the approximate solution with α =
0.9, u0 = v0 = 1 and λ1 = 0.001, λ2 = 0.004, µ1 = 0.005, µ2 =
−0.001, ε = 0.09, ν1 = −0.01, ν2 = −0.01.

Figure 9: The behavior of the approximate solution with α =
0.9, u0 = v0 = 0 and λ1 = 0.003, λ2 = 0.006, µ1 = 0.005, µ2 =
−0.001, ε = 0.01, ν1 = 0.05, ν2 = 0.05.

Figure 10: The behavior of the approximate solution and the
numerical solution using RK4 at α = 1.

7. Conclusion and remarks

In this article, we used operational matrices of the Riemann-Liouville fractional integral and the prod-
uct by Bernstein polynomials for solving the system of coupled non-linear fractional dynamical model of
marriage. The fractional derivative is considered in the Riemann-Liouville sense. The properties of the
Bernstein polynomials are used to reduce the proposed model to the solution of a system of nonlinear
algebraic equations which is solved by using Newton iteration method. From the behavior of the obtained
numerical solutions using the suggested method, we can see that the natural behavior of the proposed
system is confirmed. Also, from the proposed comparison with the obtained solution using fourth order
Runge-Kutta method (RK4), we can show that this approach can be solved the problem effectively. All
computations in this paper are done using Matlab 8.
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