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Abstract

Two hybrid steepest-descent schemes (implicit and explicit) for finding a solution of the general system of variational
inequalities (in short, GSVI) with the constraints of finitely many variational inclusions for maximal monotone and inverse-
strongly monotone mappings and a minimization problem for a convex and continuously Fréchet differentiable functional (in
short, CMP) have been presented in a real Hilbert space. We establish the strong convergence of these two hybrid steepest-
descent schemes to the same solution of the GSVI, which is also a common solution of these finitely many variational inclusions
and the CMP. Our results extend, improve, complement and develop the corresponding ones given by some authors recently in
this area. (©2017 all rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product (-, -) and induced norm || - ||, C be a nonempty closed
convex subset of H and Pc be the metric projection of H onto C. Let T : C — C be a self-mapping on
C. We denote by Fix(T) the set of fixed points of T and by R the set of all real numbers. A mapping
A :H — H is called y-strongly positive on H if there exists a constant y > 0 such that

(Ax,x) = ¥|[x||?, Vx € H.
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A mapping F: C — H is called L-Lipschitz continuous if there exists a constant L > 0 such that
P =Fyll < Lix—yll, vxyeC

In particular, if L =1 then F is called a nonexpansive mapping; if L € [0,1) then F is called a contraction.
Let A : C — H be a nonlinear mapping on C. The variational inequality problem (VIP) associated with
the set C and the mapping A is stated as follows: find x* € C such that

(Ax*,x—x*) >0, V¥xeC. (1.1)

The solution set of VIP (1.1) is denoted by VI(C, A).

The VIP (1.1) was first discussed by Lions [16] and now is well-known. Variational inequalities have
extensively been investigated, see [1, 2, 15, 17, 18, 20, 22, 24, 26-28] for more details. In 1976, Korpelevich
[14] proposed an iterative algorithm for solving VIP (1.1) in Euclidean space R™:

Yn = Pc(xn —TAXR),
Xnt+1 = Pc(xn —TAYn), m >0,

with T > 0 a given number, which is known as the extragradient method. The literature on the VIP is
vast and Korpelevich’s extragradient method has received great attention given by many authors, who
improved it in various ways; see e.g., [4, 5, 8, 10, 11] and references therein, to name but a few.

In 2001, Yamada [23] introduced the following hybrid steepest-descent method for solving the VIP
(1.1) with C = Fix(S)

xni1 = (1= AnpA)Sxn, ¥n >0,

where S : H — H is a nonexpansive mapping with Fix(S) # 0, A : H — H is a k-Lipschitzian and n-
strongly monotone operator with positive constants k,n > 0,0 < pu < %‘, and then proved that under
appropriate conditions, the sequence {x,} converges strongly to the unique solution of VIP (1.1) with
C = Fix(S).

Furthermore, let f : C — R be a convex and continuously Fréchet differentiable functional. Consider
the convex minimization problem (CMP) of minimizing f over the constraint set C

minimize {f(x):x € C} (1.2)

(assuming the existence of minimizers). We denote by I" the set of minimizers of CMP (1.2). It is well-
known that the gradient-projection algorithm (GPA) generates a sequence {x,, } determined by the gradient
Vf and the metric projection Pc:

Xni1:=Pclxn —AVf(xn)), ¥Yn =0, (1.3)

or more generally,
Xn+1 = Pc(xn —AnVf(xn)), Vn >0, (1.4)

where, in both (1.3) and (1.4), the initial guess xg is taken from C arbitrarily, the parameters A or A,
are positive real numbers. The convergence of algorithms (1.3) and (1.4) depends on the behavior of the
gradient Vf.

In order to find a solution of the minimization problem (1.2) for a convex and continuously Fréchet
differentiable functional f : C — R, Ceng et al. [6] proposed the following iterative method

Xn+1 = PclonyVxn + (I — onuF)Sxn], ¥n > 0.

In [7], Ceng et al. introduced one general composite implicit scheme that generates a net {x.} in an implicit
way
Xt = (I — GtA)Txt + Gt[Txt — t(l.,LFTXt — Yf(Xt))]



Z.-R. Kong, L.-C. Ceng, Y.-C. Liou, C.-F. Wen, ]J. Nonlinear Sci. Appl., 10 (2017), 874-901 876

Very recently, inspired by Ceng et al. [7], Jung [13] introduced one general composite implicit scheme
that generates a net {x} in an implicit way

Xt = (I — etA)TtXt + et [t’YVXt + (I — t].lF)TtXt},

and also proposed another general composite explicit scheme that generates a sequence {x,, } in an explicit
way

Yn = XnYVXn + (I— atnuF)Taxn,
Xn+1 = (I - BnA)Tan + Bnyn, vn > 0.

On the other hand, let F;,F, : C — H be two mappings. Consider the following general system of
variational inequalities (GSVI) of finding (x*,y*) € C x C such that

, Vx e _C,

(iR Xyt x =) 20 .
0, ¥xeC(, ’

>
(VoFox* +y* —x*,x —y*) >
where v; > 0 and v, > 0 are two constants. The solution set of GSVI (1.5) is denoted by GSVI(C, Fy, F,).
Recently, many authors have been devoting the study of the GSVI (1.5); see e.g., [9, 11, 25] and the
references therein. In 2008, Ceng et al. [10] transformed the GSVI (1.5) into the fixed point problem of the
mapping G = Pc (I —v1F)Pc(I —vaFp), that is, Gx* = x*, where y* = Pc (I —v,F,)x*. Throughout this
paper, the fixed point set of the mapping G is denoted by =.
Let B be a single-valued mapping of C into H and R be a multivalued mapping with D(R) = C.
Consider the following variational inclusion: find a point x € C such that

0 € Bx + Rx. (1.6)

We denote by I(B, R) the solution set of the variational inclusion (1.6). In particular, if B = R = 0, then
I(B,R) = C. If B =0, then problem (1.6) becomes the inclusion problem introduced by Rockafellar [19].
Let a set-valued mapping R : D(R) C H — 2M be maximal monotone. We define the resolvent operator
JrA : H— D(R) associated with R and A as follows:

Jra=(I+AR)7L, WxeH,

where A is a positive number.

In this paper, we introduce one hybrid implicit steepest-descent scheme and another hybrid explicit
steepest-descent scheme for finding a solution of the GSVI (1.5) with the constraints of finitely many vari-
ational inclusions for maximal monotone and inverse-strongly monotone mappings and the minimization
problem (1.2) for a convex and continuously Fréchet differentiable functional in a real Hilbert space. We
establish the strong convergence of these two hybrid steepest-descent schemes to the same solution of
the GSVI (1.5), which is also a common solution of these finitely many variational inclusions and the
CMP (1.2). In particular, we make use of weaker control conditions than previous ones for the sake of
proving strong convergence. Our results extend, improve, complement and develop the corresponding
ones announced by some authors recently in this area.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. We write x,, — x to indicate that
the sequence {x,,} converges weakly to x and x,, — x to indicate that the sequence {x,, } converges strongly
to x. Moreover, we use w,, (xr ) to denote the weak w-limit set of the sequence {x.}, i.e.,

Wiy (xn) :={x € H:xn, — x for some subsequence {xn,} of {xn}}.
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The metric (or nearest point) projection from H onto C is the mapping Pc : H — C which assigns to
each point x € H the unique point Pcx € C satisfying the property

[ —=Pex|| = inf [jx —y|[ = d(x, C).

it
The following properties of projections are useful and pertinent to our purpose.
Proposition 2.1 ([24, 27]). Given any x € H and z € C, one has
(i) z=Pcx & (x—z,y—2z) <0, Yy eC;
(i) z=Pex & |[x—z|> <Ix—ylP—lly—z|* vy e C
(iii) (Pcx—Pcy,x—y) = |[Pcx—Pcy||?, Yy € H, which hence implies that P is nonexpansive and monotone.

Definition 2.2. A mapping T : H — H is said to be firmly nonexpansive if 2T — I is nonexpansive, or
equivalently, if T is 1-inverse strongly monotone (1-ism),

(x—y, Tx—Ty) > HTX—Tsz, vx,y € H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as T = 1(I+S), where S: H — H
is nonexpansive; projections are firmly nonexpansive.

Definition 2.3. A mapping F: C — H is said to be

(i) monotone, if
(Fx—Fy,x—y) >0, Vx,yeC;

(ii) n-strongly monotone, if there exists a constant 1 > 0 such that

(Fx—Fy,x—y) = nlx—yl*>, YxyeC;

(iii) a-inverse-strongly monotone, if there exists a constant « > 0 such that

(Fx —Fy,x—y) > ocHFx—FyHZ, vx,y € C.

It can be easily seen that if T is nonexpansive, then I — T is monotone. It is also easy to see that the
projection P¢ is 1-ism. Inverse-strongly monotone (also referred to as co-coercive) operators have been
applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if F: C — H is a-inverse-strongly monotone, then F is monotone
and &—Lipschitz continuous. Moreover, we also have that, for all u,v € C and A > 0,

[(T=AF)u— (I—AF)v|? < [[u—v|[* + A —20)||Fu— Fv%. (2.1)
So, if A < 2«, then I — AF is a nonexpansive mapping from C to H.

Proposition 2.4 ([10]). For given x*,y* € C, (x*,y*) is a solution of the GSVI (1.5) if and only if x* is a fixed
point of the mapping G : C — C defined by

Gx = Pc(I —VlFl)Pc(I —V2F2)X, Vx € C,
where y* = Pc (I —voFp)x*.

In particular, if the mapping F; : C — H is (j-inverse-strongly monotone for j = 1,2, then the mapping

G is nonexpansive provided v; € (0,2¢;] for j = 1,2. We denote by = the fixed point set of the mapping
G.
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Definition 2.5. A mapping T : H — H is said to be an averaged mapping if it can be written as the average
of the identity I and a nonexpansive mapping, that is,

T=(1—-o)I+«S,

where o« € (0,1) and S : H — H is nonexpansive. More precisely, when the last equality holds, we
say that T is a-averaged. Thus firmly nonexpansive mappings (in particular, projections) are 1-averaged

mappings.

Proposition 2.6 ([3]). Let T : H — H be a given mapping.
(i) T is nonexpansive if and only if the complement 1— T is L-ism.
" o .
(ii) If T is v-ism, then for y >0, yT is Y ism.

(iii) T is averaged if and only if the complement 1 —T is v-ism for some v > 1/2. Indeed, for x € (0,1), T is
o-averaged if and only if 1 — T is 5-ism.

Proposition 2.7 ([3]). Let S, T,V : H — H be given operators.
(@) IfT=(1—o)S+ aV for some o« € (0,1) and if S is averaged and V is nonexpansive, then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement 1 —T is firmly nonexpansive.

(i) If T = (1 —o)S + &V for some o« € (0,1) and if S is firmly nonexpansive and V is nonexpansive, then T is
averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the mappings {Ti}N. is
averaged, then so is the composite Ty - - - Tn. In particular, if Ty is «q-averaged and Ty is xp-averaged, where
oy, 00 € (0,1), then the composite Ty T, is x-averaged, where o« = o1 + Xy — X X3.

(v) If the mappings {T;}.| are averaged and have a common fixed point, then
N
() Fix(T:) = Fix(Ty - - Tn).
i=1

The notation Fix(T) denotes the set of all fixed points of the mapping T, that is, Fix(T) ={x € H: Tx = x}.
We need some facts and tools in a real Hilbert space H which are listed as lemmas below.
Lemma 2.8. Let H be a real Hilbert space. Then the following hold:
@) [x—yl> = [Ix|* = [yl* = 2(c—y,y) for all x,y € H;
(b) [[Ax+wyll> = Al[x|1* + wllyll> = Aullx —yl* for all x,y € Hand A, w € [0, 1] with A+-p =1,
(c) if {xn} is a sequence in H such that xn, — x, it follows that

limsup [[xn —y|[* =limsup [lxn —x|* + [x —y|I*, vy € H.
n—oo n—oo
Lemma 2.9 ([12]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let S be a nonexpansive
self-mapping on C with Fix(S) # 0. Then 1—S is demiclosed. That is, whenever {xn} is a sequence in C weakly
converging to some x € C and the sequence {(I — S)xn} strongly converges to some vy, it follows that (I —S)x = y.
Here 1 is the identity operator of H.

Lemma 2.10 ([25]). Let F : C — H be a monotone mapping. In the context of the variational inequality problem
the characterization of the projection implies

ueVIC,F) < u=Pc(u—AFu), A>0.
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Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations.
Let A be a number in (0,1] and let p > 0. Associating with a nonexpansive mapping T : C — C, we define
the mapping T* : C — H by

T :=Tx —AuF(Tx), ¥x e C,

where F : C — H is an operator such that, for some positive constants k,n > 0, F is k-Lipschitzian and
n-strongly monotone on C; that is, F satisfies the conditions:

IFx —Fyll < kfx—yll and (Fx—Fy,x—y) >nllx—y]?
forall x,y € C.

Lemma 2.11 ([10]). T? is a contraction provided 0 < p < %‘; that is,

||T)‘X—T}‘y\| < (1—=M)|lx—vyll, ¥x,yeC,

where T =1—+/1—u(2n — ux2) € (0,1].

Remark 2.12. Since F is k-Lipschitzian and n-strongly monotone on C, we get 0 <n < k. Hence, whenever
O<u< %,wehavei’: 1—/1—p(2n—uk?) € (0,1].

Lemma 2.13 ([21]). Let {an} be a sequence of nonnegative real numbers satisfying
ant1 < (1 —wn)an +wndn +1m™, YN >0,
where {wn},{dn}, and {r} satisfy the following conditions:
(i) {wn}C 0,1 and Y 3y wn =00,
(ii) either limsup, . dn <0o0r ) g wnldn| < oo
(iii) T = 0foralln >0,and Y 7 _;1m < o0.
Then, limp o an = 0.

Lemma 2.14 ([17]). Assume that A is a y-strongly positive bounded linear operator on H with 0 < p < ||A[| 7%
Then |1 —pA|| < 1—pY.

Let LIM be a Banach limit. According to time and circumstances, we use LIM, a,, instead of LIMa for
every a = {an} € 1. The following properties are well-known:

(i) forallm > 1, a, < ¢ implies LIMpa, < LIMpcy;
(ii) LIMnan4+N = LIMyay, for any fixed positive integer N;
(iii) liminfy ;o an < LIMpan <limsup,, ,  an for all {a,} € 1.

Lemma 2.15. Let a € R be a real number and let a sequence {an} € 1°° satisfy the condition LIMy an < a for all
Banach limit LIM. If limsup,, _, (an41—an) <0, then limsup,, ., an < a.

Recall that a set-valued mapping T:D(T) c H — 2" is called monotone if for all x,y € D(T), f € Tx
and g € Ty imply
(f—g,x—y) >0.
A set-valued mapping T is called maximal monotone if T is monotone and (I+ AT)D(T) = H for each
A > 0, where I is the identity mapping of H. We denote by G(T) the graph of T. It is known that a
monotone mapping T is maximal if and only if, for (x,f) € HxH, (f—g,x—y) > 0 forevery (y,g) € G (T)
implies f € Tx. Next we provide an example to illustrate the concept of maximal monotone mapping.
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Let A : C — H be a monotone and Lipschitz-continuous mapping and let Ncv be the normal cone to
Catve(,i.e,
Nev={ueH:{(v—p,u) >0, Vp € CL

Define
~ [ Av+Ncy, ifveC,
Tv= { 0, ifveC.

Then, it is known in [19] that T is maximal monotone and 0 € Tv if and only if v € VI(C, A).
Let R: D(R) € H — 2" be a maximal monotone mapping. Let A, u > 0 be two positive numbers.

Lemma 2.16 ([11]). There holds the resolvent identity

Jeax = Jru(5x+ (1= D)rax), VxeH.

Remark 2.17. For A, i > 0, there holds the following relation

1 1
Teax =Jruyll < [ =yl +A=plZlTrax =yl + Tlx =Truyll, vy € H. (2.2)
Lemma 2.18 ([26]). Jr,a is single-valued and firmly nonexpansive, i.e.,

(Jrax = JraY, x =) = [Jrax —Jrayl® ¥y € H.
Consequently, Jr » is nonexpansive and monotone.

Lemma 2.19 ([26]). Let R be a maximal monotone mapping with D(R) = C. Then for any given A >0, uw € Cis
a solution of problem (1.6) if and only if u € C satisfies

u=Jra(u—ABu).

Lemma 2.20 ([29]). Let R be a maximal monotone mapping with D(R) = C and let B : C — H be a strongly
monotone, continuous and single-valued mapping. Then for each z € H, the equation z € (B + AR)x has a unique
solution x for A > 0.

Lemma 2.21 ([4]). Let R be a maximal monotone mapping with D(R) = C and B : C — H be a monotone,
continuous and single-valued mapping. Then (I14+A(R+ B))C = H for each A > 0. In this case, R + B is maximal
monotone.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout this section, we
always assume the following;:

e f : C — Ris a convex functional with L-Lipschitz continuous gradient Vf, F : C — His a k-
Lipschitzian and n-strongly monotone operator with positive constants k,1 > 0, and F; : C — H is
(j-inverse strongly monotone for j = 1,2;

e A is a y-strongly positive bounded linear operator on H with y € (1,2), V: C — His an |-
Lipschitzian mapping with 1 > 0, R; : C — 2" is a maximal monotone mapping, and B; : C — H
is ni-inverse strongly monotone for each i = 1,..,N; 0 < p < i—g and 0 < yl < T with T =

1—/1—u(2n—uk?);

e G:C — Cis amapping defined by Gx = Pc (I —v1F1)Pc(I—v2F2)x with 0 < vj <2 forj =1,2;
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o Pc(I—A¢Vf) =s¢I+ (1 —s¢) T, where Ty is nonexpansive, sy = 2= Z“L e (0, ) and A¢ : (0,1) — (O, %)
with lim¢_,0A¢ = 2; Pc(I—Aq V) = spI+ (1 —sn )Ty where T,, is nonexpansive, s, = 2= Z‘HL € (0,1)
and {An} C (0, 2) with limp_y0o A, = 2;

e AN:C—=Cisa mapping defined by ANx = JRaane T =ANABN) - - TRy A (T = A1t B1)x, t € (0,1),
for (A1} C lay,bi] € (0,2n1), i=1,..,N; AN :C = Cisa mapping defined by ANx = TR AN (I —
ANnBN) - ]Rl,Al,n(I — A1 nB1)x with {Ajn} C [ai,bi] C (0,2ni) and limn_,c Ain = Ay, for each
i=1,.., N;

e 0:=1,I(Bi,R)NENT # () and Py, is the metric projection of H onto (2;
e {on} C [0,1], {sn} C (0,min{}, |A|~1}) and {sthie (0 minf1, 23, ) C (0, min{3, ||[A[|71}).
Next, put

AL = TR T=Au B R a1 T=Ni,Bic1) - Troa (I—=A1,eB1), V€ (0,1),

and
AL = TR T= M BOTR A T =Aic1nBict) - Jroa (I —A1nB1), ¥n >0,

forall i €{1,...,N},and AY = AY =1, where I is the identity mapping on H.

Since Vf is L-Lipschitzian, it follows that Vf is 1/L-ism; see [12] (see also, [1]). By Proposition 2.6 (ii)
we know that for A > 0, AVf is 5--ism. So by Proposition 2.6 (iii) we deduce that I — AV is 2--averaged.
Now since the projection Pc is 3-averaged, it is easy to see from Proposition 2.7 (iv) that the composite

Pc(I —AVS) is %-averaged for A € (0, %). Hence we obtain that for each t € (0,1), Pc(I —A{Vf) is

%—averaged for each A¢ € (0, %). Therefore, we can write
2—AL, 24 AL
Pell—AVH) = =514+ S0 T, — s+ (15T,

where T is nonexpansive and s := s¢(A) = 272“1‘ e (0, ) for each A¢ € (0, ) It is clear that Ay — % iff

s¢ — 0. Similarly, for eachn > 0, Pc (I — A, Vf) is &-averaged for each A, € (0, ). Therefore, we can
write 2—AqL. 24A4L
Pc(I—AnVE) = _4“ I+ +4“ Ta =snl+(1—sn)Ty,

where T, is nonexpansive and s, := sn(An) = % € (0, %) for each A\,, € (0, %). It is clear that A,, — %

iff s, — 0. Note that Fix(T;) = Fix(Tn) = I'. By Proposition 2.4, we know that G is nonexpansive and
= = Fix(G). Since {Ai+} C lay, bi] C (0,2n4), utilizing (2.1) and Lemma 2.18 we have that for all x,y € C

AT X = ARYI = TRaan (T = ANABNIAY % = TRy an (T = AN BN)AY My
< I =ANABN)AY T — (T—=AnBN)AY Ny
< AN T — ARy

< A — Ayl

<A — Ayl = [lx —yll,

which implies that A} : C — C is a nonexpansive mapping for all t € (0,1). Similarly, we have that for all
x,y € C,

AN — ANYIl = TRaann T=ANmBNIARN % = TRy Ann (= AN BN)AY ||
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< A% x — Ayl
= |x—yll,

which implies that Ail : C — Cis a nonexpansive mapping for all n > 0.
In this section, we introduce the first hybrid implicit steepest-descent scheme that generates a net
{xt}e (0min1, 23 ) in an implicit manner:

xt = Pcl(I— st A)TLAN Gxy 4 s¢ (ty Ve + (I —tuF) T AN Gxy )] (3.1)
We prove the strong convergence of {x¢} as t — 0 to a point X € (2 which is a unique solution to the VIP
(A=Dx,p—%) >0, Vpe. (3.2)

For arbitrarily given xg € C, we also propose the second hybrid explicit steepest-descent scheme,
which generates a sequence {x,,} in an explicit way:

{yn = otnYVxn 4 (I — an uF) To AN Gxp, (33)

Xn+1 = Pcl(I= snA)To AN Gxn + snynl, ¥n =0,

and establish the strong convergence of {xn} as n — oo to the same point X € (2, which is also the unique
solution to VIP (3.2).
Now, for t € (0, min{1, 2

) yl}) and s¢ € (0, min{%, |A||~1}), consider a mapping Q¢ : C — C defined by

Qix=Pcl(I— stA)TtAtN Gx + st (tyVx+ (I— ’q,LF)TtAI[\j Gx)], vxeC.

It is easy to see that Q is a contractive mapping with constant 1 — s¢(y —1 4 t(t —yl)). Indeed, by
Proposition 2.4 and Lemmas 2.11 and 2.14, we have
1Qex — Quyll < [(T—stA)Te AT Gx + s¢ (tyVx + (I — tuF) Te AR Gx)
— (I—s¢A)TLAN Gy — s (tyVx + (I — tuF) TLAN Gy) |
< (I = st A)TLANGx — (1 — s:A)TL AN Gy ||
+ s¢l| (tyVx + (I — tuF) TLAR Gx) — (tyVy + (I — tuF) LAY Gy
< (1= 59| TeAY Gx — TeAY Gy || + selty|[Vx — Vy||
+ (1= tuF) T AN Gx — (I — tuF) T, AN Gy|]]
< (T=sey)x =yl +seltylx —yll + (1 = to)[x —y|]
=M =sc(y =1+ tlr—yDIlIx—yl.

Sincey € (1,2), t—yl>0and 0 < t < mm{l, — vl} — yl’ it follows that 0 < y —1+t(t—vyl) < 1,

which together with 0 < sy < mm{i, A7} < 1yields 0 < 1—s¢(y—1+t(t—vl)) <1.Hence Q¢ : C — C
is a contractive mapping. By the Banach contraction principle, Q has a unique fixed point, denoted by
x¢, which uniquely solves the fixed point equation (3.1).

We summarize the basic properties of {x+}.

Proposition 3.1. Let {x} be defined via (3.1). Then

(i) {x¢} is bounded for t € (0, min{1, 2 = yl})

(ii) lim¢—o [|x¢ — Texe]| =0, limyo ||x¢ — AtNxtH = 0 and lim¢_,0 || x¢t — Gx¢|| = 0 provided lim¢_,o st = 0;

(iii) x¢ : (0, min{1, 2=X}) — H is locally Lipschitzian provided sy : (0, min{1, 2 — yl}) — (0, min{%, A~ is

/ T— yl

locally Lipschitzian and Ay : (0, min{1, 2 . vl}) — [ay, bi] is locally Lipschitzian for eachi=1,...,N;
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(iv) xt

) into H provided

s¢ : (0, min{1, i}) s (0, min{L, 1A~
T—vl 2

is continuous and A ¢ : (O, mm{l

) yl}) — [ayi, bil is continuous for eachi =1, ..., N.

Proof. (i) Let p € 2. Noting fchat Fix(G) = &, Fix(Ty) = I, and Alp = p for each i = 1,...,N, by the
nonexpansivity of G, T; and A} and Lemmas 2.11 and 2.14 we get
[xe =Pl < |(1— st A)TeANGxe + s¢(tyVxe + (I—tuF) TeAN Gxe) — p|
= |[(I = st A)TeANGxy — (1— st A)TLANGp + s¢ (ty Ve + (I — tuF) TLANGx —p) + s¢(I— A)p|
< (= s¢A)TeAY Gxe — (1 — st A)TLAY Gpl| + st [[ty Ve + (1= tuF) AR Gxe — pl| + se | (1= A)p||
= ||(I = st A)TeAN Gxy — (I— scA)TLANGp ||
+ s¢|(T— tuF) AR Gxe — (1= tuF) Te AR Gp + t(y Ve — uFp)[[ + s¢[ (I— A)p)|
< (1= s19) | TeAR Gx — TeAR Gpl| + se [l (1= tuF) Te AN Gx — (1 — tuF) T AR G|
+ t(yl[[Vxe = Vpll + [[yVp — uFp)] + s¢ [ (I—- A)p|
< (T=sey)lxe = pll + sel(T = to) e = pll + tiylxe = pll + [(vV = wF)p)] 4 s¢[[T = Alll[p|
— 1= se(¥ — 1+ tlr—yV)lxe —pll + sclIT— Allp ] + t] (YV — uFpl]l.
So, it follows that
1= APl + 10V = wFipl _ 1= Alllpll + vV —wPipl| _ (1= Alllpll + |V = wFpl|
¥—1+t(t—vyl) = y—1 v—1
Hence {x} is bounded and so are {Vx}, {A} Gx¢}, {TeAN Gx}, and {FTL ANGx}.
(ii) By the definition of {x}, we have
Ixt — TeAN Gxe|| = [|Pcl(I— st A)TeAN Gxy 4 s¢ (ty Ve + (I — tuF) TANGx )] — PeTeANGx |
<1 — 8¢ A)Te AN Gxe 4 s¢ (ty Vg + (I — tuF) TeAY Gxy ) — TeAN Gxy |
= [Is¢[(I— A)TeAY Gxe + t(yVxe — uFTe AN Gy ]|
= s¢|[(I— A)TeAY Gx + t(yVxe — uFTAN Gxy)|
< sellT— A TeANGxy|| + t]yVxe — uFTANGx || = 0 ast — 0,
by the boundedness of {Vx}, {TtA{\I Gx¢}and {FTtAlc\l Gx¢} in the assertion (i). That is,
lim x — T ANGx]| = 0. (3.4)

Ixe —pll <

Since p = Gp = Pc(I—v1F)Pc(I—v2F2)p and Fj is (j-inverse-strongly monotone with 0 < v; < 2(; for
j = 1,2, we deduce that

1Gx¢ — p|* = [[Pc(I—v1F1)Pc (I —vaFa)x¢ — Pc(I—viF1)Pc(I—vaFo)pl?
I(I—=v1F1)Pc(I—vaF2)x¢ — (I—v1F1)Pc(I—v2F2)p|?

IPc(I—vaFa)xt — Pc(I—vaFa)pl?

+v1(vi —28)|[F1Pc (I — vaF2)x¢ — FiPc (I —voFa)p|?

IPc (1= vaFa)xt — Pe(I—vaFa)p|? (3.5)
1(I—v2F2)x¢ — (I—v2F2)p||?

<
<

NN

= || (xt — p) — V2 (Faxt — F2p) |2
< xe —pl|? + va(va2 — 28) ||[Faxt — Fapl?

N

2
< [lxe —pl*
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Also, since B; : C — H is nj-inverse-strongly monotone for each i =1, ..., N, by Lemma 2.18 we have

|ALGxe —P|I* = [Troae (T— At B)AY T Gxe — Jroac, (I— Ay Bi)p|)?
< [(T= A B)AYTIGxy — (1= Ay By)pl?

< A6 — I + At (e —201) | BiAT Gxe — Bipl|? (3.6)
< 1Gxe = pIP + At (A —2n1)|BLA} T Gxy — Bip ||
< [Gxe =,

for each i € {1,2,...,,N}. Simple calculations show that

Xt—P =Xt — Wt +Wt—p
=xt—wi+ (I— stA)TtAPGxt + st (tyVxe + (I — tuF)TtAI[\] Gx¢)—p
= xt — Wt + (I = stA) (LAY Gxy — TeAR Gp) + st (YVx¢ — uFp)
+ (1= tuF) LAY Gxe — (I —tuF)p] + se(1— A)p,

(3.7)

where wy = (I —s{A)TLANGx¢ + s¢(tyVxe + (I — tuF)TLANGx). For simplicity, we write Xy = P¢c (I —
voF2)xt, Yyt = Pc(I—v1F1)%¢, and p = Pc (I —voF2)p. Then y¢ = Gx¢ and p = Pc(I—v1F1)p = Gp. Hence,
by Lemmas 2.11 and 2.14 , from (3.5)-(3.7) we obtain that
xe —pl* = (xt —wi, xe —p) + (1= 5:A) (T AN Gxy — TLANGP), x¢ — p) + s [t(yVxe — uFp, x¢ —p)
+ ((I— th)TtAtN Gxt — (I—tuF)p, xt —p)l +s¢ ((I—A)p, xt —p)
<{(I— stA)(TtAtN Gx¢ — TtAtN Gp), xt —Pp) + s¢[t{yVx¢ — uFp, x¢ — p)
+ (I —tuF)TLANGxy — (I—tuF)p, x¢ — p)] + s¢ ((I— A)p, x¢ —p)
= ((I— st A)(TeANGxy — TLANGP), xt — p) + 8¢ [((T — tuF) TL AN Gxy — (I—tuF)p, x¢ —p)
+tly(Vxe = Vp, xe —p) + (YVp — uFp, x¢ —=p))] + se (1= A)p, x¢ — p)
< (I— StA)(Tt/\]t\l Gxt *TtAtN Gp)|l[lxt —pll + selll(T *tMF)TtAIc\j Gx¢ — (I—tuF)pl[l|x¢ —pl|
+t(y[[Vxe = Vp|lllxe = pll + [[vVp — uFplllxe —plD] + sel|(T— A)p|llIxe — Pl
< (1= seV)[TeAY Gxe = TRAT Gp |l [[xe —pll + s¢[(1 — t7) [ TeAY G — pl[Ixe — pll
+t(yUxe = pl* + [[vVp — wFpllllxe — pIDT + e/l (1= A)pllxe —pll
< (1= se?) | ANGxe — pllllxe — pll + se (1 — t0) | AN G — pllxe — P
+t(yUxe —pl? + [lvVp — uFpllxe = pID] + sell (T— A)p|l[[xe —pll
= (1—s¢(y — 1+ t0) A} Gxe — pll[Ixe —pl|
+set(YUxe —pl* + [y Vp — wFplllxe — pll) + sel|(T— A)p]l[Ixe — p|
1
< (1=se(y =1+ 1) (AT Gxe = p[* + e —pI*)
+set(yUxe = pl? + [lyVp — wFpllxe = pll) + sell(T— A)p|l[[x — |
1 .
< (1= sy =1+ 11) ([ AT Gxe = plI* + e = p[1*)
+set(yUxe —plI* + [lyVp — uFpllllxe — pll) + sell(T= A)pllxc —p|
1 i
< (1= se(y =1+ t1) S l1IGxe — I + Ave (i —200)|[BiAT Gxe — Bip

+ lxe =PI + setivtee —pl2 + VP — wFpllixe — pll) + sll(T— A)p]lxe —pl.
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Hence,

Ixe —pl* < (1—s¢(y—1+ tT))%[HPC(I —vaF2)xt — Pc(I—vaF2)p|?
+v1(v1 —281) [Fr&e — Fip > + Ay e (Ai,e — 2n0) [ BiAT ! Gxy — Bip |2
+ lxe = pIP1+ set(yUxe — I + [y Vp — uFpllxe — pll) + sell(T— A)pll[xe —pl|
< (= sely =1+t llbee — Pl +v2(v2 = 200 [Faxe — Fapl?
+v1(v1 —281) [Fa&e — Fip|* + Ay e (i, — 2n0) [ BiAT ! Gx — Bip |2
+ [xe = )17 + set(yUxe —pl> + vV — wFpll[lxe —pll) + sl (T— A)p|lxe —pl|

(3.8)
1—s¢(y—1+tt
— [1—s¢(y =1+ tlt—yV)]|xe —p|> — t(yz  va(22 —va) [Faxe — Fap?
+v1(20 — v1)[[Fike — Fip > + At (2ni — Ay ) [ BiAT ' Gxe — Bip|1?]
+ se(tfyVp — uFp|lllxe — pll + [[(I— A)p|l[[xt — pll)
1—s¢(y—14+tt
e e
+v1(281 —v1)[[F1%e — F1p || + Ay (201 — Ait) | BiAT ' Gxe — Bip|)?]
+ s (t(vV — uF)pllllxe —pll + [(T—A)plllxe —pll),
which together with v; € (0,2¢5),j = 1,2 and {A; ¢} C [ai, bi] € (0,2n1),1 =1,..., N, implies that
1—s¢(y—1+tt
O 2t —va)l[Faxe — Fapl?
+v1(28 — v1)|[Fi%¢ — F1p[* + ai(2ni — by) | BiA} ' Gxy — Bip|)?]
1—s¢(y—1+tt
< L (2 — i) Faxe — Fap?
+v1(281 —v1)[[F1%e — F1p[|* + Ay (201 — Ait) | BiA} 'Gxe — Bip|)?]
< se(tyVp — wFplllxe —pll + [(T=A)pllfxe —pl)-
Since lim¢_,g st = 0 and {x¢} is bounded, we have
lim |[Fox¢ — Fop|| = lim ||F1%¢ — F1p|| = lim |BiAY 'Gx¢ — Bip|| =0, Vie({l,.. N} (3.9)
t—0 t—0 t—0

Utilizing Lemmas 2.8 (a) and 2.18, we obtain that for each i € {1, ..., N}
1AL Gxe —PI1* = TR ag, (T= A4t B AT Gxe — TRy, (T— Ay, Bi)pl[?
< ((T=AitB)AY 1 Gxe — (1= AitBi)p, AGxe — )
= %(H(I —AiB)ATIGxe — (T—=AitB)p? + | AL Gx — pl?
— [(T=A¢eB)AL Gxe — (1= Aq,(Bi)p — (A{Gxe — p)[)
< %(HAi—lGxt —PI* + I ALGxe = P[I* — AT Gxe — ALGxe — A (B} Gxe — Bip) )
< %(let =P+ | ALGxe — Pl — | A} Gxe — AfGxe — At (BiAY ! Gxe — Bip) %),
which immediately leads to
IATGxe = pl* < [xe =Pl = |AT ' Gxe — A{Gxe — At (BiAY ' Gxe — Bip) |
= [[x¢ —p|* — | AL 'Gxe — A{Gxe||* — A (||IBiAY 'Gxe — Bip|?
+2Ai 1 (AT 1Gxy — ALGxy, BiAL 1 Gx — Bip)
< Ilxe = pIP = AL TGxe — ALGxe ||* + 2A ¢ AL Gxe — ALGxe ||| BiAL ' Gxe — Bip|.

(3.10)
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Combining (3.8) and (3.10) we conclude that

=PI < (1= 57— 1+ 1) (1AL G — pIP + free —pIP)
+set(YUxe =l + [y Vp — uFplllxe — pll) + sl (T— A)pllfIxe —
< —st(7—1+tr))%{llxt =Pl — AT Gxe — AGxe?
+ 2414 6x4 — ALGxBiAT Gxe — Bepl + xe — I}

st —pl2+ [y Vp — wFpllllxe — pll) + sell(T— A)pllllx —p]

s (V=141 ) .
Sth U AT G — ALG P

+ (1= st (¥ — 1+ t)A[AT 1 Gxe — ALGxy || |BiAY 1Gxy — Bip|

+ s¢(tyVp — uFplllxe —pll + [[(T—A)p|l[[xe —pll)

—st(y—1+tt
2

F A AT Gxy — ALGxy]|||BiAYT Gx — Bip|

+ se(tyVp — uFp|lllxe — pl| + [[(T—= A)p|l[Ixt — pl]),

1
=[1—s¢(y—1+tr—yU]|xe —p|*> —

1 . .
< lxe—pl2— )| A Gy — ALGxe P

which hence yields

1—St('}_/—1+t’f

> ) IAT " Gxe = ATGxe [ < Auel| AT Gxe — A{Gxe ||| BiAY " Gxe — Bip|

+ se(tlyVp — uFp|l[[x¢ — p|| + [[(T—=A)p]|{|xc — p|)-

Since {Ai+} C lai, bi] C (0,2n1), limips¢ = 0 and lim¢_, HBiAi_lGxt — Bip|| = 0 (due to (3.9)), we
deduce from the boundedness of {x;} and {A}Gx.} that

lim AT 'Gxy — AlGx¢|| =0, Vie{l,.., Nk (3.11)
4)

Furthermore, in terms of the firm nonexpansivity of Pc and the (j-inverse strong monotonicity of F; for
j = 1,2, we obtain from v; € (0,2¢;),j = 1,2 and (3.5) that

[%¢ —P|I> = |[Pc(I—vaF2)x¢ — Pc(I—vaF2)p|?
<((I=v2R)x¢ — (I=Vv2F2)p, &% — P)

1 L L

= E[H(I —VoFa)xy — (I—=vaF2)pl* + [[%¢ — P> — (I — v2F2)xe — (I —vaF2)p — (% — D))
1o 2 e 2 o B RN

< 2[||><t Ple+ 1% = PII” — || (xe = %) — va(Faxe — Fap) — (p — P)|I7]

1 L . _
= Q[th — PP+ [%e = BIIF = | (xe —%¢) — (p—D) |17
+2vo((x¢ — %) — (p — D), Faxt — Fap) — v3||Faxe — Fap 1%,
and

[yt —plI* = |IPc(I—viF)%e — Pe(I—v1F)p|?
<((I=viF)%e — (I=viF)p, ye —p)

1 . - . 3

= E[H(I —viF)%e — (T=viF)P|? + lye — plI> — [ (T — viF1)%e — (I—viF1)P — (Yt —p)|)*]
1. . . _

< §[||Xt —PIP+ 1y —pI* = (Re —yo) + (p—p)I?
+2v1(Fi%e — F1D, (X —yi) + (p —P)) — V3| Fa%e — F1p ||

1 g g g <o y
< Slxe =PI+ e =PI = [ (Re —yo) + (p = P)I* + 2va (Fixe — Fip, (e —yo) + (p — ).
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Thus, we have

IRe =PI* < lIxe = plI* = | (xe = %e) — (p = PII* +2v2{(xt — %) — (p — ), Faxe — F2p)

(3.12)
—V3||F2x¢ — Fop %,

and

[yt —plI* < [Ixe = pII> = | (Re —ye) + (p — B)II* + 2v1|[Fi%e — Fab[l[| (X —ye) + (p —P).- (3.13)

Consequently, from (3.5), (3.6), (3.5), and (3.12) it follows that

Ixe —plI* < (1—Sth7—1+tT))%(llAiGXt—P||2+ [xe —pl?)
+set(YUxe = plI* + [y Vp — uFp|ll[xe —pll) + sell(T— A)plllxe — |
< (= sy =1+t (1Gx — I+ e —pIP)
+set(yUxe = plI® + [lyVp — wFpllxe — pll) + sell(T— A)p[xc —p|
< (1= sy =1+ 1) (1%~ PIP + 1xe — I
+set(yUxe = pl® + [lyVp — wFpllxe = pll) + sell(T— A)p[xc —p|
<(1—se(y—1 +tT))%[HXt —PHZ —[[(x¢ —%¢) — (p —ﬁ)”z

+2v2|(xe = %¢) — (p = P) | [Faxe — Fap | + [xe — pI*]

+set(yUxe = plI® + [lyVp — wFpllxe — pll) + sell(T— A)p|[xc —p|
1—s¢(y—14t7) . .

- 5 I(xe —%¢) — (p—P)II?
+ (1 —=se(¥ — 1T+ t1))v2| (xe — %¢) — (p — D) [|[[Faxe — F2p|
+ s (t[[yVp — uFp|[llxe —pll) + [(T—A)p|llIxe —pll)
— St('}_/— 14tt

2

+ s¢(t[[yVp —uFp|llIxe —pl) + I (T=A)p|llIxe —pl),

=1 —se(y—1+t(t—y)|xe —p|* —

: 10ce = %¢) = (p = P)II* + vall (xe = %) = (p = P)[[[Faxe — Fop|

1
< [lxe = pll* —

which yields

1—s¢(y—1+t1)
2
< Vo[ (x¢ —%¢) — (p = P)[[|[Foaxe — Fap || + se(t][yVp — uFp|lllxe — p|]) + (T = A)plll[xt —pl|)-

10xe = %e) — (p —P)|>

Since limy_,0 st = 0 and limy_,¢ ||Fox¢ — F2p|| = 0 (due to (3.9)), we deduce from the boundedness of {x}
and {X} that

lim [|(x¢ —%¢) — (p —P)|| =0. (3.14)
t—0
In the meantime, from (3.5), (3.6), (3.8), and (3.13) it follows that
1
e =pl* < (1= sy =14+ t0) 5 (1Gxe = pl* + e = [1*)
T set(ylxe — pIP + [vVp — wFpllilxe — pl) + se (1= A)p]llixc — p

1
= (1= sy =1+ t0) 5 (lye = plP + e = pI)
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+set(vlxe —plI> + [y Vp — uFpll e —pll) + sell(T— A)pl[[Ixe — pl|
1 ) _
< (I=suy =1+ t0)5 e —pl* = IR —yo) + (P = D)
+2v1|[Fi%e — Fp || (Re —ye) + (p =PI + [[xe — plI°]

st —pl2+ [y Vp — wFpllllxe — pll) + sell(T— A)pllllxe —p

1—s¢(y—1
== sely =T tr— e —plP - T D x4 o g

+ (1 =s¢(y = 1+ t1))vi[[Fi%e — F1p || (Re —ye) + (p — D)l
+ s¢(t[[yVp — uFp|lllxe —pl + [[(T—=A)pllxe —pll)

1—se(y—1+1t1) - . e N
T 5y 4 (o= PP+ valIFk — Fipll (% —y0) + (p— )]

+ s (t[[yVp — uFp|l|lx¢e — |l + [|(T—=A)p|llxc —Pll),
which leads to

1—&(?2—1 +t1) 1(%e —ye) + (p— )17

2
< e —pll” =

< vil[Fixe = Fip|[[[(Xe —ye) + (p = P)I| + se(tlyVp — uFplllixe — pll + (T Apll[[xc —pl).

Since lim¢_,os¢ = 0 and lim¢_,¢ |F1X¢ — F1p|| = 0 (due to (3.9)), we deduce from the boundedness of
{Xt}l {i‘t}/ and {U t} that

lim [|(%¢e —ye) + (p =) = 0. (3.15)

Note that
[xe —yell < [|xe = %) — (p =PI + [[(Re —yo) + (P —D)I|-
Hence from (3.14) and (3.15) we get

lim |[x¢ —y¢]| = lim |[x¢ — Gx¢|| =0. (3.16)
n—oo n—oo
Also, observe that
1Gxt =AY Gxi || = [|[AYGxe — AL G |
< JAYGx, — ALGx|| + [[ALGxy — A2Gxq || + - - + |[ANTTGx¢ — ANGxy|.
Thus, from (3.11) we get
lim ||Gx¢ — ANGx¢ || = 0. (3.17)
t—0
In addition, it is easy to see that
Ixe = AP x| < [[xe = Gxel| 4 |Gxe — AN Gxe || + AT Gxp — A xe || < 2fxe — Gxe || + [|Gxe — AF Gxe .
So, from (3.16) and (3.17) it follows that
. AN _
lim [[xe — Ag x| = 0.
Further, it is not hard to find that
th — TtXtH g ||Xt — TtAtN GXtH + HTtA][\I GXt — TtGXt” + HTtGXt — TtXt”
< ||Xt —TtAtN GXtH + HAtN GXt — GXtH + HGXt _XtH-
Consequently, from (3.4), (3.16), and (3.17) it follows that

lim HXt — TtXtH =0.
t—0
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(iii) Let t, to € (O, min{1, 2 E—
St A)Teve + s¢(tyVxy + (I —tuF)Tyvy)]. Since VT is %-ism, Pc(I—A¢Vf) is nonexpansive for A¢ € (0, %). So,
it follows that for any given p € (2,

Y1), For simplicity, we write v = AtN Gx¢. Then we know that xy = Pc[(I—

[Pc(I=AeVE)v || < [[Pc(I—=AcVE)vy, —pll + [Pl
= [[PcI=AcV)vey = Pe(I=AVp[[ +[[pll < [[veg =PIl + [Ipll < [lveo | +2Ip]l-

This implies that {Pc (I —A¢Vf)vy,} is bounded. Also, observe that

[ Tevey — Teg Vi, |
4PC1-AVA) = 2—ADIL 4Pc(I—AyVH) — (2= Ay L)1

=| 2 AL Vto 2+ AL Vo

4P (1 —A V1) 4P (1— Ay, VF) 2= Ayl 2-AdL
ST 2+ Ag, L Vol +55, N Wil
:H4(2~|—7\tOL)PC(I—7\tVf)vtO—4(2+7\tL)PC(I Atotho” ALIA L — Ag,| el

(2+ ML) 2+ A, L) 2+ ML) 2+ A, L)
_H4L(?\t0—)\t)PC(I—?\tVf)vto+4(2+?\tL)(PC(I—)\tVf)vtO—PC( — A, V)vy,) i
N (24 A¢L) (24 Ay, L) (3.18)
AL — Mg

2ianD) @A Vol
4L A, — Al||Pc(I—=AcVE)vy, || n 42+ A L) |Pc(I=A Vv, — Pe(I—Ag, Vv, ||
h (2+AtL)(2 + Ag, L) (2+AL)(24+ A, L)
AL A ¢ — Ayl el
(24+AL) (24 A, L) "7
< A = A I[P (T = A Vv || + 4]V (veg ) | + L[]
<

MIAL — Agl,

+

where Supte(O,min{l,%}){L”PC(I — A Vv, || + 4| VE(vy)|| + Li[ve, ||} < M for some M > 0. So, by (3.18),

we have that

[Teve — TegVeo | < [ Teve — Tevegl| + [[Tevey — Teg Vi |l

— vl (3.19)
< Hvt _vtoH + Mp\t - )\t0| < ||Vt _VtOH + T|St — Stol-

Utilizing (2.1) and (2.2), we obtain that
[ve — v, || = [|[AY Gxg — AD Gy |
= TR Ane (L= ANABNIAY TGt — TRy Ay (T = Ant BN AT, T Gy |
< TR Ane (T=ANABN)AY 7Gxt — TR an (T = ANt BN)AT 1 Gxy |
1 TRnAn e (T= ANt BNIAY TGt — TRy Anag (T = ANt BN AL~ Gy |
< I —=AnBN)AN TGxt — (T AN, BN)AN T1Gx ||

+ [[(T= AN, BN)AR 7Gx — (T= ANt BNIAD, 7Gx | 4 ANt — AN |

1 _ _
X(KIIIRN,AN,JI ANt BRIAT TG — (1= AN B AR ™ G |

7\N H —AN toBN)A Gxt - ]RN ANt ( - )\N,toBN )Atl\(l)_lGxtoH)
to

< Pt — At (IBNANTIGx || + M) + [ AN1Gx, — AR T Gy |
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< Pt = AN (BN AN TG || + M)
+IAN-1t = AN-1, 5l (BNt AN T2Gxe || + M) + [|AN 72Gxe — AR 2Gxy, |
< (3.20)

< Pt — At (IBNANTIGXe | + M) + ANt — AN—1t] (IIBN_1AN2Gxe || + M)

o A — At ([B1AYGx | + M) + | A%Gx, — A} Gxy, ||
N

<MY it — Al + Ixe — x4,
i=1

where

1
sup { 3

te(0min{1, 2% 1), 1<igN bt

ITRoAc (I = At BOAT Gxe — (I— Aq g BU) AL Gy |

1 . . —~
(1= A4t B AT Gxe = Jroa, (1= At BIAL, 1 Gxe [} < M,

_.I_
Ai,t()

for some M > 0 and SUP, ¢ (0,min{1 2771}){2?1:1 Bi AT 1Gxy|| + M} < My for some Mg > 0. By combining
min{1, 7=
(3.19) and (3.20) we get

AM X AM
[ Teve — Teg Vo || < [[ve — Vol + T|St — Sl < [xe — xg || MOZ|7\i,t — Mgl + T|St — Sg,l- (3.21)
i=1

In terms of (3.21), we calculate

Ixt — X, || < [(T—8¢A)Teve + s¢(tyVxe + (I — tuF) Tevy)

— (T—= 54, A) TegVey — Sto (toY Ve, + (I —torF) Tegve, ) ||

<|(IT =5 A)Teve — (T = s, A) Teve || + [[(T = s A)Teve — (I — s4,A) Ty Vi, ||
+[st — st /||ty Vxe + (T — tuF) Teve || + st || [ty Vxe + (I — tpuF) Teve]
— [toyVxey + (1= topF) Tey vy ||

< Ise = seol[|A[|[[Tevel| + (1 = s, ¥)[[Teve — Teg v |
+ st — Sl 1Y Vxe 4+ (I — tuF) Tewe || + s¢o || (£ — to)y Ve + toy (Vxe — Vxy,)
— (t—to)uFTeve + (I —touF) Teve — (I — topF) Ty, ||

N
< se = seol[|A | Tevel| + (1 — s V)%t — X, || + I\NAOZP\Lt — Ait,

i=1

1M
+ T'St — Sgoll F st = seol [l Teve || + tly [ Vxe || + w|[FTeve )]
+ st [(VIIVxe]| + 1l[FTeve DIt — tol + tovLixe — xeol| + (1 —toT) | Teve — Tegve[]
N
< se = seol[|A| Tevel| + (1 — seo V)%t — X, || + MOZP\i,t — it
i=1

4M
+ T|5t — Stoll + Ist = sl ([| Tevel| =¥ Vxe || + 1l FTevel])

+ st (VIIVXe || + 1l[FTevel )t —tol + seotovlee — il + 5o (1 —toT) [|Ixt — Xt |
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N .
—~ 1M
+My E At — Aiol + =

L sy — StOH-

This immediately implies that

VIVl + p[FTeve]

< JAITl + Tl vVl + wll Frovell
¥—1+to(t—vl)

X - t—t
ul 03 =1 ot 1) ol

Ixt —x

1—s¢, (¥ —1+to1) AM
M Ai : _

St (Y —1+to(T—v1)) OZ| it~ Al + |S" Sty
||AHHTtVtH + | Tevel + vVl + wf[FTeve || + 4M
Sty (Y 1+t0(T Y1)

My
+ At — Aitgl
Sto(?—1+to(T—Y1));| it = Aitol

L (s, — 5o+ YIVxe| + pl[FTeve||
0 ¥—1+1t(t—vl)

It — tol

Since s¢ : (0,min{l, 2=X}) — (0, min{3, |A[|~1}) is locally Lipschitzian and A;¢ : (0, min{1, 2 e vl})

/ T— yl
[ai, bi] is locally Lipschitzian for each i = 1,...,, N, we conclude that x : (0, mm{l, — yl}) — C is locally
Lipschitzian.

(iv) From the last inequality in (iii), the result follows immediately. O

We prove the following theorem for strong convergence of the net {x{} as t — 0, which guarantees the
existence of solutions of the variational inequality (3.2).

Theorem 3.2. Let the net {x} be defined via (3.1). If lim_,o s¢ = 0, then x converges strongly to a point X € (2
as t — 0, which solves the VIP (3.2). Equivalently, we have P (2] — A)X = X.

Proof. We first show the uniqueness of solutions of the VIP (3.2), which is indeed a consequence of the
strong monotonicity of A — 1. In fact, since A is a y-strongly positive bounded linear operator with

€ (1,2), we know that A — I is (y — 1)-strongly monotone with constant y —1 € (0,1). Suppose that
X € (2 and %k € (2 both are solutions to the VIP (3.2). Then we have

(A=Dx,x—%) <0, (3.22)
and
(A=D%,&—%) <O0. (3.23)
Adding up (3.22) and (3.23) yields
(A=T)x—(A-D&x—%) <O0.

The strong monotonicity of A —I implies that X = % and the uniqueness is proved.
Next, we prove that x; — X as t — 0. Observing Fix(T;) = I', Fix(G) = &, and Ath = p, from (3.1),
we write, for given p € (2,
Xt —P =Xt —Wt+Wg—p
= x¢ — Wi + (I— st A)TLANGxy + s (tyVxe + (I — tuF) TLAN Gx ) —p
=x¢ —wi + (I—s(A)(TLANGxy — TLANGp) + selty Ve + (I — tuF) TLANGx —pl + s¢(I— A)p
=Xt — Wt + (I — StA)(TtAN GXt TtAtN Gp)
+ sc[t(yVxe — uFp) + (I—tuF) TeAY Gy — (I—tuF)pl +s¢(I— A)p,
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where wy = (I — stA)TtAtN Gx¢ +s¢(tyVxe + (I— th)TtAtN Gx¢). Then, by Proposition 2.1 (i), we have

[xe —pl* = (xt —wi, xe —p) + (1= 5¢A) (T AN Gxy — TLANGp, x¢ — p) + se[t(yVx¢ — uFp, x¢ —p)
+ (1= tuF) LAY Gxy — (I— tuF)p, x¢ —p)] + s ((I— A)p, x¢ —Pp)
< (1—s¢9)lxe = pl* + se[(1 = t)[Jxe — plI> + tylxe — p|?
+t((vV — uF)p, x¢ —p)l + s¢((I = A)p, x¢ —p)
=1 —s¢(y =1+ tlr—yD)|xe —p)* + se(t{(yV — uF)p,x¢ —p) + (I— A)p,x¢ —P)).

Therefore,

1
y—1+t(t—vyl

Ixe —pl* < )(t<(W—uF)p,xt—p>+<(I—A)p,xt—p>)- (3.24)

Since the net {xt}t c Omm{l 1) is bounded (due to Proposition 3.1 (i)), we know that if {t,} is a subse-

quence in (0, rmn{l, T_yl ) such that tn, — 0 and x¢, — x*, then from (3.24), we obtain x{, — x*. Let
us show that x* € 2. Indeed, by Proposition 3.1 (ii), we know that limy_, ||xt, — Gx¢, | = 0. Hence,
according to Lemma 2.9 we get x* € Fix(G) = &. In the meantime, by Proposition 3.1 (ii), we know that
limp 00 || Xt,, — Tt Xt || = 0. Observe that

[Pc(T—Ae, VE)xt, —xt, || = [[sta Xty + (1= st ) T Xt — Xt || = (1= se,) [ Ten e, — %t | < [[Tenxt, — %t |l

where sy, = # € (0, %) for A¢, € (O, %). Hence we have
2 2
”PC(I — in)th —thH < HPC(I — KVf)th — PC(I —)\thf)thH + ”PC(I — )\thf)th —thH
<
< (

2
(I - in)th - (I — }\thf)xth + HPC(I — )\tHVf)th — thH

2
L — A IVEOe )+ [ Te, X, — X, |-

From the boundedness of {x¢_}, st, = 0 (& Ay, — %) and ||T¢, x¢, —x¢, || = 0O, it follows that
. 2 « : 2
|Ix* —Pc(I—=Vf)x*|| = lim ||x¢, —Pc(I—=Vf)x, | =0.
L n—oo L

So, x* € VI(C,Vf) = TI. Next we prove that x* € ﬂ I(Bm,Rm). As a matter of fact, it is easy to
see from (3.16) and (3.17) that A" Gx¢, — x* for each m = 1,..,N. Since By, is nm-inverse strongly
monotone, By, is a monotone and Lipschitz continuous mapping. It follows from Lemma 2.21 that
Rm + Bm is maximal monotone. Let (v,g) € G(Rm +Bm), ie, g—Bmv € Riyv. Again, since A" Gxt,, =
TR Amen (1= Am,t, B )AT 1 Gxy,, m € {1,2, ..., N}, we have

AT 16Xy, — Amtn Bm AT 1 Gxe, € (T4 Ayt Rm AT Gy,

that is,
1

)\m/tn

(AT 1Gxy, — AT Gxt,, — Am,t, Bm AT 16Xy, ) € RiAT Gy,

In terms of the monotonicity of Ry,, we get

(v—ALGxt,, g —Bmv—

(AT1Gxy, — AT Gxt,, — Amt, Bm AT 1Gxy, ) 20,

Am,tn

and hence
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(v—ATGx,,, 9)

> (v— A Gxy,, Bmv+ (A7 1Gxy, — ATNGxt,, — Am,t, Bm AT 1 Gxy,, )

m,tn
m—1 m
Atn Gth — Atn Gth
Am,t,
m—1 m
Atn Gth — Atn Gth
}\m/tn

Since ||A{* Gxt,, —A?TlflGxth — 0 (due to (3.11)) and || B A{ Gxy,, — BmAfc:*lGxth — 0 (due to the
Lipschitz continuity of By,), we conclude from A{* Gxt, — x* and {Am 1, } C [am, bm] C (0,21 ) that

= (v— AT Gxy,, Bmv—BmAT Gxy, + B AP Gx, — Bm A 1Gxy,, + )

> (v— AL Gxy,,, B AT Gxy, — BmAE_lGxtn> + (v— AT Gxy,,, ).

lim (v—A{Gxy,,g) = (v—x*,g) > 0.

n—oo

It follows from the maximal monotonicity of By, + Ry, that 0 € (Ryy + B )x*, ie., x* € I(Bm, Rim). Thus,
x* e ﬂylzl I(Bm, Rm). Consequently, it is known that

N
x*€ () IBm,Rm)NENT = 0.

m=1
Finally, let us show that x* is a solution of the VIP (3.2). As a matter of fact, since
Xt =xt —wi + (I— stA)TtAtN Gx¢ +se(tyVxe + (I— th)TtAtN Gxy),
we have
Xt — TtAtN GXt =Xt — Wyt + St(I — A)TtAtN GXt + Stt('YVXt — LLFTtAL\j GXt).

Since G, T;, and A{\J are nonexpansive, I — TtAtN G is monotone. So, from the monotonicity of I — TtAtN G,
it follows that, for p € (2,

(I- TtA G)x¢ — (I*TtA G)p, x¢t —p)
(I— TtAt G)x¢, Xt —P)

Xt —wi, Xt —p) + s¢{(I— )TtAI[\l Gxt, xt —Pp) + set{yVxe — uFTtAtN Gxt, Xt —P)

((1 TtA Gxi, Xt —P) + stt{(yVxy — pFTtAL\’ Gx¢, Xt —Pp)

st ((I—A)xe, xe —p) +s¢((I A)(TtAN G —Dx¢, x¢ —p) + set(yVxe — uFTtAtN Gxt, Xt — P).

<l
((
=

< st

This implies that
(A —=Dxg,x¢ —p) < (I—A)TANG — Dx, x¢ —p) + t{yVxe — uFTL AN Gxy, x¢ — p). (3.25)

Now, replacing t in (3.25) with t,, and letting n— oo, noticing the boundedness of {yVxy, — uFTe, AN Gxg, }
and the fact that (I — A)(TtnAthG —I)x¢,, = 0as n — oo (due to (3.4)), we obtain

(A—=Dx*,x"—p) <0.

That is, x* € 2 is a solution of the VIP (3.2); hence x* = X by uniqueness. In summary, we have proven
that each cluster point of {x{} (as t — 0) equals to X. Consequently, x; — X as t — 0.
The VIP (3.2) can be rewritten as

(I-A)X—%,X—p) >0, Vpe.
Recalling Proposition 2.1 (i), the last inequality is equivalent to the fixed point equation

PoRI-A)X =X.
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Taking F = %I, pu=2and y =1 in Theorem 3.2, we get
Corollary 3.3. Let {x} be defined by
xt = Pcl(I— s¢A)TeAR Gxe + s¢(tVxy + (1 — ) Te AR Gxe ).

If lim¢_,0 s¢ = 0, then {x} converges strongly as t — 0 to a point X € (2, which is the unique solution of the VIP
(3.2).

First, we prove the following result in order to establish the strong convergence of the sequence {xn }
generated by the hybrid explicit steepest-descent scheme (3.3).

Theorem 3.4. Let {xn} be the sequence generated by the explicit scheme (3.3), where {on} and {sn} satisfy the
following condition:

(CDH{axn} C 0,11, {sn} C (O, %), and oy = 0, s, — 0asn — oco.
Let LIM be a Banach limit. Then
LIMp ((A —DX,X—xn) <0,
where % = lim_,¢+ x; with x; being defined by

xt = Pel(I— s A)TAN Gxe 4 s¢ (tyVxe + (I— tuF) TANGxy)], (3.26)

where T,G, AN : C — C are defined by Tx = Pc(I— %Vf)x, Gx = Pc(I—v1F1)Pc(I—voFp)x and ANx =
JRa A (= ANBN) - Jry A, (I = A1Bq)x with v; € (0,2¢5),j = 1,2 and A; € [a;, bi] C (0,2n;) for each
i=1,...,N.

Proof. First, note that from the condition (C1), without loss of generality, we may assume that 0 < s,, <
|A|~! for all n > 0.

Let {x¢} be the net generated by (3.26). Since T, G, and AN are nonexpansive self-mappings on C, by
Theorem 3.2 with T = T and A} = AN, there exists lim_,ox¢ € 2. Denote it by . Moreover, % is the
unique solution of the VIP (3.2). From Proposition 3.1 (i) with Ty = T and AN = AN, we know that {x} is
bounded and so are the nets {Vx¢}, {ANGx¢}, {TANGx¢}, and {FTANGx¢).

First of all, let us show that {xy,} is bounded. To this end, take p € (2. Then we get

[yn =Pl = lanyVxn + (I— cntF) Tn AN Gxy —p
= [|otn (YVxn — uFp) + (I— ocon)TnATT\LJ Gxn — (I— ocon)TnATT\L‘ Gp||
< oV xn — Pl + o[ YV — wF)p ] + (1= o) [xn —
=1 —on(t=yD)[[xn =Pl + &n [ (yV —uF)pl,

which together with Lemma 2.14, implies that

[xnt+1—pll = [[PclI— SnA)TnAr]\xl Gxn + snynl —p||
< I = s A) T AN Gxn 4 snyn — p|
= |(I—snA) T AN Gxp — (I = snA)TRANGP + 50 (Yyn —p) + sn(I—A)p||
< (1= snA)Th AN Gxn — (1= sn A) TR AR GP| + s flyn — Il + snIT—= Al p||
< (I =sn¥)[xn =Pl + snl(l — an(t—=y1))|xn — 7P|
+ o [|(YV — uF)p ([l + sn ([T All|Ip]l
< (M=sn(¥=D)lxn =Pl +snlll(¥V—uF)p| + [[I—Al/pl])
) Ly = uPip + 1= Allp]
y—1

=(1 _Sn(\_/_l))Hxn_pH +sn (Y
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H [(YV —uF)p|[ + III—AIIHPII}
7 )}_/_1 .

< max{[xn —p

By induction

[(vV —uF)pll + [IT=Allllpll
71

This implies that {x,,} is bounded and so are {Vxn}, {Th AN Gx ), (FTW AN Gx, ), and {yn}. Thus, utilizing

the control condition (C1), we get

L,ovn>0.

[xn —pll < max{[lxo —pl|,

[Xnt1 — TrANGxn || = [Pcl(I— snA) TR AN Gxp + Snyn] — Tn AN Gxp ||
< H(I— snA)TnAl:l GXn + Snyn — TnAT]\II Gxn||

= sn|[yn —ATRANGxn|| = 0 asn — .

For simplicity, we write v, = AE Gxn for all m > 0. Then, utilizing the similar arguments to those of
(3.19), we have that

—~2
I TANGxn — TR AN Gx || < [[AN Gxy — AN Gxn || + MIT = Anl, (3.27)

where sup, - {L|[Pc(I— 2V vn|| + 4[| VF(vn)| + Ljval]} < M for some M > 0. Utilizing the similar
arguments to those of (3.20), we have that

[ANGxn — ANGxy || < MOZP\”L Al (3.28)

where

sup

TRe A (1= ABOAT Gxn — (1= AiB1) A Gixa |
n>0,1<igN Ain

—H —ABOATIGxn — Jroa (I = AB)ATIGxn [} < N

for some N > 0 and supn>0{zy:1 IBiAY x| + N} < My for some My > 0. In terms of (3.27)-(3.28) we
calculate

N
—~2 —~ —~2
I TANGxp — TR AN Gxp || < [|ANGxp — AN Gxn || + MIT = An| < Mod At —Ainl+ MIT = Anl.

Consequently, it is not hard to find that

ITANGx: — xnp1]| < [[TANGx — TANGxp || + [|[TANGxn, — Tn AN Gxn || + [T AN Gxpy — X1 |

N
—~ —~2
< [lxe = xnll+ Mo} i = Aunl+MIZ = Anl+ [ Ta A Gxn —Xn (329)
i=1
=[xt —xn| + €n,

where €,, = /N\lo 2111 At —Ainl+ /T\/\ll% —Anl+ |[ThAN Gxpn —xn11]] = 0 as n — co. Also observing that A
is strongly positive, we have

(Axt — Axn, Xt —Xn) = (A(Xt —Xn), Xt —Xn) = V||xt — xn||2. (3.30)
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For simplicity, we write wy = (I — st A)TANGx¢ + s¢(tyVx¢ + (I — tuF)TANGx¢). Then we obtain that
x¢ = Pcw¢ and
Xt — Xni1 = Xt — Wi + (I— st A)TANGx¢ + s¢ (tyVxe + (I —tpuF) TANGx) — xniq
= (I—s¢A)TANGxt — (I— s¢A)xnp1 + st (tyVxe + (I— tuF) TANGxy — Axniq) 4+ X¢ — Wy
Observe that

xe = xna1]? < (1= se A)TANGxy — (I — s¢A) x| 4+ 2(x¢ — W, X¢ — Xnp1)
+ 2St<TAN Gx¢ — t(LFTANGx —yVx) — AXni1, Xt — Xn41)
< I = st A)TANGxy — (I— s¢A)xpng1]?
+ 25 (TANGx¢ — t(LFTANGx¢ — Yy Vx¢) — AXpi1, Xt — Xng1)
< (1-— sm‘/)2||TAN GXt — Xni1 ||2 + 23t<TAN GXt — X, Xt — Xn+1)
— 2stt(uFTAN Gxt —YVxe, Xt — Xn41) + 28t (X¢ — AXp41, Xt — Xn+1)-
Using (3.29) and (3.30) in (3.31), we obtain

(3.31)

[[x+ —Xn+1|| (1—s¢v) ||TA]\l Gx — Xn+1” + 25t<TA GXt — X, Xt — Xn41)
+ 28 t(yVxy — WFTANGxy, x¢ — Xn41) + 28t (Xt — AXni1, Xt — Xnt1)
<(1- StT/)Z(HXt — Xnl + en) + 2StHTAN Gxt — x| [[xt — xn1ll
+ 2s¢t||y Ve — WFTANGx ||| x¢ — Xnt || 4 25¢ (Xt — AXnp1, Xt — Xng1)
= (S%T’ —25¢)|xt _Xn”z + [Ix¢ _XnHz
+ (1= 5¢7)? 2] xt — Xnllen + €21+ 25 TAN Gxy — x¢||IXt —Xn 1]
+ 2s¢t||y Ve — LFTANGxq ||| x¢ — Xmpt || 4 25¢ (Xt — AXng1, Xt — Xng1)
= (537 = 2s)¥ e = xnll? + X = xn[? + (1= se7)*R2[|xe — xnllen + €3]
4 25¢[|[TANGx¢ — x| [|[Xt — Xna1]| + 2s¢t][yVxe — WFTANGxe||[|[xt — Xnat]|
+ 2s¢ (Xt — AXn 11, Xt — Xn+1) (3.32)
< (827 — 25¢) (Axe — Axn, Xt — Xn) + [|[x¢ — Xn |2 4 (1 = s¢7)212]|x¢ — Xn||€n + €3]
+28¢ | TAN Gxy — xe[|[xt — Xn1]| + 25e ][y Vxe — RFTANGxe|[[x¢ — X
+ 2s¢ (Xt — AXn11, Xt — Xn+1)
= V(A — Axn, Xt —Xn) + [[xe = xn[? + (1= s¢7)*2]xe —xnllen + €3]
+ 25| TANGx¢ — x¢ ||| %t — Xns1]l + 25et v Vxe — WFTANGx|[[|Ix¢ — Xnial
+2s¢[(xt — AXn41, Xt — Xn+1) — (AXt — AXn, Xt — Xn )]
= sTY(A(xt — Xn), Xt — Xn) + [[x¢ = xn|[? + (1 — s¢7)? 2] x¢ —Xn/en + €3]
+ 25¢[[TANGx¢ — x¢||[|[xt — Xna1]| + 2s¢t][yVxe — WFTAN Gxe ||| x¢ — Xnat]|
+ 28 [((T— A)xe, Xt —Xn41) + (A%t —Xn41), %t —Xn41) — (AlXe —Xn), %t —%n)].
Applying the Banach limit LIM to (3.32), from e,, — 0 we have

LIMp [|x¢ — Xn1])?
< Sgc'yLIMn<A(Xt - Xn)zxt - Xn> + LIMnHXt _XnHZ

+25¢ | TANGx¢ — ¢ ||[LIMp |[x¢ — Xnp1 || + 25¢t]|y Ve — WFTAN G |LIMy, [[x¢ — X1 || (3.33)
+ ZSt[LIMn<(I — A)Xg, Xt — Xn+1> +LIM,, (A(Xt - Xn+1)/xt - Xn+1>
— LIM,, <A(Xt —Xn), Xt — Xn>]-
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Utilizing the property LIM;,,a,, = LIMy a4+ of the Banach limit in (3.33), we obtain

LIMy ((A — Dx¢, Xt —Xn)
= LIMp (A — Dxt, Xt — Xn41)

S
< ST IMy (A (x¢ — xn), Xt — Xn) + = [LIMn [[xe — %n | — LIMy [ x¢ — xrp1]|2]

1
2 2s¢
+ ITANGx¢ — x¢||LIMp |[x¢ — xn || + tyVxe — WFTANGx¢|[LIMy, [|x¢ — X || (3.34)
+ LIMn<A(Xt - Xn+1)/ Xt — Xn+1> —LIM,, <A(Xt - XTL)/ Xt — Xn>
.
< tTYLIMn<A(Xt —xXn), Xt — Xn) + [[TANGx¢ — x¢||[LIMp |[x¢ — Xn ||
4ty Vxe — WFTAN Gx¢ ||LIMp [|x¢ — Xn |-
Sinceast — 0,
st({A(xt —Xn), Xt —Xn) < s¢l|A]l[Ixt —xn > < s¢tK =0, (3.35)
where ||A|[xt —xn|]* <K,
|ITANGx¢ —x¢]| = 0 (see (3.4)) and t|yVxi —uFTANGx{| -0 ast—0, (3.36)
we conclude from (3.34)-(3.36) that

LIM,, ((A — D)X, X —xn) < limsupLIMp ((A — D)x¢, X¢ — Xn)

t—0

< lim sup%LIMMA(xt —Xn), Xt — Xn) + limsup||TAN Gxy — x¢ ||[LIMp [|x¢ — Xn ||

t—0 t—0

+lim supt|[yVx, — tFTAN Gx¢ |[LIMy, [|x¢ — X |

t—0

=0.
This completes the proof. O

Now, using Theorem 3.4, we establish the strong convergence of the sequence {x,} generated by the
hybrid explicit steepest-descent scheme (3.3) to a point X € (2, which is also the unique solution of the
VIP (3.2).

Theorem 3.5. Let {xn} be the sequence generated by the explicit scheme (3.3), where {otn} and {sn} satisfy the
following conditions:

(C1) {n} C (0,11, {sn} C (O, )andocn—>0 spn— 0asn — oo;

(C2) Y 3 gsn = oo

If {xn} is weakly asymptotically reqular (i.e., Xn41 —Xn — 0), then xn, converges strongly to a point X € (2, which
is the unique solution of the VIP (3.2).

Proof. First, note that from the condition (C1), without loss of generality, we may assume that o, 7 < 1
g Y y

dzs“y 1 <1foralln 0.
Let Xt be defined by (3.26), that is,

= Pcel(I— st A)TANGx¢ + s¢(TANGxy — t(LFTANGx¢ — v Vxy)],

for t € (0, mm{l 1}) where Tx = P (I— gi)x Gx = Pc(I—viF1)Pc(I—voF)x, ANx = ]RN An(I—
ANBN) - TRy (T AlBl)x with v; € (0, ZCJ) j = 1,2 and Ay € [ay,bi] C (0,2ni),1 = 1,..., N, and
lim¢_,0x¢ := & € 2 (due to Theorem 3.2). Then X is the unique solution of the VIP (3.2).

We divide the rest of the proof into several steps.
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Step 1. We see that

[(yV —uF)pll +[[T— A HPII}

71 vn >0,

[xn = pll < max{[lxo —pl|,

for all p € O as in the proof of Theorem 3.4. Hence {x,} is bounded and so are {Vxn},{ANGxn},
{FTL AN Gxp,}, and {yn}.

Step 2. We show that limsup, , ((I—A)X, xn —%) < 0. To this end, put
an = (A=DX,X—xn), Yn=>0.

Then, by Theorem 3.4 we get LIM,,a,, < 0 for any Banach limit LIM. Since {x,,} is bounded, there exists
a subsequence {xn,} of {xn} such that

limsup(an4+1 —an) =lim sup(an].H — Qn; ),
n—oo j—oo

and Xn; =V E H. This implies that Xn;+1 — V since {xn} is weakly asymptotically regular. Therefore, we
have

— lim (X —xp; 1) =w— lim (R —xn;) = (X —V),
j—o0 j—ro0

and so

limsup(ani1 —an) = lim ((A = D)X, (X —xn;+1) — (X —xn;)) = 0.
n—oo ) =00

Then, by Lemma 2.15, we obtain limsup,, _,  an <0, that s,

limsup((I—A)X, xn —X) = limsup((A —I)X, X —xn) < 0.

n—oo n—oo

Step 3. We show that limn_, ||[Xxn —X|| = 0. Indeed, for simplicity, we write wy, = (I — SnA)TRANGxp +
snyn for alln > 0. Then x, 1 = Pcwy. Utilizing (3.3) and TnA}:I GX = X, we have

Yn — % = (I — anuF) To AN Gxp — (I — ot uF) TR AN GR 4 ot (Y VX — uFR),

and
Xni1 — % = Xni1 — Wi + (1= spA) (T AN Gxp — TRANGR) + 51 (yn — %) + sn (I — A)R.

Applying Lemmas 2.14 and 2.18, we obtain

Iyn —%|I> = [|(I = antF) TR AN Gxy, — (I — ot uF) TR AN GR + ot (Y VX — uFR) |

< I = on uF) T AN Gxp — (I — & uF) Tn AN GR|[2 4 2060 (Y VxR — UFR, Yy — X)
< (1= atn)?[xn — &[I? + 20t [y Vxn — wFE[|[yn —X|
< |xn — %[ 4 200 YV — 0F%||[lyn — %],

and hence

[xna1—&))? = [[(I— snA) (Tn AN Gxp — TRANGR) + 51 (Yn — %) + sn(I— A)
< (I = snA) (TR AN Gxp — TRANGR)|? + 250 (Yn — %, Xns1 — X
+ 280 ((IT—A)X, Xn+1 —X) + 2{(Xn11 — Wn, Xnt1 — X)
< I = snA) (T AN Gxpy — T ANGR) |2 4 250 (Yn — %, Xnp1 — X)
+ 250 ((I—A)X, X1 —X)

< (1= sn P[P = %7 + 2 [lyn — % [[xn1 = K[| +2sn (1= AR, Xn 41 — %)

X+ Xn1 _Wn||2
)
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< (1= 507 Pl — %2+ sy — K+ X1 — %) + 250 ({1 A)%, X1 — %)
< (1= sn¥)?[xn = &I* + snllxn — %[I* + 200 [y Vin — wFE[[lyn — %]
+ sl Xni1 — X|* 4+ 250 (I — A)X, Xn 1 — ) (3.37)
(1= 5902 + sullen — %I + 20tm Y Vin — wFEllyn — %]
4 snXne1 — %24 250 (I — A)R, Xp i1 — X).

It then follows from (3.37) that

. 1—sn¥)%+s 5 S - - - -
e 1 < SIS iy 5 Vi — F g — %]+ 201 A X — )]
n n
_2th_/_l) 2sn(y—1)

= (1 )[xn — %> +

1—sn. 1—sn 2(y—1)
+ s P?[xn — %2+ 2((1= A%, Xn 1 — %))

= (1 - wn)Hxn _%Hz + wnénr

[ZO(nHVVXn - FLF)Z” Hyn - i”

where w,, = 2871‘9_;:1) and
1
on = 2(y—-1) Rotn [[vVxn — uF| lyn — %[ + sn¥?[[xn — X[ +2((I = A)X, xn 11— X)).

It can be readily seen from Step 2 and conditions (C1) and (C2) that wn, — 0, Y 7 wn = oo, and
limsup, _,  &n < 0. By Lemma 2.13 with r, = 0, we conclude that limy _, ||xn, —X|| = 0. This completes
the proof. O

Corollary 3.6. Let {xn} be the sequence generated by the explicit scheme (3.3). Assume that the sequences {0, } and
{sn} satisfy the conditions (C1) and (C2) in Theorem 3.5. If {xn} is asymptotically regular (i.e., Xn11 —xn — 0),
then {xn} converges strongly to a point X € (2, which is the unique solution of the VIP (3.2).

Putting p =2, F = %I, and y = 1 in Theorem 3.5, we obtain the following.
Corollary 3.7. Let {xn} be generated by the following iterative scheme:
Yn = otn Vxp + (1 — ocn)TnAE Gxn,
Xn41 = PC[(I - SnA)TnAr]\LJ Gxn + Snyn]r vn > 0.

Assume that the sequences {on} and {sn} satisfy the conditions (C1) and (C2) in Theorem 3.5. If {xn} is weakly
asymptotically reqular (i.e., Xn41 —xn — 0), then {xn} converges strongly to a point X € (2, which is the unique
solution of the VIP (3.2).

Putting o, =0, for all n > 0 in Corollary 3.7, we get the following.
Corollary 3.8. Let {xn} be generated by the following iterative scheme:
Xn+1 =PelI—sn(A —I) T AN Gxnl, ¥n > 0.

Assume that the sequence {sn} satisfies the conditions (C1) and (C2) in Theorem 3.5 with xn, =0, for alln > 0. If
{xn} is weakly asymptotically reqular (i.e., Xn+1 —xn — 0), then {xn} converges strongly to a point X € (2, which
is the unique solution of the VIP (3.2).
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