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Abstract

Making use of the convolution operator we introduce a new class of analytic functions in the open unit disk and investigate
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1. Introduction

Let C be complex plane and U = {z € C:|z| < 1} = U\ {0}, open unit disc in C. Let H(U) be the
class of analytic functions in U. For p € Nt ={1,2,3,---} and a € C, let H[a, k] be the subclass of H(U)
consisting of the functions of the form

f(z) = a+ apz® + ap 12"

with Hp = H[0,1] and H = H[1, 1]. Let A, be the class of all analytic functions of the form
f(z) =2zP + Z az® (1.1)

in the open unit disk U with A; = A. For functions f € A, given by equation (1.1) and g € A, defined
by
o0
g(z) =2zP + Z byz¥,
k=p+1
their Hadamard product (or convolution) [7] of f and g is defined by

(fxg)(z) =2zP + Z axbyzk.
k=p+1

A function f € H(U) is univalent if it is one to one in U. Let S denote the subclass of A consisting of
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functions univalent in U. If a function f € A maps U onto a convex domain and f is univalent, then f is

called a convex function. Let
f//
kedreamd1+ 2B o cu
f'(z)

denote the class of all convex functions defined in U and normalized by f(0) =0, f'(0) = 1. Let f and F
be members of H(U). The function f is said to be subordinate to ¢, if there exists a Schwarz function w
analytic in U with

w(0)=0 and w(z)l<1l, (ze€U),
such that

We denote this subordination by
f(z) < @(z) or f < .

Furthermore, if the function ¢ is univalent in U, then we have the following equivalence [5, 13]
f(z) < @(z) < f(0) = ¢(0) and f(U) C @(U).

The method of differential subordinations (also known as the admissible functions method) was first
introduced by Miller and Mocanu in 1978 [11] and the theory started to develop in 1981 [12]. All the
details were captured in a book by Miller and Mocanu in 2000 [13]. Let ¥ : C> x U — C and h be
univalent in U. If p is analytic in U and satisfies the second-order differential subordination

W (p(z),20'(2), 20" (2);2) < h(z), (1.2)

then p is called a solution of the differential subordination. The univalent function q is called a dominant

of the solution of the differential subordination or more simply dominant, if p < q for all p satisfying

(1.2). A dominant q satisfying q; < q for all dominants (1.2) is said to be the best dominant of (1.2).
For functions f, g € A, the linear operator Q}f}p :Ap — Ap (A= 0,m € NU{0}) is defined by:

Q) (Fxg)(z) = (f*g)(z),
Qlhp(F*9)(z) = Qup ((f59)(2))
— (1-N)(fxg)(2) +7]‘j((f* 9)(2))

!

i p+Ak—p)
k=p+1

Qi p(f*9)(z) = Qap [Qr, P(fg)(2)].

=zP + axbyzk,

Thus, we get

QR (+9)(2) = Qup (Q (Fx9)(2)) =27 + (p“ p)) abiz’, (V200 (1)

k=p+1
From (1.3) it can be easily seen that

M(prf*g (2)) = QR (Fx g)(z) — (1—A) QR (Fxg)(z), (A>0).

The operator Q}",(f * g) was introduced and studied by Selveraj and Selvakumaran [19], Aouf and
Mostafa [4], and for p = 1 was introduced by Aouf and Mostafa [3]. Recent years, Ozkan [16], Ozkan
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and Altntas [17], Lupas [9], and Lupas [10] (also see [1, 2]) investigated some applications and results of
subordinations of analytic functions given by convolution. Also Bulut [6] used the same techniques by
using Komatu integral operator. In some of this study, the results given by Lupas [10] and Lupas [9] were

generalized. In order to prove our main results we need the following lemmas.

Lemma 1.1 ([8]). Let h be convex function with h(0) = a and let v € C* := C\{0} be a complex number with

R{y} > 0. If p € Hla, k] and
plz) + izp’(z) <),

then
p(z) < q(z) < h(z),

where

Y ([Fivma
_ Y/M)—
q(z) = pp—ey JO t h(t)dt.

The function q is convex and is the best dominant of the subordination (1.4).
Lemma 1.2 ([15]). Let R{u} > 0,1 € IN, and let

P = n? -
B 4nR{u}

Let h be an analytic function in U with h(0) = 1 and suppose that
zh'(z)
D‘i{l+ " (2) } > —w

n+1+'”

If
p(z) =1+pnz" +Ppnii1z

is analytic in U and
1
p(z) + WP (z) < h(z),
then
plz) < qlz),

where q is a solution of the differential equation
n_
q(z) + e (z) =h(z), q(0)=1,
given by

v
TLZG/n

z
qz) = J """ h(t)dt  (ze V).
0
Moreover q is the best dominant of the subordination (1.5).

Lemma 1.3 ([14]). Let v be a convex function in U and let
h(z) =7(z) +npzr(z), (zeU),
where 3 > 0and n € N. If

n+1+“.

p(z) =1(0) + pnz"™ +pni1z , (zeU)

(1.4)

(1.5)
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is holomorphic in U and
plz) + Bzp (2) < h(z),
then
p(z) <r(z),

and this result is sharp.

In the present paper, making use of the subordination results of [13] and [18] we will prove our main
results.

Definition 1.4. Let 93, . (B) be the class of functions f € A satisfying

2 {(Q(Fxg)2)) | > B,

wherezc U,0< B < 1.

2. Main results
Theorem 2.1. The set R m () is convex.

Proof. Let

o
(fj = g;5) (z2) =z+ Z axibriz" (zeU;j=1,..m)
k=2

be in the class of 93y m (B). Then, by Definition 1.4, we get

m{(QT(fj *9;’)(2))'} = 9%{1+Z ak,jbkljkzkl} > B.

k=2

For any positive numbers A1, Ay, ..., A¢ such that

we have to show that the function

is member of R m (), that is,

n{(Qrniz)} > B. @)

Thus, we have

Qrh(z) =z+ ) (1+A(k—1)) (Zxak]bk)) : 2.2)

k=2

If we differentiate (2.2) with respect to z, then we obtain

k=2

(Q¥h(z)) _1+Z (1+A(k—1)) (Z)\akak])
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14 0
=1+ Z )\j Z (1+A(k— 1))111 ak,jbk,jkzk_l
j=1 k=2

Thus, we have

{(Q}?h }—1+Z>\%{Z 1+>\(k—1))mak,jbk,jkzkl}
k=2
>1+Z7\]~([3—
j=1

= 3.
Thus, the inequality (2.1) holds and we obtain desired result. O

Theorem 2.2. Let q be convex function in U with q(0) = 1 and let

zq (z) (ze€U),

vy+1
where vy is a complex number with R{y} > —1. If f € Rs0(B) and § =Y, (f x g), where

5z =Ty (rrg)a) = Lo [0 e g)(wat 23)
0
then, ,
(QX'(fxg)(z)) <h(z) (2.4)
implies

(QF3(2)) < q(z),

and this result is sharp.

Proof. From the equality (2.3) we can write
23(2) = (y+1) [0 (g e, 25)
0

by differentiating the equality (2.5) with respect to z, we obtain

(V) &(2) + 28 (2) = (y +1) (fx g)(2).

If we apply the operator Q}* to the last equation, then we get
(v) QT'5(2) + 2 (QFE(2) = (v +1) QR+ 9)(2). (2.6)
If we differentiate (2.6) with respect to z, we can obtain
/ 1 7" ’
(QX'S(2)) +ﬁZ(QT$(Z)) = (Qx'f(2)) . (2.7)

By using the differential subordination given by (2.4) in the equality (2.7), we have

(QP5(2) +_1F1 (QPF(z)" < h(z). 28)
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Now, we define

plz) = (QX'F(2) - (29)
Then by a simple computation we get
(e¢] 1 !
Z (1+A(k—1)) mz//—tkakbkz =1+piz+pz+---, (p€HL1]).

Using the equation (2.9) in the subordination (2.8), we obtain

zq/(z).

p(z) z) < h(z) = q(z) +

vl y+1

If we use Lemma 1.2, then we get
p(z) < q(z).

So we obtain the desired result and q is the best dominant. O

Example 2.3. If we choose in Theorem 2.2

y=i+l qlz)=1—/,

thus we get
(i+2)—(i+1)z
i+2)(1—2)2

h(z) =

If (f*g) € Ram(B) and § is given by

then by Theorem 2.2, we obtain

NV 42— (i+1)e n 1
Q=) < hiz) = g = (QUE(E) < al2) = 1=
Theorem 2.4. Let R{y} > —1 and let
_ Ly 1P 2y]
N ARy + 1}
Let h be an analytic function in U with h(0) = 1 and assume that
zh'(z)
D‘i{l+ " (2) } > —w.
IffxgeRam(P)and § = Tf,(f * g), where § is defined by equation (2.3), then
(QX(F+g)(z)) <h(2) (2.10)

implies

(Q3(2)) < q(z),
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where q is the solution of the differential equation

given by

Moreover q is the best dominant of the subordination (2.10).

Proof. 1f we choose n =1 and p =y +1 in Lemma 1.2, then the proof is obtained by means of the proof
of Theorem 2.4. O

Letting
1+ (2 -1)z

h(z) 1+z

, 0<p<1
in Theorem 2.4, we obtain the following result.

Corollary 2.5. f 0 < B <1, 0< E <L, A >0, Ry} > —1, and § = YV (f x g) is defined by the equation (2.3),
then
Yv (m?\,m(ﬁ)) C %A,m(é),

where
azggﬁm&nza%m

and this result is sharp. Also,

E=E&v,B) =2 -1 +2(v+1)(1—p)T(y), (211)
where Ly
t
T(y) = Jo 1 +td’c. (2.12)

Proof. Let f € M m(B). Then from Definition 1.4 it is known that

2 {(Q(Fxg)2)) | > B,

which is equivalent to
(QR(f*9)(2)) < hz).
By using Theorem 2.2, we have
(QVF(2) < a(2).

If we take
1+ (2 —-1)z

1+z
then h is convex and by Theorem 2.4, we obtain

. ' +1(* 1+ -1t

h(z) , 0SB <,

dt.

dt=(2p—1)+2

(1-B)y+1) r tY

zy+l o 1+t

On the other hand if Ji{y} > —1, then from the convexity of q and the fact that q(U) is symmetric with
respect to the real axis, we get

R{(QUF(=)) } > minR{g(z)) = R(q(1)) = £y, B) =28 ~1+21—B)(y + xly),  (213)
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where () is given by equation (2.12). From inequality (2.13), we get
Ty (Ram(B)) C Ram(E),
where & is given by (2.11). O
Theorem 2.6. Let q be a convex function with q(0) = 1 and h a function such that
h(z) = q(z) +2q'(z), (z€ ).
If f € A, then the following subordination
(QX'(f*9)(2)) <h(z) = q(z) +24'(2) (214)
implies that
(Q’A“(f;k 9)(2)) a(2),
and the result is sharp.
Proof. Let
p(z) = M (2.15)
Differentiating (2.15), we have :
(QR(f*9)(2)) =Pp(z) +2p' (), (z€U)
and thus (2.14) becomes / ,
p(z) +2zp (z) < h(z) = q(z) +zq (2).
Hence by applying Lemmal.3, we conclude that
p(z) < q(2),
that is,
(Q?(f: 9)2) a(2),
and this result is sharp. O
Theorem 2.7. Let q be a convex function with q(0) =1 and h the function
h(z) =q(z) +2q'(2) (z€ ).
If m € N, f € A and verifies the differential subordination
( o 337{;)) < hiz) 216
e A xg)(2)
Qe 9P

and this result is sharp.

Proof. For the function f € A, given by the equation (1.1), we have

QIMfrg)(z) =2+ (1+A(k—1)™ Ziiakbkzk, (zeU).
k=2



A. Akgiil, J.

Nonlinear Sci. Appl., 10 (2017), 954-963 962

Let us consider

We get

and

x 1 1
rieg)e) 2P DT e
p(Z) = m = 700
Q)\ (f 9)(2) z+ Z (1+}\(k_1))m%akbklk
k=2
= +1 y+1
1+ Y (1A (=1)"™ X agbiz!
_ k=2
1+ 3 1+ A(k=1)"™ Flarbrzk!

Thus, the relation (2.16) becomes

p(z) +2zp'(z) < h(z) = q(z) +2q (z), (z€U),

and by using Lemma 1.3, we obtain

that is,
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