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Abstract
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1. Introduction

In recent years, construction of iterative algorithm for seeking fixed points of nonexpansive mappings
and strict pseudo-contractions has been extensively investigated; see [7, 9, 10, 15, 23] and the references
therein. Hybrid projection technique, which was first introduced by Haugazeau [13], is efficient and
powerful for treating convergence analysis of mean valued iterative algorithm; see [3, 4, 11, 12] and the
references therein. However, many results were obtained in the framework of Hilbert spaces only. The
main difficulties are that many nonexpansive mappings in Hilbert spaces are no longer nonexpansive
mappings, for example, metric projections. In this connection, Alber [1] introduced a generalized pro-
jection operator in Banach spaces which is an analogue of the metric projection in Hilbert spaces. Since
then, many authors obtained strong convergence theorems for nonlinear operators based on the gener-
alized projections in Banach spaces; see [14, 22] and the references therein. Another way is to use the
Bregman distance instead of the norm, Bregman (quasi-)nonexpansive mappings instead of the (quasi-
)nonexpansive mappings and the Bregman projection instead of the metric projection; see [18, 20, 21] and
the references therein.

Motivated and inspired by the works going in this directions, we propose a new hybrid Bregman
projection iterative algorithm for a finite family of Bregman quasi-strict pseudo-contractions and prove
strong convergence results in the framework of reflexive Banach spaces. The results presented in this
paper improve or enrich the known corresponding results announced in the literature sources listed in
this work.
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2. Preliminaries

In this section, we collect some preliminaries and lemmas which will be used to prove our main
results. Throughout this paper, E is assumed to be a real reflexive Banach space with norm ‖ · ‖ and E∗

the dual space of E. The normalized duality mapping from E to 2E
∗

denoted by J is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀ x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. In this paper, we use R and N

stand for the sets of real numbers and positive integers, respectively.
Let f : E→ (−∞,+∞] be a proper, convex and lower semi-continuous function. We denote by dom(f)

the domain of f, that is, dom(f) := {x ∈ E : f(x) < +∞}. For any x ∈int(dom(f)) and y ∈ E, the right-hand
derivative of f at x in the direction of y is defined by

f◦(x,y) = lim
t→0+

f(x+ ty) − f(x)

t
. (2.1)

The function f is said to be Gâteaux differentiable at x if limt→0+
f(x+ty)−f(x)

t exists for any y. In this
case, f◦(x,y) coincides with ∇f(x), the value of the gradient ∇f(x) of f at x. The function f is called
Gâteaux differentiable if it is Gâteaux differentiable for any x ∈int(dom(f)). The function f is said to
be Fréchet differentiable at x if limit (2.1) is attained uniformly in ‖y‖ = 1. The function f is said to be
Fréchet differentiable if it is Fréchet differentiable for any x ∈int(dom(f)). Finally, f is called be uniformly
Fréchet differentiable on a subset C of E if limit (2.1) is attained uniformly for x ∈ C and ‖y‖ = 1. It is
well-known that if a continuous convex function f : E→ R is Gâteaux differentiable, then ∇f is norm-to-
weak∗ continuous. Also, it is known that if f is said to be Fréchet differentiable, then ∇f is norm-to-norm
continuous. The function f is said to be strongly coercive if

lim
‖xn‖→∞

f(xn)

‖xn‖
=∞.

From Reich and Sabach [16], we see if a function f : X → R is uniformly Fréchet differentiable and
bounded on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E∗.

Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function. Then the Bregman distance
[8] with respect to f is the function Df : dom(f)× int(dom(f))→ [0,+∞) defined by

Df(x,y) = f(x) − f(y) − 〈x− y,∇f(y)〉.

With the function f we associate the bifunction Vf : E× E∗ → [0,+∞) defined by

Vf(x, x∗) = f(x) − 〈x, x∗〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

Then Vf is nonnegative and
Vf(x, x∗) = Df(x,∇f∗(x∗)), (2.2)

for all x ∈ E and x∗ ∈ E∗. Recall that the Bregman projection [16] of x ∈ int(dom(f)) onto the nonempty
closed and convex set C ⊂ dom(f) is the unique vector PfC(x) ∈ C satisfying

Df(P
f
C(x), x) = inf{Df(y, x) : y ∈ C}.

It should be observed that if E is a smooth and strictly convex Banach space, setting f(x) = ‖x‖2 for all x ∈
E, we have ∇f(x) = 2Jx for all x ∈ E. Hence Df(x,y) reduces to the Lyapunov function φ(x,y) = ‖x‖2 −
2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E and the Bregman projection PfC(x) reduces to the generalized projection
ΠC(x) which is defined by ΠC(x) = arg miny∈Cφ(y, x). If E is a Hilbert space H, then Df(x,y) becomes
φ(x,y) = ‖x− y‖2 for all x,y ∈ H and the Bregman projection PfC(x) becomes the metric projection PC(x).

Similar to the metric projection in Hilbert space, Bregman projections with respect to totally convex
and differentiable functions have variational characterizations.
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Lemma 2.1 ([6]). Suppose that f is Gâteaux differentiable and totally convex on int(dom(f)). Let x ∈ int(dom(f))
and let C ⊂ int(dom(f)) be a nonempty, closed and convex set. If x̂ ∈ C, then the following conditions are
equivalent:

(a) the vector x̂ is the Bregman projection of x onto C with respect to f, i.e., x̂ = PfC(x);

(b) the vector x̂ is the unique solution of the variational inequality

〈Of(x) −Of(x̂), x̂− y〉 > 0, ∀ y ∈ C;

(c) the vector x̂ is the unique solution of the inequality

Df(y, x̂) +Df(x̂, x) 6 Df(y, x), ∀ y ∈ C.

Let E be a Banach space and let Br := {z ∈ E : ‖z‖ 6 r} for all r > 0 and SE = {x ∈ E : ‖x‖ = 1}. Then
a function f : E → R is said to be uniformly convex on bounded subsets of E if ρr(t) > 0 for all r, t > 0,
where ρr : [0,∞)→ [0,∞] is defined by

ρr(t) := inf
x,y∈Br,‖x−y‖=t,α∈(0,1)

αf(x) + (1 −α)f(y) − f(αx+ (1 −α)y)

α(1 −α)
.

Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function. Recall that the function f is
called totally convex at a point x ∈ int(dom(f)) if its modulus of total convexity at x, that is, the function
νf : int(dom(f))× [0,+∞)→ [0,+∞), defined by

νf(x, t) := inf{Df(y, x) : y ∈ int(dom(f)), ‖y− x‖ = t},

is positive whenever t > 0. The function f is called totally convex when it is totally convex at every point
x ∈ int(dom(f)). Moreover, the function f is called totally convex on bounded subset of E if νf(C, t) > 0
for any bounded subset C of E and for any t > 0, where the modulus of total convexity of the function f
on the set C is the function νf : int(dom(f))× [0,+∞)→ [0,+∞) defined by

νf(C, t) := inf{νf(x, t) : x ∈ C∩ int(dom(f))}.

We remark in passing that f is totally convex on bounded sets if and only if f is uniformly convex on
bounded sets.

Recall that the function f is said to be sequentially consistent [6] if for any two sequences {xn} and
{yn} in E such that the first one is bounded,

lim
n→∞Df(yn, xn) = 0 ⇒ lim

n→∞ ‖yn − xn‖ = 0. (2.3)

We have the following conclusions about totally convex functions.

Lemma 2.2 ([5]). The function f is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Lemma 2.3 ([17]). Let f : E → R be a Gâteaux differentiable and totally convex function. If x0 ∈ E and the
sequence {Df(xn, x0)} is bounded, then the sequence {xn} is bounded too.

Lemma 2.4 ([16]). Let f : X → R be a convex function which is bounded on bounded subsets of E. Then the
following assertions are equivalent:

(a) f is strongly coercive and uniformly convex on bounded subsets of E;
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(b) f∗ is Fréchet differentiable and ∇f∗ is uniformly norm-to-norm continuous on bounded subsets of dom(f∗)=
E∗.

Let x ∈ int(dom(f)), the subdifferential of f at x is the convex set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗,y− x〉 6 f(y), ∀y ∈ E}.

The Fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by

f∗(x∗) = sup{〈x∗, x〉− f(x) : x ∈ E}, x∗ ∈ E∗.

The function f is said to be essentially smooth if ∂f is both locally bounded and single-valued on its
domain. It is called essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f is strictly
convex on every convex subset of dom(∂f). f is said to be a Legendre, if it is both essentially smooth and
essentially strictly convex. When the subdifferential of f is single-valued, it coincides with the gradient
∂f = Of.

We remark that if E is a reflexive Banach space. Then we have the following [2]:

(i) f is essentially smooth if and only if f∗ is essentially strictly convex;

(ii) (∂f)−1 = ∂f∗;

(iii) f is Legendre if and only if f∗ is Legendre;

(iv) if f is Legendre, then Of is bijection satisfying Of = (Of∗)−1, ran(Of) = dom(Of∗) = int(dom(f∗))
and ran(Of∗) = dom(Of) = int(dom(f)).

Let T : C→ C be a mapping. A point p ∈ C is said to be an asymptotic fixed point of T if C contains a
sequence {xn} which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. We denote by F̂(T) the set
of asymptotic fixed points of T . A point p ∈ C is said to be a strong asymptotic fixed point of a mapping T
if C contains a sequence {xn} which converges strongly to p such that limn→∞ ‖xn− Txn‖ = 0. We denote
by F̃(T) the set of strong asymptotic fixed points of T .

Recall the following definitions:

Definition 2.5. Let C be a subset of E and let T : C→ C be a mapping.

(1) T is said to be Bregman relatively nonexpansive if F̂(T) = F(T) 6= ∅ and

Df(p, Tx) 6 Df(p, x), ∀ x ∈ C, p ∈ F(T).

(2) T is said to be Bregman weak relatively nonexpansive if F̃(T) = F(T) 6= ∅ and

Df(p, Tx) 6 Df(p, x), ∀ x ∈ C, p ∈ F(T).

(3) T is said to be Bregman quasi-nonexpansive if F(T) 6= ∅ and

Df(p, Tx) 6 Df(p, x), ∀ x ∈ C, p ∈ F(T).

(4) T is said to be Bregman quasi-strictly pseudo-contractive [20] if there exists a constant k ∈ [0, 1) and
F(T) 6= ∅ such that

Df(p, Tx) 6 Df(p, x) + kDf(x, Tx), ∀ x ∈ C, p ∈ F(T).

(5) T is said to be quasi-φ-strictly pseudo-contractive if F(T) 6= ∅ and there exists a constant k ∈ [0, 1) such
that

φ(p, Tx) 6 φ(p, x) + kφ(x, Tx), ∀x ∈ C, p ∈ F(T).

(6) A mapping T : C → C is said to be closed if for any sequence {xn} ⊂ C with xn → x ∈ C and
Txn → y ∈ C as n→∞, then Tx = y.
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Remark 2.6. From the above definitions, we have following facts:

(1) Bregman relatively nonexpansive mappings, Bregman weak relatively nonexpansive mappings, Breg-
man quasi-nonexpansive mappings, and Bregman quasi-strict pseudo-contractions are more general
than relatively nonexpansive mappings, relatively weak nonexpansive mappings, hemi-relatively non-
expansive mappings, and quasi-φ-strict pseudo-contractions, respectively.

(2) The class of Bregman quasi-strict pseudo-contractions is more general than the class of Bregman
relatively nonexpansive mappings, the class of Bregman weak relatively nonexpansive mappings, and
the class of Bregman quasi-nonexpansive mappings.

Next, we give some examples of Bregman quasi-strict pseudo-contractions.

Example 2.7 ([18]). Let E be a real reflexive Banach space, A : E→ 2E
∗

be a maximal monotone mapping,
and f : E → (−∞,+∞] be a uniformly Fréchet differentiable function and bounded on bounded subsets
of E such that A−1(0∗) 6= ∅, then the resolvent

ResfA(x) = (Of+A)−1 ◦Of(x)

is closed and Bregman relatively nonexpansive from E onto dom(A), so is a closed Bregman quasi-strict
pseudo-contraction.

Example 2.8 ([21]). Let E be a smooth Banach space, and define f(x) = ‖x‖2 for all x ∈ E. Let x0 6= 0 be
any element of E, the mapping T : E→ E be defined as follows:

T(x) =

{
( 1

2 +
1

2n+1 )x0, if x = ( 1
2 +

1
2n )x0,

−x, if x = ( 1
2 +

1
2n )x0,

for all n > 1. Then T is a Bregman quasi-strict pseudo-contraction.

Example 2.9 ([20]). Let E = R and define T , f : [−1, 0] → R by f(x) = x and Tx = 2x for all x ∈ [−1, 0].
Then T is a Bregman quasi-strict pseudo-contraction but not a quasi-φ-strict pseudo-contraction.

Before stating our main results, we also need the following lemmas.

Lemma 2.10 ([20]). Let f : E → R be a Legendre function which is uniformly Fréchet differentiable on bounded
subsets of E. Let C be a nonempty, closed, and convex subset of E and let T : C → C be a Bregman quasi-strictly
pseudo-contractive mapping with respect to f. Then F(T) is closed and convex.

Lemma 2.11 ([20]). Let f : E → R be a Legendre function which is uniformly Fréchet differentiable on bounded
subsets of E. Let C be a nonempty, closed, and convex subset of E and let T : C → C be a Bregman quasi-strictly
pseudo-contractive mapping with respect to f. Then, for any x ∈ C, p ∈ F(T), and k ∈ [0, 1) the following holds:

Df(x, Tx) 6
1

1 − k
〈∇f(x) −∇f(Tx), x− p〉.

3. Main results

In this section, we state and prove our main theorem.

Theorem 3.1. Let E be a real reflexive Banach space and let C be a nonempty, closed, and convex subset of E. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E, and let Ti : C→ C, where i = 1, 2, ...,N, be a finite family of closed and Bregman
quasi-ki-strict pseudo-contractions such that F =

⋂N
i=1 F(Ti) 6= ∅. Let {xn} be a sequence generated by the following

iterative algorithm:
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x0 ∈ C chosen arbitrarily,
Ci0 = C, i = 1, 2, · · ·,N,
C0 =

⋂N
i=1C

i
0,

yin = ∇f∗[αn∇f(xn) + (1 −αn)∇f(Tizin)],
Cin+1 = {z ∈ Cn : Df(z,yin) 6 αnDf(z, xn) + (1 −αn)Df(z, zin) +

ki
1−ki
〈zin − z,∇f(zin) −∇f(Tizin)〉},

Cn+1 =
⋂N
i=1C

i
n+1,

xn+1 = PfCn+1
(x0), n ∈N∪ {0},

where zin = xn + ein, ki ∈ [0, 1), the sequences of errors {ein} ⊂ E satisfy limn→∞ ein = 0 for each i = 1, 2, · · ·,N,
and {αn} ⊂ [0, 1] satisfies lim infn→∞(1 − αn) > 0. Then the sequence {xn} converges strongly to p̂ = PfF(x0),
where PfF is the Bregman projection of E onto F.

Proof. From Lemma 2.10, one has F(Ti) is closed and convex for any 1 6 i 6 N. Then F =
⋂N
i=1 F(Ti) is

also closed and convex. Therefore PfF(x0) is well-defined for every x0 ∈ C. Note that C0 = C is closed and
convex. Let Cm is closed and convex for some m ∈N. For z ∈ Cm, we see that

Df(z,yim) 6 αmDf(z, xm) + (1 −αm)Df(z, xm + eim)

+
ki

1 − ki
〈xm + eim − z,∇f(xm + eim) −∇f(Ti(xm + eim))〉

is equivalent to

〈z, ki
1 − ki

[∇f(xm + eim) −∇f(Ti(xm + eim)] +αm∇f(xm) + (1 −αm)∇f(xm + eim) −∇f(yim)〉

6 f(yim) −αmf(xm) − (1 −αm)f(xm + eim) − 〈yim,∇f(yim)〉+αm〈xm,∇f(xm)〉

+ (1 −αm)〈xm + eim,∇f(xm + eim)〉+ ki
1 − ki

〈xm + eim,∇f(xm + eim) −∇f(Ti(xm + eim))]〉.

Hence, we see that Cm+1 is closed and convex. Therefore Cn is closed and convex for all n ∈N∪ {0}.
We note that F(T)⊂C=C0. Suppose that F(T)⊂Cm for some m∈N. From (2.2), for any p∈F(T)⊂Cm,

we obtain

Df(p,yim) = Df(p,∇f∗[αm∇f(xm) + (1 −αm)∇f(Ti(xm + em))])

= V(p,αm∇f(xm) + (1 −αm)∇f(Ti(xm + em)))

= f(p) − 〈p,αm∇f(xm) + (1 −αm)∇f(Ti(xm + em))〉
+ f∗(αm∇f(xm) + (1 −αm)∇f(Ti(xm + em)))

6 αm[f(p) − 〈p,∇f(xm)〉+ f∗(∇f(xm))]

+ (1 −αm)[f(p) − 〈p,∇f(Ti(xm + em))〉+ f∗(∇f(Ti(xm + em)))]

= αmV(p,∇f(xm)) + (1 −αm)V(p,∇f(Ti(xm + em)))

= αmDf(p, xm) + (1 −αm)Df(p, Ti(xm + em))

6 αmDf(p, xm) + (1 −αm)[Df(p, xm + em) + kiDf(xm + em, Ti(xm + em))]

6 αmDf(p, xm) + (1 −αm)Df(p, xm + em)

+
(1 −αm)ki

1 − ki
〈xm + em − p,∇f(xm + em) −∇f(Ti(xm + em))〉,

6 αmDf(p, xm) + (1 −αm)Df(p, xm + em)

+
ki

1 − ki
〈xm + em − p,∇f(xm + em) −∇f(Ti(xm + em))〉.

This implies that p ∈ Cm+1. Thus, we have F ⊂ Cn for all n ∈N∪ {0}.
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Next, we show that limn→∞Df(xn, x0) exists. In fact, since xn = PfCn(x0), from Lemma 2.1 (c), one
has

Df(xn, x0) = Df(P
f
Cn

(x0), x0) 6 Df(p, x0) −Df(p,PfCn(x0)) 6 Df(p, x0),

for each p ∈ F(T) and for each n > 1. Therefore, {Df(xn, x0)}n∈N is bounded. In view of Lemma 2.3, one
has {xn} is also bounded. On the other hand, noticing that xn = PfCn(x0) and xn+1 = PfCn+1

(x0) ∈ Cn+1 ⊂
Cn, one has Df(xn, x0) 6 Df(xn+1, x0) for all n > 1. This implies that {Df(xn, x0)}n∈N is a nondecreasing
sequence. Therefore, limn→∞Df(xn, x0) exists. Since {xn} is bounded and E is reflexive, there exists a
subsequence {xni} ⊂ {xn} such that xni ⇀ p̂ ∈ C = C0. Since Cn is closed and convex and Cn+1 ⊂ Cn,
this implies that Cn is weakly closed and p̂ ∈ Cn for all n > 0. In view of xni = P

f
Cni

(x0), one has

Df(xni , x0) 6 Df(p̂, x0), ∀ ni > 1.

Since f is a lower semi-continuous function on convex set C, it is weakly lower semi-continuous on C.
Hence we have

lim inf
i→∞ Df(xni , x0) = lim inf

i→∞ {f(xni) − f(x0) − 〈∇f(x0), xni − x0〉}

> f(p̂) − f(x0) − 〈∇f(x0), p̂− x0〉
= Df(p̂, x0).

Therefore, one has

Df(p̂, x0) 6 lim inf
i→∞ Df(xni , x0) 6 lim sup

i→∞ Df(xni , x0) 6 Df(p̂, x0),

which implies that
lim
i→∞Df(xni , x0) = Df(p̂, x0). (3.1)

In view of Lemma 2.1 (c), we have that

Df(p̂, xni) 6 Df(p̂, x0) −Df(xni , x0),

by taking i→∞ in the above inequality and (3.1), we obtain that

lim
i→∞Df(p̂, xni) = 0,

which implies from Lemma 2.2 and (2.3) that

lim
i→∞ xni = p̂.

On the other hand, notice that {Df(xn, x0)} is convergent. This together with (3.1) implies that

lim
n→∞Df(xn, x0) = Df(p̂, x0). (3.2)

From Lemma 2.1 (c), we also have

Df(p̂, xn) 6 Df(p̂, x0) −Df(xn, x0).

By taking n→∞ in the above inequality and (3.2), we obtain

lim
n→∞Df(p̂, xn) = 0,

which implies from Lemma 2.2 and (2.3) that

lim
n→∞ xn = p̂. (3.3)
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Since ein → 0 as n→∞ for any 1 6 i 6 N, it is obvious from (3.3) that

lim
n→∞(xn + ein) = p̂, ∀ 1 6 i 6 N.

Now, we are in a position to show that the limit of {xn}n∈N belongs to F =
⋂N
i=1 F(Ti). Since xn =

PfCnx0, one has from Lemma 2.1 (c) that

Df(xn+1, xn) 6 Df(xn+1, x0) −Df(xn, x0).

Hence, we have
lim
n→∞Df(xn+1, xn) = 0. (3.4)

Since f is totally convex on bounded subsets of E, f is sequentially consistent. It follows from (3.4) that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.5)

For any i = 1, 2, · · ·,N, it follows from the definition of the Bregman distance that

Df(xn, xn + ein) = f(xn) − f(xn + ein) − 〈xn − (xn + ein),∇f(xn + ein)〉
= f(xn) − f(xn + ein) + 〈ein,∇f(xn + ein)〉.

The function f is bounded on bounded subsets of E and therefore ∇f is also bounded subset of E. In ad-
dition, f is uniformly Fréchet differentiable and therefore f is uniformly continuous on bounded subsets.
Hence, from limn→∞ ein = 0, one has that

lim
n→∞Df(xn, xn + ein) = 0. (3.6)

For any i = 1, 2, · · ·,N, it follows from the three point identity that

Df(xn+1, xn + ein) = Df(xn+1, xn) +Df(xn, xn + ein) + 〈xn+1 − xn,∇f(xn) −∇f(xn + ein)〉.

Since ∇f is bounded on bounded subsets of E, it implies from (3.4), (3.5), and (3.6) that

lim
n→∞Df(xn+1, xn + ein) = 0. (3.7)

On the other hand, from the fact xn+1 ∈ Cn+1, it follows

Df(xn+1,yin) 6 αnDf(xn+1, xn) + (1 −αn)Df(xn+1, zin) +
ki

1 − ki
〈zin − xn+1,∇f(zin) −∇f(Ti(zin))〉,

where zin = xn + ein. It implies from (3.4), (3.5), (3.7), and limn→∞ ein = 0 that

lim
n→∞Df(xn+1,yin) = 0, ∀ i = 1, 2, · · ·,N. (3.8)

Since f is totally convex on bounded subsets of E, f is sequentially consistent. It follows from (3.8) that

lim
n→∞ ‖xn+1 − y

i
n‖ = 0, ∀ i = 1, 2, · · ·,N,

which implies from (3.5) that

lim
n→∞ ‖xn − yin‖ = 0, ∀ i = 1, 2, · · ·,N.

From the uniform continuity of ∇f, one has

lim
n→∞ ‖∇f(xn) −∇f(yin)‖ = 0, ∀ i = 1, 2, · · ·,N. (3.9)
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Since
yin = ∇f∗[αn∇f(xn) + (1 −αn)∇f(Ti(xn + ein))].

One sees from (3.9) and lim infn→∞(1 −αn) > 0 that

lim
n→∞ ‖∇f(xn) −∇f(Ti(xn + ein))‖ = lim

n→∞ 1
1 −αn

‖∇f(xn) −∇f(yin))‖ = 0. (3.10)

Since f is strongly coercive and uniformly convex on bounded subsets of E, f∗ is uniformly Fréchet
differentiable on bounded sets. Moreover, f∗ is bounded on bounded sets, and from (3.10) one has

lim
n→∞ ‖xn − Ti(xn + ein)‖ = 0,

which implies from limn→∞ ein = 0 that

lim
n→∞ ‖(xn + ein) − Ti(xn + ein)‖ = 0, ∀ i = 1, 2, · · ·,N.

Since Ti, for i = 1, 2, · · ·,N, is closed, and limn→∞ xn = limn→∞(xn + ein) = p̂, one obtains that p̂ ∈⋂N
i=1 F(Ti) = F.

Finally, we prove p̂ = PfF(T)(x0). From xn = PfCnx0, one has

〈y− xn,∇f(x0) −∇f(xn)〉 6 0, ∀y ∈ Cn.

Since F ⊂ Cn for each n ∈N, one obtains

〈y− xn,∇f(x0) −∇f(xn)〉 6 0, ∀y ∈ F. (3.11)

Taking n→∞ in (3.11), one has

〈y− p̂,∇f(x0) −∇f(p̂)〉 6 0, ∀y ∈ F.

In view of Lemma 2.1 (a) and Lemma 2.4 (b), one has p̂ = PfF(T)(x0). This completes the proof of Theorem
3.1.

For single closed and Bregman quasi-strict pseudo-contraction T , we have the following result.

Corollary 3.2. Let E be a real reflexive Banach space, and C be a nonempty, closed, and convex subset of E. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E, and T : C→ C be a Bregman quasi-k-strict pseudo-contraction such that F(T) 6= ∅.
Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ C chosen arbitrarily,
C0 = C,
yn = ∇f∗[αn∇f(xn) + (1 −αn)∇f(T(zn)],
Cn+1 = {z ∈ Cn : Df(z,yn) 6 αnDf(z, xn) + (1 −αn)Df(z, zn) + k

1−k〈zn − z,∇f(zn) −∇f(Tzn)〉},
xn+1 = PfCn+1

(x0), n ∈N∪ {0},

where zn = xn + en, k ∈ [0, 1), the sequences of errors {ein} ⊂ E satisfy limn→∞ ein = 0 for each i = 1, 2, · · ·,N,
and {αn} ⊂ [0, 1] satisfies lim infn→∞(1 −αn) > 0. Then the sequence {xn} converges strongly to p̂ = PfF(T)(x0),
where PfF(T) is the Bregman projection of E onto F(T).

Setting f(x) = ‖x‖2 for all x ∈ E, then Of(x) = 2Jx for all x ∈ E. Hence Df(x,y) reduces to the
Lyapunov function φ(x,y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E, the Bregman projection PfC(x) reduces
to the generalized projection ΠC from E onto C and the Bregman quasi-strict pseudo-contraction reduces
to the strict quasi-φ-pseudocontraction. So, by utilizing Theorem 3.1, the following result is obtained.
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Corollary 3.3. Let E be a real reflexive, uniformly smooth, and uniformly convex Banach space, and C be a
nonempty, closed, and convex subset of E. Suppose that Ti : C → C, where i = 1, 2, ...,N, is a finite family of
closed strict quasi-φ-ki-pseudocontraction such that F =

⋂N
i=1 F(Ti) 6= ∅. Let {xn} be a sequence generated by the

following iterative algorithm:

x0 ∈ C chosen arbitrarily,
Ci0 = C, i = 1, 2, · · ·,N,
C0 =

⋂N
i=1C

i
0,

yin = J−1[αnJxn + (1 −αn)JTiz
i
n],

Cin+1 = {z ∈ Cn : φ(z,yin) 6 αnφ(z, xn) + (1 −αn)φ(z, zin) +
ki

1−ki
〈zin − z, Jzin − JTiz

i
n〉},

Cn+1 =
⋂N
i=1C

i
n+1,

xn+1 = PfCn+1
(x0), n ∈N∪ {0},

where zin = xn + ein, ki ∈ [0, 1), the sequences of errors {ein} ⊂ E satisfy limn→∞ ein = 0 for each i = 1, 2, · · ·,N,
and {αn} ⊂ [0, 1] satisfies lim infn→∞(1 − αn) > 0. Then the sequence {xn} converges strongly to p̂ = PfF(x0),
where PfF is the Bregman projection of E onto F.

4. Applications

In this section, we give some applications of our main results.

4.1. Solving convex feasibility problems
First, we give an application to convex feasibility problems. It is clear that F(PfKi) = Ki for any

i = 1, 2, 3, · · ·,N. If the Legendre function f is uniformly Fréchet differentiable and bounded on bounded
subsets of E, then the Bregman projection PfKi is a closed Bregman relatively nonexpansive mapping, so
is a closed Bregman quasi-strict pseudo-contraction.

Theorem 4.1. Let E be a real reflexive Banach space, and C be a nonempty, closed, and convex subset of E. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E, and let Ki, i = 1, 2, ...,N, be a finite family of closed and nonempty subsets of C
such that F =

⋂N
i=1 Ki 6= ∅. Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ C chosen arbitrarily,
Ci0 = C, i = 1, 2, · · ·,N,
C0 =

⋂N
i=1C

i
0,

yin = ∇f∗[αn∇f(xn) + (1 −αn)∇f(PKi(xn + ein))],
Cin+1 = {z ∈ Cn : Df(z,yin) 6 αnDf(z, xn) + (1 −αn)Df(z, xn + ein)〉},
Cn+1 =

⋂N
i=1C

i
n+1,

xn+1 = PfCn+1
(x0), n ∈N∪ {0},

where the sequences of errors {ein} ⊂ E satisfy limn→∞ ein = 0 for each i = 1, 2, · · ·,N, and {αn} ⊂ [0, 1] satisfies
lim infn→∞(1 − αn) > 0. Then the sequence {xn} converges strongly to p̂ = PfF(x0), where PfF is the Bregman
projection of E onto F.

4.2. Solving zeroes of maximal monotone operators
Let A be a mapping of E into 2E

∗
. The effective domain of A is denoted by dom(A), that is, dom(A) =

{x ∈ E : Ax 6= ∅}. The range of A is denoted by ran(A), that is, ran(A) = {Ax : x ∈ dom(A)}. A mapping
A : E→ 2E

∗
is said to be monotone if for any x,y ∈ dom(A), we have

u ∈ Ax, v ∈ Ay⇒ 〈u− v, x− y〉 > 0.
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A monotone mapping A is said to be maximal if graph A, the graph of A, is not a proper subset of the
graph of any other monotone mapping.

Let E be a real reflexive Banach space, and A : E→ 2E
∗

be a maximal monotone operator. The problem
of finding an element x ∈ E such that 0∗ ∈ Ax is very important in optimization theory and related fields.
Recall that the resolvent of A, denoted by ResfA : E→ 2E, is defined as follows:

ResfA(x) = (Of+A)−1 ◦Of(x). (4.1)

It is well-known that the fixed point set of the resolvent ResfA is equal to the set of zeroes of the mapping
A, that is, F(ResfA) = A−1(0∗). In fact,

u ∈ F(ResfA)⇔ u = ResfA(u) = (∇f+A)−1 ◦∇f(u)⇔ ∇f(u) ∈ ∇f(u) +A(u)
⇔ 0∗ ∈ A(u)⇔ u ∈ (A)−10∗.

Since ResfA is a closed Bregman quasi-strict pseudo-contraction, we find the following result immedi-
ately.

Theorem 4.2. Let E be a real reflexive Banach space with the dual E∗, Ai : E → 2E
∗
, i = 1, 2, · · ·,N, be a finite

family of maximal monotone operators with F =
⋂N
i=1A

−1
i (0∗) 6= ∅. Let f : E→ R be a Legendre function which is

bounded, uniformly Fréchet differentiable, and totally convex on bounded subsets of E. Let ResfAi : E → 2E be the
resolvent with respect to Ai. Let {xn} be a sequence generated by the following iterative algorithm:

x0 ∈ C chosen arbitrarily,
Ci0 = C, i = 1, 2, · · ·,N,
C0 =

⋂N
i=1C

i
0,

yin = ∇f∗[αn∇f(xn) + (1 −αn)∇f(ResfAi(xn + ein))],
Cin+1 = {z ∈ Cn : Df(z,yin) 6 αnDf(z, xn) + (1 −αn)Df(z, xn + ein)〉},
Cn+1 =

⋂N
i=1C

i
n+1,

xn+1 = PfCn+1
(x0), n ∈N∪ {0},

where the sequences of errors {ein} ⊂ E satisfy limn→∞ ein = 0 for each i = 1, 2, · · ·,N, and {αn} ⊂ [0, 1] satisfies
lim infn→∞(1 − αn) > 0. Then the sequence {xn} converges strongly to p̂ = PfF(x0), where PfF is the Bregman
projection of E onto F.

4.3. Solving minimizers of proper, lower semicontinuous, and convex functionals
For a proper lower semicontinuous convex function g : E → (−∞,+∞], the subdifferential mapping

∂g ⊂ E× E∗ of g is defined as follows:

∂g = {x∗ ∈ E∗ : g(y) > g(x) + 〈y− x, x∗〉, ∀ y ∈ E}, ∀ x ∈ E.

From Rockafellar [19], we know that ∂g is maximal monotone. It is easy to verify that 0∗ ∈ ∂g(v) if and
only if g(v) = minx∈E g(x). Emulating (4.1) the resolvent of ∂g, denoted by Resf∂g : E→ 2E, is defined as
follows:

Resf∂g(x) = (Of+ ∂g)−1 ◦Of(x).

Theorem 4.3. Let E be a real reflexive Banach space with the dual E∗, and f : E→ R be a Legendre function which
is bounded, uniformly Fréchet differentiable, and totally convex on bounded subsets of E. Let gi : E → (−∞,∞],
i = 1, 2, · · ·,N, be a finite family of proper, lower semicontinuous, and convex functions, ∂gi the subdifferential
mapping of gi, and Resf∂gi the resolvent of ∂gi. Assume that F =

⋂N
i=1(∂gi)

−1(0∗) 6= ∅. Let {xn} be a sequence
generated by the following iterative algorithm:
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x0 ∈ C chosen arbitrarily,
Ci0 = C, i = 1, 2, · · ·,N,
C0 =

⋂N
i=1C

i
0,

yin = ∇f∗[αn∇f(xn) + (1 −αn)∇f(Resf∂gi(xn + ein))],
Cin+1 = {z ∈ Cn : Df(z,yin) 6 αnDf(z, xn) + (1 −αn)Df(z, xn + ein)〉},
Cn+1 =

⋂N
i=1C

i
n+1,

xn+1 = PfCn+1
(x0), n ∈N∪ {0},

where the sequences of errors {ein} ⊂ E satisfy limn→∞ ein = 0 for each i = 1, 2, · · ·,N, and {αn} ⊂ [0, 1] satisfies
lim infn→∞(1 − αn) > 0. Then the sequence {xn} converges strongly to p̂ = PfF(x0), where PfF is the Bregman
projection of E onto F.

4.4. Solving equilibrium problems
Let C be a nonempty, closed, and convex subset of a real reflexive Banach space E. Let G : C×C→ R

be a bifunction that satisfies the following conditions:

(A1) G(x, x) = 0 for all x ∈ C;
(A2) G is monotone, i.e., G(x,y) +G(y, x) 6 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C, lim supt↓0G(tz+ (1 − t)x,y) 6 G(x,y);
(A4) for each x ∈ C, G(x, ·) is convex and lower semicontinuous.

The ”so-called” equilibrium problem corresponding to G is to find x̄ ∈ C such that G(x̄,y) > 0, ∀y ∈ C.
The set of its solutions is denoted by EP(G). The resolvent of a bifunction G : C×C → R is the operator
ResfG : E→ 2C defined by

ResfG(x) = {z ∈ C : G(z,y) + 〈Of(z) −Of(x),y− z〉 > 0, ∀ y ∈ C}.

It is well-known that ResfG has the following properties:

(1) ResfG is single-valued;
(2) the set of fixed points of ResfG is the solution set of the corresponding equilibrium problem, i.e.,

F(ResfG) = EP(G);
(3) ResfG is a closed Bregman quasi-nonexpansive mapping, so is a closed Bregman quasi-strict pseudo-

contraction.

Theorem 4.4. Let E be a real reflexive Banach space, and C be a nonempty, closed, and convex subset of E. Let
Gi : C× C → R, i = 1, 2, · · ·,N, be a finite family of bifunctions that satisfy conditions (A1)-(A4) such that
F =

⋂N
i=1 EP(Gi) 6= ∅. Let f : E → R be a Legendre function which is bounded, uniformly Fréchet differentiable,

and totally convex on bounded subsets of E, and ResfGi : E → 2C be resolvent operator. Let {xn} be a sequence
generated by the following iterative algorithm:

x0 ∈ C chosen arbitrarily,
Ci0 = C, i = 1, 2, . . . ,N,
C0 =

⋂N
i=1C

i
0,

yin = ∇f∗[αn∇f(xn) + (1 −αn)∇f(ResfGi(xn + ein)],
Cin+1 = {z ∈ Cn : Df(z,yin) 6 αnDf(z, xn) + (1 −αn)Df(z, xn + ein)〉},
Cn+1 =

⋂N
i=1C

i
n+1,

xn+1 = PfCn+1
(x0), n ∈N∪ {0},

where the sequences of errors {ein} ⊂ E satisfy limn→∞ ein = 0 for each i = 1, 2, · · ·,N, and {αn} ⊂ [0, 1] satisfies
lim infn→∞(1 − αn) > 0. Then the sequence {xn} converges strongly to p̂ = PfF(x0), where PfF is the Bregman
projection of E onto F.
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Proof. Since ResfGi is a closed Bregman quasi-strict pseudo-contraction for each i = 1, 2, · · ·,N, by applying
Theorem 3.1, the sequence {xn} converges strongly to p̂ = PfF(x0).

5. Numerical examples

In this section, in order to demonstrate the effectiveness, realization and convergence of the algorithm
in Theorem 3.1, we consider the following example and give the visualization result by utilizing MATLAB
7.0 software.

Example 5.1. Let E = R, C = [0, 1], f(x) = x2, Sx = sin x, and Tx = sin( 1
2x). Then both S and T are

Bregman quasi-strict pseudo-contractions with the fixed point 0.

Proof. From the definition of S, one easily sees that F(S) = {0}. By the definition of the Bregman distance
Df(·, ·), we compute that

Df(0,Sx) = f(0) − f(Sx) − 〈0 − Sx,∇f(Sx)〉
= 0 − sin2 x− 〈0 − sin x, 2 sin x〉
= sin2 x,

(5.1)

Df(0, x) = f(0) − f(x) − 〈0 − x,∇f(x)〉
= 0 − x2 − 〈0 − x, 2x〉
= x2,

(5.2)

and
Df(x,Sx) = f(x) − f(Sx) − 〈x− Sx,∇f(Sx)〉

= x2 − sin2 x− 〈x− sin x, 2 sin x〉
= x2 + sin2 x− 2x sin x > 0.

(5.3)

From (5.1), (5.2), and (5.3), for any κ ∈ [0, 1) one obtains that

Df(0,Sx) = sin2 x 6 x2 6 x2 + κ(x2 + sin2 x− 2x sin x) = Df(0, x) + κDf(x,Sx).

From the definition of Bregman quasi-strict pseudo-contractions, hence S is a Bregman quasi-strict
pseudo-contraction. Similarly, one can obtain that T is also a Bregman quasi-strict pseudo-contraction.

In the algorithm of Theorem 3.1, set ein ≡ 0 for i = 1, 2. By using Example 5.1, the algorithm of
Theorem 3.1 can be simplified as

x0 ∈ C chosen arbitrarily,

Ci0 = C = [0, 1], i = 1, 2,

C0 = C1
0

⋂
C2

0 = [0, 1],

y1
n = αnxn + (1 −αn) sin xn,

y2
n = αnxn + (1 −αn) sin

1
2
xn,

C1
n+1 = {z ∈ Cn : z 6

(1 − κ1)(x
2
n − y2

n) + κ1xn(xn − sin xn)
κ1(xn − sin xn) + 2(1 − κ1)(xn − yn)

},

C2
n+1 = {z ∈ Cn : z 6

(1 − κ2)(x
2
n − y2

n) + κ2xn(xn − sin 1
2xn)

κ2(xn − sin 1
2xn) + 2(1 − κ2)(xn − yn)

},

xn+1 = Pf
C1
n+1

⋂
C2
n+1

(x0), n ∈N∪ {0},

(5.4)

In the following, for the same initial value x0 = 1, the same parameter κi = 1
2 , i = 1, 2, and the different

parametric sequence {αn}, we make simulations on the algorithm (5.4) by MATLAB 7.0 software.
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Figure 1: The convergence process of the sequence {xn} with different {αn}: (a)αn = 1
n ; (b)αn = 9

10 .

From Figure 1 above, we see that by using the algorithm (5.4), the sequence {xn} converges to the
common fixed point 0 for the different parametric sequence {αn}.

Table 1: Partial values of the sequence {xn} in the experiment.

n αn = 1
n αn = 9

10

0 1.0000 1.0000
5 0.6513 0.9785
10 0.3068 0.9575
15 0.1362 0.9370
20 0.0589 0.9170
30 0.0106 0.8782
40 0.0018 0.8412
50 0.0003 0.8059
60 0.0001 0.7721
61 0.0000 0.0002
100 0.0000 0.6511
500 0.0000 0.1215
1000 0.0000 0.0151
2000 0.0000 0.0002
2103 0.0000 0.0002
2104 0.0000 0.0001
2366 0.0000 0.0001
2367 0.0000 0.0000

Some values of the sequence {xn} in the numerical experiments of Figure 1 are shown on Table 1.
Table 1 clearly indicates that the different parametric sequence {αn} affects on the convergence rate of the
sequence {xn}. In a word, the results of numerical simulations demonstrate that the algorithm of Theorem
3.1 is effective, realizable, and convergent.
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