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Abstract
The object of the present paper is to introduce and investigate new subclasses of the function class Σ of bi-univalent

functions defined in the open unit disk U, involving quasi subordination. The coefficients estimate |a2| and |a3| for functions in
these new subclasses are also obtained. c©2017 All rights reserved.

Keywords: Univalent functions, bi-univalent functions, quasi-subordination, subordination.
2010 MSC: 30C45, 30C50.

1. Introduction

Let A be the class of all functions of the form

f(z) = z+

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C; |z| < 1}.
Suppose S denotes the class of all functions of A which satisfy normalized condition f(0) = 0 and

f ′(0) = 1 which are univalent in U.
Since univalent functions are one-to-one, they are invertible and the inverse functions need not be

defined on the entire unit disk U. In fact, the Koebe-one quarter theorem [1] ensures that the image of U
under every univalent function f ∈ A contains a disk of radius 1/4. Thus, every univalent function f has
an inverse f−1 satisfying f−1 (f(z)) = z, (z ∈ U), and

f
(
f−1(w)

)
= w (|w| < r0(f), r0(f) > 1/4) .

In fact, the inverse function f−1 is given by

f−1(w) = w− a2w
2 + (2a2

2 − a3)w
3 − (5a3

2 − 5a2a3 + a4)w
4 + · · · .
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A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote the
class of bi-univalent functions defined in U.

An analytic function f(z) is subordinate to an analytic function g(z) if there exists an analytic func-
tion w(z) in U satisfying w(0) = 0 and |w(z)| < 1 (z ∈ U) satisfying f(z) = g(w(z)). We denote this
subordination by, cf. [5, p. 226],

f(z) ≺ g(z) (z ∈ U) .

Further, a function f(z) is said to be quasi-subordinate to g(z) in the open unit disk U if there exists
an analytic function ϕ(z) such that f(z)/ϕ(z) is analytic in U,

f(z)

ϕ(z)
≺ g(z) (z ∈ U)

and |ϕ(z)| 6 1 (z ∈ U). We also denote this quasi-subordination by

f(z) ≺q g(z) (z ∈ U) . (1.2)

Note that the quasi-subordination (1.2) is equivalent to

f(z) = ϕ(z)g(w(z)) (z ∈ U) , (1.3)

where |ϕ(z)| 6 1 (z ∈ U).
In the quasi-subordination (1.3), if ϕ(z) ≡ 1, then (1.3) becomes the subordination (1.3).
For analytic functions f(z) and g(z) in U, we say f(z) is majorized by g(z) if there exists an analytic

function ϕ(z) in U satisfying |ϕ(z)| 6 1 and f(z) = ϕ(z)g(z) (z ∈ U). See [7, 11, 12] for works related to
quasi-subordination.

Lewin [8] investigated the bi-univalent function class Σ and showed that |a2| < 1.51. Subsequently,
Brannan et al. [1] conjectured that |a2|<

√
2. Netanyahu [10], on the other hand, showed that maxf∈Σ |a2| =

4
3 . Brannan and Taha [2] obtained initial coefficient bounds for certain subclasses of bi-univalent functions,
similar to the familiar subclasses of univalent functions consisting of strongly starlike, starlike and convex
functions. Later, Srivastava et al. [13] introduced and investigated subclasses of bi-univalent functions
and obtained bounds for the initial coefficients. Many researchers (see [3, 4, 6, 13, 14]) have recently
introduced and investigated several interesting subclasses of the bi-univalent function class Σ and they
have found non-sharp estimates of initial coefficient bounds |a2| and |a3|.

In the present paper, the coefficient bounds of |a2| and |a3| for certain classes involving the quasi-
subordination are obtained. The subclasses in this paper are motivated essentially by corresponding
subclasses investigated in [7].

2. Coefficient estimates

Let us assume that there exists a function φ(z) analytic in the open unit disk U and |ϕ(z)| 6 1 s.t.

φ(z) = A0 +A1z+A2z
2 + · · · (|z| < 1). (2.1)

Since φ(z) is analytic and bounded in U, we have [9, page 172]

|An| 6 1 − |A0|
2 6 1 (n > 0). (2.2)

Also, let h(z) be an analytic function with positive real part in U, satisfying h(0) = 1, h ′(0) > 0 and
h(U) is symmetric with respect to the real axis. Such a function has a Taylor series of the form

h(z) = 1 +B1z+B2z
2 + · · · ,B1 > 0.

Suppose that u(z) and v(z) are analytic in U with u(0) = v(0) = 0, |u(z)| < 1, |v(z)| < 1, and suppose that

u(z) = b1z+

∞∑
n=2

bnz
n, v(z) = c1z+

∞∑
n=2

cnz
n (|z| < 1) .
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It is well-known that
|b1| 6 1, |b2| 6 1 − |b1|

2, |c1| 6 1, |c2| 6 1 − |c1|
2. (2.3)

By a simple calculation, we have

h(u(z)) = 1 +B1b1z+
(
B1b2 +B2b

2
1
)
z2 + · · · , |z| < 1,

and
h(v(w)) = 1 +B1c1w+

(
B1c2 +B2c

2
1
)
w2 + · · · , |w| < 1.

We define a subclass of Σ as follows:

Definition 2.1. A function f ∈ Σ is said to be in the class Hq(Σ,h) if and only if:

f ′(z) − 1 ≺q h(z) − 1, g ′(w) − 1 ≺q h(w) − 1,

or
f ′(z) − 1 = φ(z) (h(u(z)) − 1) , g ′(w) − 1 = φ(w) (h(v(w)) − 1) ,

where |φ(z)| 6 1 (z ∈ U) and g(w) = f−1(w).

On taking φ(z) ≡ 1 in Definition 2.1, we get the following subordination class:

f ′(z) ≺ h(z), g ′(w) ≺ h(w).

We name this class as H(Σ,h).
Now, we first derive following coefficient estimates for the subclass Hq(Σ,h):

Theorem 2.2. If f given by (1.1) is in the subclass HΣq(h), then

|a2| 6 min

{
B1

2
,

√
B1 + |B2|

3

}
, |a3| 6 min

{
B2

1
4

+
2
3
B1,

|B2|

3
+B1

}
.

Proof. Let f ∈ HΣq(h) and g = f−1. Then, there are analytic functions u, v : U → U given by (2.2) and a
function φ(z) in U defined by (2.1) satisfying

f ′(z) − 1 = φ(z) (h(u(z) − 1) , g ′(w) − 1 = φ(w) (h(v(w) − 1) .

Since
f ′(z) = 1 + 2a2z+ 3a3z

2 + · · · , g ′(w) = 1 − 2a2w+ 3
(
2a2

2 − a3
)
w2 + · · · ,

and
φ(z) (h(u(z) − 1) = A0B1b1z+

[
A1B1b1 +A0

(
B1b2 +B2b

2
1
)]
z2 + · · · , (2.4)

with
φ(w) (h(v(w) − 1) = A0B1c1w+

[
A1B1c1 +A0

(
B1c2 +B2c

2
1
)]
w2 + · · · . (2.5)

It follows that

2a2 = A0B1b1, (2.6)

3a3 = A1B1b1 +A0
(
B1b2 +B2b

2
1
)

, (2.7)
−2a2 = A0B1c1, (2.8)

3
(
2a2

2 − a3
)
= A1B1c1 +A0

(
B1c2 +B2c

2
1
)

. (2.9)

From (2.6) and (2.8), we have
b1 = −c1. (2.10)
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Squaring and adding (2.6) and (2.8), and then using (2.10), we have

4a2
2 = A2

0B
2
1c

2
1. (2.11)

Adding (2.7) and (2.9), we have
6a2

2 = A0
[
B1(b2 + c2) + 2B2c

2
1
]

. (2.12)

By using (2.2) and (2.3), we have from (2.11) and (2.12) that

|a2| 6
B1

2
and |a2| 6

√
B1 + |B2|

3
, (2.13)

respectively. So we get the desired estimate on the coefficient |a2| as asserted in (2.1).
Next, in order to find the bound on the coefficient |a3|, we subtract (2.9) from (2.7). Thus, we get

6a3 − 6a2
2 = A1B1(b1 − c1) +A0

[
B1(b2 − c2) +B2(b

2
1 − c

2
1)
]

.

Therefore (2.10), (2.11), and (2.13) yield

6a3 =
3
2
A2

0B
2
1c

2
1 − 2c1A1B1 +A0B1(b2 − c2).

Thus, we find by using (2.2) and (2.3) that

|a3| 6
1
4
B2

1 +
2
3
B1.

Also from (2.10), (2.11), and (2.13), we have

6a3 = A0
[
B1(b2 + c2) + 2B2c

2
1
]
− 2c1A1B1 +A0B1(b2 − c2).

Thus, we find by (2.2) and (2.3) that

|a3| 6 B1 +
|B2|

3
.

This evidently completes the proof of Theorem 2.2.

Theorem 2.3. If f given by (1.1) is in the subclass H(Σ,h) then

|a2| 6 min

{
B1

2
,

√
B1 + |B2|

3

}
,

and

|a3| 6 min
{
B2

1
4

+
B1

6
,
|B2|+ 2B1

3

}
.

Proof. The result is obvious, by taking φ(z) ≡ 1 (z ∈ U) and using the similar procedure as in Theorem
2.2.

Definition 2.4. A function f ∈ Σ is said to be in the class S∗q(Σ,h) if and only if:

zf ′(z)

f(z)
− 1 ≺q h(z) − 1,

wg ′(z)

g(w)
− 1 ≺q h(w) − 1,

where |φ|(z) 6 1 (z ∈ U) and g(w) = f−1(w).
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On taking φ(z) ≡ 1 in Definition 2.1, we get the following subordination class:

zf ′(z)

f(z)
≺ h(z), wg ′(z)

g(w)
≺ h(w).

We name this class as S∗(Σ,h), where g(w) = f−1(w).

Theorem 2.5. If f given by (1.1) is in the subclass S∗q(Σ,h) then

|a2| 6 min
{
B1,
√
B1 + |B2|

}
(2.14)

and
|a3| 6 min {B1(1 +B1), 3B1} .

Proof. Let f ∈ S∗q(Σ,h) and g = f−1. Then there are analytic functions u, v : U → U given by (2.2) and a
function φ(z) in U defined by (2.1) satisfying

zf ′(z)

f(z)
− 1 = φ(z) (h(u(z) − 1) ,

wg ′(w)

g(w)
− 1 = φ(w) (h(v(w) − 1) . (2.15)

Since

zf ′(z)

f(z)
= 1 + a2z+

(
2a3 − a

2
2
)
z2 + · · · ,

wg ′(w)

g(w)
= 1 − 2a2w+

(
3a2

2 − 2a3
)
w2 + · · · . (2.16)

By using (2.4), (2.5), (2.15), and (2.16), we have

a2 = A0B1b1, (2.17)

2a3 − a
2
2 = A1B1b1 +A0

(
B1b2 +B2b

2
1
)

, (2.18)
−a2 = A0B1c1, (2.19)

3a2
2 − 2a3 = A1B1c1 +A0

(
B1c2 +B2c

2
1
)

. (2.20)

From (2.17) and (2.19), we have
b1 = −c1. (2.21)

Squaring and adding (2.17) and (2.19), and then using (2.21), we have

a2
2 = A2

0B
2
1c

2
1. (2.22)

Adding (2.18) and (2.20), and then using (2.21), we have

2a2
2 = A0

[
B1(b2 + c2) + 2B2c

2
1
]

. (2.23)

By using (2.2) and (2.3), we have from (2.22) and (2.23) that

|a2| 6 B1 and |a2| 6
√
B1 + |B2|,

respectively. So we get the desired estimate on the coefficient |a2| as asserted in (2.14).
Next, in order to find the bound on the coefficient |a3|, we subtract (2.20) from (2.18). Thus, we get

4a3 − 4a2
2 = A1B1(b1 − c1) +A0

[
B1(b2 − c2) +B2(b

2
1 − c

2
1)
]

. (2.24)

Therefore, (2.21), (2.22), and (2.24) yield

4a3 = 4A2
0B

2
1c

2
1 − 2c1A1B1 +A0B1(b2 − c2).
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Hence, we find by using (2.2) and (2.3) that

|a3| 6 B1(1 +B1).

Also from (2.21), (2.22), and (2.24), we have

4a3 = 2A0
[
B1(b2 + c2) + 2B2c

2
1
]
− 2c1A1B1 +A0B1(b2 − c2).

Thus, we find by (2.2) and (2.3) that
|a3| 6 3B1.

This evidently completes the proof of Theorem 2.5.

Theorem 2.6. If f given by (1.1) is in the subclass S∗(Σ,h), then

|a2| 6 min
{
B1,
√
B1 + |B2|

}
and

|a3| 6 min
{
B2

1 +
B1

2
,

3
2
B1 + |B2|

}
.

Proof. The result is obvious, by taking φ(z) ≡ 1 (z ∈ U) and using the similar procedure as in Theorem
2.5.

Definition 2.7. A function f ∈ Σ is said to be in the class Cq(Σ,h) if and only if:

zf ′′(z)

f ′(z)
≺q h(z) − 1,

wg ′′(z)

g ′(w)
≺q h(w) − 1,

where |φ(z)| 6 1 (z ∈ U) and g(w) = f−1(w).

On taking φ(z) ≡ 1 in Definition 2.1, we get the following subordination class:

1 +
zf ′′(z)

f ′(z)
≺ h(z), 1 +

wg ′′(z)

g ′(w)
≺ h(w).

We name this class as C(Σ,h).

Theorem 2.8. If f given by (1.1) is in the subclass Cq(Σ,h), then

|a2| 6 min

{
B1

2
,

√
B1 + |B2|

2

}
, (2.25)

and

|a3| 6 min
{

1
4
B2

1 +
1
3
B1,

5
6
B1 +

1
2
|B2|

}
.

Proof. Let f ∈ KΣq(h) and g = f−1. Then, there are analytic functions u, v : U → U given by (2.2) and a
function φ(z) in U defined by (2.1) satisfying

zf ′′(z)

f ′(z)
= φ(z) (h(u(z) − 1) ,

wg ′′(w)

g ′(w)
= φ(w) (h(v(w) − 1) . (2.26)

Since
zf ′′(z)

f ′(z)
= 2a2z+

(
6a3 − 4a2

2
)
z2 + · · · ,

wg ′′(w)

g ′(w)
= −2a2w+

(
8a2

2 − 6a3
)
w2 + · · · . (2.27)
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By using (2.4), (2.5), (2.26), and (2.27), we have

2a2 = A0B1b1, (2.28)

6a3 − 4a2
2 = A1B1b1 +A0

(
B1b2 +B2b

2
1
)

, (2.29)
−2a2 = A0B1c1, (2.30)

8a2
2 − 6a3 = A1B1c1 +A0

(
B1c2 +B2c

2
1
)

. (2.31)

From (2.28) and (2.30), we have
b1 = −c1. (2.32)

Squaring and adding (2.28) and (2.30), and then using (2.32), we have

4a2
2 = A2

0B
2
1c

2
1. (2.33)

Adding (2.29) and (2.31), and then using (2.32), we have

4a2
2 = A0

[
B1(b2 + c2) + 2B2c

2
1
]

. (2.34)

By using (2.2) and (2.3), we have from (2.33) and (2.34) that

|a2| 6
B1

2
and |a2| 6

√
B1 + |B2|

2
,

respectively. So we get the desired estimate on the coefficient |a2| as asserted in (2.25).
Next, in order to find the bound on the coefficient |a3|, we subtract (2.31) from (2.29). Thus, we get

12a3 − 12a2
2 = A1B1(b1 − c1) +A0

[
B1(b2 − c2) +B2(b

2
1 − c

2
1)
]

. (2.35)

Therefore the equations (2.32), (2.33), and (2.34) yield

12a3 = 3A2
0B

2
1c

2
1 − 2c1A1B1 +A0B1(b2 − c2).

Thus, we find by using (2.2) and (2.3) that

|a3| 6
1
4
B2

1 +
1
3
B1.

Also from (2.32), (2.34), and (2.35), we have

12a3 = 3A0
[
B1(b2 + c2) + 2B2c

2
1
]
− 2c1A1B1 +A0B1(b2 − c2).

Hence, we find by (2.2) and (2.3) that

|a3| 6
5
6
B1 +

1
2
|B2|.

This evidently completes the proof of Theorem 2.8.

Theorem 2.9. If f given by (1.1) is in the subclass C(Σ,h), then

|a2| 6 min

{
B1

2
,

√
B1 + |B2|

2

}
,

and

|a3| 6 min
{
B2

1
4

+
B1

6
,

2
3
B1 +

|B2|

2

}
.

Proof. The result is obvious, by taking φ(z) ≡ 1 (z ∈ U) and using the similar procedure as in Theorem
2.8.
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3. Conclusion

In the paper, classes of analytic bi-univalent are introduced with the help of quasi-subordination.
Further, coefficient estimates of initial Maclaurin coefficients are also obtained.
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