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Abstract
The aim of this paper is to present some fixed point results for generalized Wardowski-type contractions in the framework

of (α,η)-complete rectangular b-metric spaces. We also derive certain fixed point results for generalized F-contractions in
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1. Introduction and preliminaries

The notion of a b-metric as an extension of usual metric has been introduced first by Bakhtin [1] and
extensively applied by Czerwik in [5, 6]. Until now, many interesting results about the existence of fixed
points for single-valued and multi-valued mappings in b-metric spaces have been obtained (see, e.g.,
[3, 12, 22] and the papers cited therein).

Definition 1.1 ([5]). Let X be a nonempty set and let s > 1 be a given real number. A function b : X×X→
[0,+∞) is a b-metric on X, if for all x,y, z ∈ X, the following assertions hold:

(b1) b(x,y) = 0, if and only if x = y;

(b2) b(x,y) = b(y, x);

(b3) b(x, z) 6 s[b(x,y) + b(y, z)].

In this case, the pair (X,b) is called a b-metric space.

In general, a b-metric space might not be a metric space.
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The following definition was given by Branciari in [2].

Definition 1.2. Let X be a nonempty set and let r : X×X→ [0,+∞) be a mapping such that for all x,y ∈ X
and all distinct points u, v ∈ X, each of them is distinct from x and y:

(r1) r(x,y) = 0, if and only if x = y;

(r2) r(x,y) = r(y, x);

(r3) r(x,y) 6 r(x,u) + r(u, v) + r(v,y) (rectangular inequality).

Then (X, r) is said to be a generalized metric space (g.m.s.) or a rectangular metric space.

Many researchers (see the references cited in [13]) proved various fixed point results in this framework.
The concept of generalized metric space is similar to the notion of metric space. However, its topology
may not be Hausdorff, as an example given in [18, 20] shows (see further Example 1.5). Hence, it is quite
difficult to treat this concept because a generalized metric space does not necessarily have the topology
which is compatible with convergence in r, see [21, Example 7]. So, this concept is very interesting for
researchers.

Combining conditions used for definitions of b-metric and g.m. spaces, Roshan et al. [17] announced
the following notion (see also [8]).

Definition 1.3 ([17]). Let X be a nonempty set, s > 1 be a given real number and let rb : X×X→ [0,+∞)
be a mapping such that for all x,y ∈ X and all distinct points u, v ∈ X, each of them distinct from x and y
one has the following conditions:

(rb1) rb(x,y) = 0, iff x = y;

(rb2) rb(x,y) = rb(y, x);

(rb3) rb(x,y) 6 s[rb(x,u) + rb(u, v) + rb(v,y)] (b-rectangular inequality).

Then (X, rb) is called a rectangular b-metric space (RbMS) or a generalized b-metric space (b-g.m.s).

The following are easy examples of rectangular b-metric spaces [17].

Example 1.4. Let (X, r) be a g.m.s. and p > 1 be a real number. Let rb(x,y) = (r(x,y))p. Obviously, from
the convexity of the function f(x) = xp for x > 0 and by Jensen inequality we have

(a+ b+ c)p 6 3p−1(ap + bp + cp),

for nonnegative real numbers a,b, c. So, it is easy to obtain that (X, rb) is a rectangular b-metric space,
where as a parameter any s > 3p−1 can be taken.

Example 1.5. Let A = {0, 2}, B = { 1
n : n ∈N} and X = A∪B. Define r : X×X→ [0,+∞) as follows:

r(x,y) =


0, x = y,
1, x 6= y and {x,y} ⊂ A or {x,y} ⊂ B,
y, x ∈ A, y ∈ B,
x, x ∈ B, y ∈ A.

Then (X, r) is a complete g.m.s. [18, 20]. Now, taking rb(x,y) = r(x,y)2, according to Example 1.4, we
obtain a rectangular b-metric space (X, rb) with s = 3. It can be shown that:

1. the sequence { 1
n }n∈N converges to both 0 and 2;
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2. limn→∞ 1
n = 0, but 1 = limn→∞ rb( 1

n , 1
2) 6= rb(0, 1

2) =
1
4 ; hence rb is not a continuous function.

We will also need the following simple lemma about the convergent sequences in the proof of our
main results.

Lemma 1.6 ([17]). Let (X, rb) be a rectangular b-metric space.

(a) Suppose that sequences {xn} and {yn} in X are such that xn → x and yn → y as n → ∞, with x 6= y,
xn 6= x and yn 6= y for all n ∈N. Then we have

1
s
rb(x,y) 6 lim inf

n→∞ rb(xn,yn) 6 lim sup
n→∞ rb(xn,yn) 6 srb(x,y).

(b) If y ∈ X and {xn} is a Cauchy sequence in X with xn 6= xm for infinitely many m,n ∈ N, n 6= m,
converging to x 6= y, then

1
s
rb(x,y) 6 lim inf

n→∞ rb(xn,y) 6 lim sup
n→∞ rb(xn,y) 6 srb(x,y),

for all x ∈ X.

Using certain mappings F : R+ → R, Wardowski introduced in [24] a new type of contractions
called F-contractions and proved a new fixed point theorem for such mappings. Substituting appropriate
mappings for F, one can obtain several known contractions from the literature, including the Banach
contraction (see, e.g., [4, 23]). Hussain and Salimi [9] generalized the concept of F-contraction and proved
certain fixed and common fixed point results.

In this paper, using the idea introduced by Wardowski, we prove some fixed point results for gener-
alized F-contractive mappings in the setup of rectangular b-metric spaces. An example is presented to
support our main results. Fixed point results in spaces endowed with a graph or with a partial order are
presented at the end as applications of our obtained results.

2. Results

2.1. Basic notions
We begin with some basic definitions and results which will be applied in the sequel.
As in [24], let ∆F be the set of all functions F : R+ → R verifying the following assertions:

(F1) F is a continuous and strictly increasing mapping;

(F2) lim
n→∞ tn = 0, if and only if lim

n→∞ F(tn) = −∞ for all sequence {tn} ⊆ R+.

Example 2.1. The following are some examples of functions belonging to ∆F: F1(t) = ln t, F2(t) = − 1
tp ,

where p > 0, F3(t) = t−
1
t , F4(t) =

1
e−t−et , F5(t) =

1
1−et .

Now we introduce the following new family of functions.
Let ∆β be the set of all functions β : R+ → R+ satisfying the following condition:

(β1) lim inf
i→∞ β

(
ti
)
> 0 for all real sequences (ti) with ti > 0;

Note that (β1) implies that:

(β2)
∑∞
i=0 β(ti) = +∞ for each sequence (ti) with ti > 0.

Definition 2.2. Let (X, rb) be a rectangular b-metric space with parameter s and let T be a self-mapping
on X. Suppose that α,η : X×X→ [0,+∞) are two functions. We say that T is an (α,η)-β-F-contraction, if
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for all x,y ∈ X with (α(x,y) > 1 or η(x,y) 6 1) and rb(Tx, Ty) > 0 we have

β
(
rb(x,y)

)
+ F

(
s2 · rb(Tx, Ty)

)
6 F

(
α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx)

)
, (2.1)

where β ∈ ∆β, F ∈ ∆F, αi > 0 for i ∈ {1, 2, 3, 4},
∑4
i=1 αi = 1 and α3 <

1
s .

In [19], Samet et al. presented the concepts of α-ψ-contractive and α-admissible mappings and ob-
tained various fixed point results for such mappings defined on complete metric spaces. On the other
hand, Hussain et al. [7], as well as La Rosa and Vetro [15], extended the notions of α-ψ-contractive and
α-admissible mappings and stated some interesting results. Also, Hussain et al. [7] introduced a weaker
notion than the concept of completeness and called it α-completeness for a metric space. Motivated by
these works, we present the following concepts.

Definition 2.3 ([7]). Let T be a self-mapping on X and let α,η : X×X→ [0,+∞) be two functions. We say
that T is an (α,η)-admissible mapping if

x,y ∈ X, α(x,y) > 1 =⇒ α(Tx, Ty) > 1,

and
x,y ∈ X, η(x,y) 6 1 =⇒ η(Tx, Ty) 6 1.

One can easily see that an (α,η)-admissible mapping is an α-admissible and η-sub-admissible map-
ping simultaneously.

Definition 2.4 ([7]). Let T : X → X and α,η : X× X → [0,+∞). We say that T is a triangular (α,η)-
admissible mapping if

(T1) α(x,y) > 1 =⇒ α(Tx, Ty) > 1, x,y ∈ X;

(T2) η(x,y) 6 1 =⇒ η(Tx, Ty) 6 1, x,y ∈ X;

(T3)

{
α(x, z) > 1
α(z,y) > 1

=⇒ α(x,y) > 1, for all x,y, z ∈ X;

(T4)

{
η(x, z) 6 1
η(z,y) 6 1

=⇒ η(x,y) 6 1, for all x,y, z ∈ X.

Definition 2.5. Let (X,d) be a metric space or a rectangular b-metric space and let α,η : X×X→ [0,+∞)
be two mappings. The space X is said to be:

a. α-complete, if every Cauchy sequence {xn} in X with α(xn, xn+1) > 1 for all n ∈N, converges in X.

b. η-sub-complete, if every Cauchy sequence {xn} in X with η(xn, xn+1) 6 1 for all n ∈ N, converges
in X.

c. (α,η)-complete, if every Cauchy sequence {xn} in X with α(xn, xn+1) > 1 or η(xn, xn+1) 6 1 for all
n ∈N, converges in X.

Remark 2.6. If X is a complete space, then X is also an (α,η)-complete space (α-complete space and η-sub-
complete space). But, the converse is not true.

Definition 2.7 ([7]). Let (X,d) be a metric space or a rectangular b-metric space and let α,η : X× X →
[0,+∞) and T : X→ X be mappings. We say that:

a. T is an α-continuous mapping on (X,d), if for given point x ∈ X and sequence {xn} ⊆ X,

xn → x and α(xn, xn+1) > 1, for all n ∈N, imply that Txn → Tx.
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b. T is an η-sub-continuous mapping on (X,d), if for given point x ∈ X and sequence {xn} ⊆ X,

xn → x and η(xn, xn+1) 6 1, for all n ∈N, imply that Txn → Tx.

c. T is an (α,η)-continuous mapping on (X,d), if for given point x ∈ X and sequence {xn} ⊆ X,

xn → x and (α(xn, xn+1) > 1 or η(xn, xn+1) 6 1, for all n ∈N) imply that Txn → Tx.

Example 2.8. Let X = [0,+∞) be equipped with the usual metric d(x,y) = |x− y|. Assume that T : X→ X

and α,η : X×X→ [0,+∞) be defined by

Tx =

{
x2, if x ∈ [0, 1],
arcsin x+ sinh x+ 2, if (1,+∞),

α(x,y) =

{
x4 + y2 + 1, if x,y ∈ [0, 1],
0, otherwise,

η(x,y) =

{
1

1+x2+y6 , if x,y ∈ [0, 1],

2, otherwise.

Clearly, T is not a continuous mapping, but T is (α,η)-continuous (α-continuous and η-sub-continuous)
on (X,d).

Definition 2.9. Let (X,d) be a metric space or a rectangular b-metric space and let α,η : X×X→ [0,+∞)
be two functions. We say that

a. (X,d) is α-regular, if xn → x, where α(xn, xn+1) > 1 for all n ∈ N, implies α(xn, x) > 1 for all
n ∈N.

b. (X,d) is η-sub-regular, if xn → x, where η(xn, xn+1) 6 1 for all n ∈ N, implies η(xn, x) 6 1 for all
n ∈N.

c. (X,d) is (α,η)-regular, if (X,d) is α-regular and (X,d) is η-sub-regular simultaneously.

2.2. Fixed point results
Now we state and prove the main results of this section. Note that (X, rb) will always be a rectangular

b-metric space with parameter s > 1 and Fix(T) will denote the set of fixed points of a self-mapping
T : X→ X.

Theorem 2.10. Let α,η : X× X → [0,+∞) be two functions and let the space (X, rb) be (α,η)-complete rectan-
gular. Let T : X→ X be a self-mapping satisfying the following conditions:

(i) T is a triangular (α,η)-admissible mapping;

(ii) T is an (α,η)-β-F-contraction;

(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1 or η(x0, Tx0) 6 1;

(iv) T is (α,η)-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α(x,y) > 1 or η(x,y) 6 1 for all x,y ∈ Fix(T).

Proof. Let x0 ∈ X be the point given as in (iii). Define a sequence {xn} by xn = Tnx0 = Txn−1. Since T
is a triangular (α,η)-admissible mapping, then α(x1, x2) = α(Tx0, Tx1) > 1 or η(x1, x2) = η(Tx0, Tx1) 6 1.
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Continuing this process we have

α(xn−1, xn) > 1 or η(xn−1, xn) 6 1,

for all n ∈N. By (T3) and (T4), we infer also that

α(xm, xn) > 1 or η(xm, xn) 6 1, ∀m,n ∈N, m 6= n. (2.2)

Suppose that there exists n0 ∈ N such that xn0 = xn0+1. Then xn0 is a fixed point of T and we have
nothing to prove. Hence, we assume that xn 6= xn+1, i.e., rb(Txn−1, Txn) > 0 for all n ∈N. But then also

xn 6= xm, ∀m,n ∈N, m 6= n. (2.3)

Indeed, suppose that xn = xm for some n = m+ k > m, so we have xn+1 = Txn = Txm = xm+1. Denote

dn := rb(xn, xn+1).

Then, (2.1) implies that

F(dm) = F(dn) < F(s
2dn) = F(s

2rb(Txn−1, Txn))
6 F(α1dn−1 +α2dn−1 +α3dn +α4 · 0) −β(dn−1)

< F(α1dn−1 +α2dn−1 +α3dn).

As F is strictly increasing, so dm = dn < α1dn−1 +α2dn−1 +α3dn, wherefrom dn <
α1+α2
1−α3

dn−1 6 dn−1,
since α1 + α2 + α3 6 1. Continuing this process, we can prove that dm < dm, a contradiction. Thus, in
what follows, we can assume that (2.2) and (2.3) hold.

We will show that

lim
n→∞ rb(xn, xn+1) = 0, and lim

n→∞ rb(xn, xn+2) = 0. (2.4)

Since T is an (α,η)-β-F-contraction, so we derive

F(dn) = F
(
rb(Txn−1, Txn)

)
< β

(
rb(xn−1, xn)

)
+ F

(
s2rb(Txn−1, Txn)

)
6 F

(
α1dn−1 +α2dn−1 +α3dn +α4 · 0

)
.

Since F is strictly increasing, we deduce that dn < α1dn−1 +α2dn−1 +α3dn, wherefrom

dn <
α1 +α2

1 −α3
dn−1,

where α1+α2
1−α3

6 1. It follows that dn < dn−1, which again by (2.1), implies

F
(
rb(xn, xn+1)

)
< F

(
rb(xn−1, xn)

)
−β

(
rb(xn−1, xn)

)
.

Therefore,

F
(
rb(xn, xn+1)

)
< F

(
rb(xn−1, xn)

)
−β

(
rb(xn−1, xn)

)
< F

(
rb(xn−2, xn−1)

)
−β

(
rb(xn−2, xn−1)

)
−β

(
rb(xn−1, xn)

)
...

< F(rb(x0, x1)) −

n∑
i=1

β
(
rb(xi−1, xi)

)
. (2.5)

By taking the limit as n → ∞ in (2.5) and using (β2), we have limn→∞ F(rb(xn, xn+1)
)
= −∞ and since

F ∈ ∆F, we obtain
lim
n→∞dn = lim

n→∞ rb(xn, xn+1) = 0. (2.6)
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On the other hand,

F(s2rb(xn, xn+2)) < β
(
rb(xn−1, xn+1)

)
+ F

(
s2rb(Txn−1, Txn+1)

)
6 F

(
α1rb(xn−1, xn+1) +α2rb(xn−1, xn) +α3rb(xn+1, xn+2) +α4rb(xn+1, xn)

)
6 F

(
sα1rb(xn−1, xn+2) + sα1rb(xn+2, xn) + sα1rb(xn, xn+1)

+α2rb(xn−1, xn) +α3rb(xn+1, xn+2) +α4rb(xn+1, xn)
)

6 F
(
s2α1rb(xn−1, xn) + s2α1rb(xn, xn+1) + s

2α1rb(xn+1, xn+2)

+ sα1rb(xn+2, xn) + sα1rb(xn, xn+1) +α2rb(xn−1, xn)
+α3rb(xn+1, xn+2) +α4rb(xn+1, xn)

)
,

which implies that

(s2 − sα1)rb(xn, xn+2) 6 s
2α1dn−1 ++s2α1dn + s2α1dn+1 + sα1dn +α2dn−1 +α3dn+1 +α4dn.

Taking the limit as n→∞ in the above and using (2.6), since s > 1, we have

lim
n→∞ rb(xn, xn+2) = 0,

hence (2.4) is proved.
Next, we show that {xn} is an rb-Cauchy sequence in X.
Suppose to the contrary that {xn} is not an rb-Cauchy sequence. Then there exists ε > 0 for which we

can find two subsequences {xmi
} and {xni} of {xn} such that ni is the smallest index for which

ni > mi > i, and rb(xmi
, xni) > ε. (2.7)

This means that
rb(xmi

, xni−1) < ε. (2.8)

From (2.7) and using the rectangular inequality, we get

ε 6 rb(xmi
, xni) 6 srb(xmi

, xmi+1) + srb(xmi+1, xni+1) + srb(xni+1, xni).

Taking the upper limit as i→∞, and using (2.4), we get

ε

s
6 lim sup

i→∞ rb(xmi+1, xni+1). (2.9)

Also,
rb(xmi

, xni) 6 srb(xmi
, xni−1) + srb(xni−1, xni+1) + srb(xni+1, xni).

Then, from (2.8) and (2.4),
lim sup
i→∞ rb(xmi

, xni) 6 sε. (2.10)

Also,
rb(xni , xmi+1) 6 srb(xni , xni−1) + srb(xni−1, xmi

) + srb(xmi
, xmi+1).

Then, from (2.8) and (2.4),
lim sup
i→∞ rb(xni , xmi+1) 6 sε. (2.11)

Because of (2.2) and (2.3), we can apply (2.1) to conclude that

F(s2 · rb(xmi+1, xni+1)) = F(s
2 · rb(Txmi

, Txni))
6 F(α1rb(xmi

, xni) +α2rb(xmi
, xmi+1) +α3rb(xni , xni+1)

+α4rb(xni , xmi+1)) −β(rb(xmi
, xni)).

(2.12)
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Now, taking the upper limit as i→∞ in (2.12) and using (F1) and (2.9), (2.10), (2.11), we have

F
(
s2 · ε

s

)
6 F(s2 · lim sup

i→∞ rb(xmi+1, xni+1))

6 F(lim sup
i→∞ [α1rb(xmi

, xni) +α4rb(xni , xmi+1)]) − lim inf
i→∞ β(rb(xmi

, xni))

6 F
(
[α1 +α4]sε

)
− lim inf

i→∞ β(rb(xmi
, xni)),

which further implies that
lim inf
i→∞ β(rb(xmi

, xni)) = 0,

which is a contradiction with (2.7) because of the property (β1).
Thus, we have proved that {xn} is an rb-Cauchy sequence in the rectangular b-metric space (X, rb).

Since (X, rb) is (α,η)-complete and

α(xn−1, xn) > 1 or η(xn−1, xn) 6 1,

for all n ∈N, then the sequence {xn} rb-converges to some z ∈ X, that is, limn→∞ rb(xn, z) = 0.
Suppose that z 6= Tz. Then, from Lemma 1.6 (all of its assumptions are fulfilled), as T is (α,η)-

continuous,

1
s
rb(z, Tz) 6 lim inf

n→∞ rb(xn, Txn) lim sup
n→∞ rb(xn, Txn) = lim sup

n→∞ rb(xn, xn+1) = 0.

Hence, we have rb(Tz, z) = 0 and so Tz = z. Thus, z is a fixed point of T .
Let x,y ∈ Fix(T) where x 6= y and α(x,y) > 1 or η(x,y) 6 1. Then from

β
(
rb(x,y)

)
+ F

(
rb(Tx, Ty)

)
6 F

(
α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx)

)
,

we get
β
(
rb(x,y)

)
+ F

(
rb(x,y)

)
6 F

(
rb(x,y)

)
,

which is a contradiction. Hence, x = y. Therefore, T has a unique fixed point.

It is clear that, if u is a fixed point of T , then u is also a fixed point of Tn for every n ∈N, i.e., Fix(T) ⊆
Fix(Tn). However, the converse is not true. Recall [11] that if a mapping T satisfies Fix(T) = Fix(Tn) for
each n ∈N, then it is said that T has property P or that T has no periodic points.

Theorem 2.11. Let α,η : X× X → [0,+∞) be two functions and let (X, rb) be an (α,η)-complete rectangular
b-metric space. Let T : X→ X be a self-mapping satisfying the following conditions:

(i) T is a triangular (α,η)-admissible mapping;

(ii) T is an (α,η)-β-F-contraction;

(iii) α(u, Tu) > 1 or η(u, Tu) 6 1, for all u ∈ F(T).

Then T has the property P.

Proof. Let u ∈ F(Tn) for some fixed n > 1. As α(u, Tu) > 1 or η(u, Tu) 6 1 and since T is a triangular
(α,η)-admissible mapping, then α(Tu, T 2u) > 1 or η(Tu, T 2u) 6 1. Continuing this process we have

α(Tn−1u, Tnu) > 1 or η(Tn−1u, Tnu) 6 1,

for all n ∈N. By (T3), we infer that also

α(Tmu, Tnu) > 1 or η(Tmu, Tnu) 6 1, ∀m,n ∈N, m 6= n.
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Suppose that u /∈ Fix(T), i.e., rb(u, Tu) > 0. Then, as F is strictly increasing, it follows from (2.1) that

rb(u, Tu) = rb(Tnu, Tu) = rb(TTn−1u, Tu)

< α1rb(T
n−1u,u) +α2rb(T

n−1u, Tnu) +α3rb(u, Tu) +α4rb(u, Tnu)

= α1rb(T
n−1u, Tnu) +α2rb(T

n−1u, Tnu) +α3rb(u, Tu).

Therefore,
(1 −α3)rb(u, Tu) < (α1 +α2)rb(T

n−1u, Tnu).

So, we have
rb(u, Tu) <

α1 +α2

1 −α3
rb(T

n−1u, Tnu) 6 rb(Tn−1u, Tnu),

a contradiction as rb(Tn−1u, Tnu)→ 0 and rb(u, Tu) > 0.

Theorem 2.12. Let α,η : X× X → [0,+∞) be two functions and let (X, rb) be an (α,η)-complete rectangular
b-metric space. Let T : X→ X be a self-mapping satisfying the following assertions:

(i) T is a triangular (α,η)-admissible mapping;

(ii) T is an (α,η)-β-F-contraction;

(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1 or η(x0, Tx0) 6 1;

(iv) (X, rb) is an (α,η)-regular rectangular b-metric space.

Then T has a fixed point. Moreover, T has a unique fixed point whenever α(x,y) > 1 or η(x,y) 6 1 for all
x,y ∈ Fix(T).

Proof. Let x0 ∈ X satisfy condition (iii). As in the proof of Theorem 2.10 we can conclude that

(α(xn, xn+1) > 1 or η(xn, xn+1) 6 1), and xn → z as n→∞,

where xn+1 = Txn. So, from (iv)

α(xn+1, z) > 1 or η(xn+1, z) 6 1

holds for all n ∈N.
Suppose that, eventually, Tz = xn0+1 = Txn0 for some n0 ∈ N. From the proof of Theorem 2.10 we

know that the members of the sequence {xn} are distinct. Hence, we have Tz 6= Txn, i.e., rb(Txn, Tz) > 0
for all n > n0. Thus, we can apply (2.1) to xn and z for all n > n0 to get

β
(
rb(xn, z)

)
+ F

(
rb(Txn, Tz)

)
6 F

(
α1rb(xn, z) +α2rb(xn, Txn) +α3rb(z, Tz) +α4rb(z, Txn)),

which implies

F
(
rb(xn+1, Tz)

)
< F

(
α1rb(xn, z) +α2rb(xn, xn+1) +α3rb(z, Tz) +α4rb(z, xn+1)).

From (F1) we have

rb(xn+1, Tz) < α1rb(xn, z) +α2rb(xn, xn+1) +α3rb(z, Tz) +α4rb(z, xn+1).

Suppose that z 6= Tz. Then, from Lemma 1.6,

1
s
rb(z, Tz) 6 lim inf

n→∞ rb(xn+1, Tz) 6 lim sup
n→∞ rb(xn+1, Tz) 6 α3rb(z, Tz).

Since, by assumption α3 <
1
s , we have rb(z, Tz) = 0 and so z = Tz. Thus, z is a fixed point of T .

The uniqueness follows similarly as in Theorem 2.10.
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2.3. Some special cases
We obtain the following extension of Wardowski’s result [24, Theorem 2.1] to the setup of rectangular

b-metric spaces if in the above theorems we take β(t) = τ, for some fixed τ > 0 and α2 = α3 = α4 = 0.

Corollary 2.13. Let α,η : X×X→ [0,+∞) be two functions, (X, rb) be an (α,η)-complete rectangular b-metric
space and let T : X → X be a self-mapping. Suppose that for all x,y ∈ X with α(x,y) > 1 or η(x,y) 6 1 and
rb(Tx, Ty) > 0 we have

τ+ F
(
s2 · rb(Tx, Ty)

)
6 F

(
rb(x,y)

)
,

where τ > 0 and F ∈ ∆F. Then T has a fixed point, if

(i) T is a triangular (α,η)-admissible mapping;

(ii) there exists x0 ∈ X such that α(x0, Tx0) > 1 or η(x0, Tx0) 6 1;

and

(iii) T is (α,η)-continuous; or

(iii′) (X, rb) is an (α,η)-regular rectangular b-metric space.

If in Theorems 2.10 and 2.12 we take F(t) = ln t, for all t > 0, then we deduce the following corollary.

Corollary 2.14. Let α,η : X×X→ [0,+∞) be two functions, (X, rb) be an (α,η)-complete rectangular b-metric
space and let T : X → X be a self-mapping. Suppose that for all x,y ∈ X with α(x,y) > 1 or 1 > η(x,y) and
rb(Tx, Ty) > 0 we have

s2rb(Tx, Ty) 6 e−β(rb(x,y))[α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx)],

where β ∈ ∆β, αi > 0, for i ∈ {1, 2, 3, 4},
∑4
i=1 αi = 1 and α3 <

1
s . Then T has a fixed point, if

(i) T is a triangular (α,η)-admissible mapping;

(ii) there exists x0 ∈ X such that α(x0, Tx0) > 1 or η(x0, Tx0) 6 1;

and

(iii) T is (α,η)-continuous; or

(iii′) (X, rb) is an (α,η)-regular rectangular b-metric space.

Many consequences can be obtained by using other forms of functions F ∈ ∆F mentioned in [24]
and/or some other concrete choices of β ∈ ∆β.

2.4. An illustrative example
Example 2.15. Consider the set X = {1, 2, 3, 4, 5} and choose u, v > 0 such that u+ 289

30 v < log 281
270 (i.e.,

270
281 < e

−(u+ 289
30 v)). It is easy to check that the mapping rb : X×X→ [0,+∞) given by

rb(1, 3) = rb(1, 5) = rb(2, 3) = rb(3, 5) = v,
rb(2, 4) = rb(2, 5) = rb(4, 5) = 4v,
rb(1, 2) = 9v,
rb(1, 4) = rb(3, 4) = 10v,

rb(x, x) = 0 and rb(x,y) = rb(y, x) for all x,y ∈ X, is a rectangular b-metric on X with parameter s = 3.
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Define mappings T : X→ X and α,η : X×X→ R by

T =

(
1 2 3 4 5
3 5 3 1 2

)
, α(x,y) =

{
1 + cosh(x+ y), x,y ∈ {1, 3, 4},

1
1+ex+y , otherwise,

η(x,y) =

{
tanh (x+ y), x,y ∈ {1, 3, 4},
2 + e−(x+y), otherwise.

Then, T is an (α,η)-continuous triangular (α,η)-admissible mapping. We will show that the contractive
condition (2.1) of Theorem 2.10 is satisfied with β ∈ ∆β and F ∈ ∆F given by β(t) = u+ t and F(t) =
t+ ln t, respectively and taking α1 = 9

10 , α2 = α3 = α4 = 1
30 . Evidently, the only cases when (α(x,y) > 1

or 1 > η(x,y)) and rb(Tx, Ty) > 0 are when {x,y} = {1, 4} or {x,y} = {3, 4}. Consider the following four
possibilities:

1◦ x = 1, y = 4. Then rb(Tx, Ty) = v, rb(x,y) = 10v, rb(x, Tx) = v, rb(y, Tx) = 10v, rb(y, Ty) = 10v.
2◦ x = 4, y = 1. Then rb(Tx, Ty) = v, rb(x,y) = 10v, rb(x, Tx) = 10v, rb(y, Tx) = 0, rb(y, Ty) = v.
3◦ x = 3, y = 4. Then rb(Tx, Ty) = v, rb(x,y) = 10v, rb(x, Tx) = 0, rb(y, Tx) = 10v, rb(y, Ty) = 10v.
4◦ x = 4, y = 3. Then rb(Tx, Ty) = v, rb(x,y) = 10v, rb(x, Tx) = 10v, rb(y, Tx) = v, rb(y, Ty) = 0.
In all the cases, it is α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx) > 281

30 t and hence

β(rb(x,y)) + F(s2rb(Tx, Ty)) = u+ 10v+ 9v+ log(9v)

6
281
30

v+ log
(

281
30

v

) (
since, u+

289
30

v < log
281
270

)
6 F(α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx)),

i.e., the condition (2.1) is satisfied.
We see that T has a unique fixed point (z = 3).

3. Applications

3.1. β-F-contractions on rectangular b-metric spaces endowed with a graph
Let (X, rb) be a rectangular b-metric space and ∆ denote the diagonal of the Cartesian product X×X.

Consider a directed graph G such that the set V(G) of its vertices coincides with X and the set E(G) of its
edges contains all loops, that is, E(G) ⊇ ∆. We assume that G has no parallel edges, but as the graph G is
directed, the edges (x,y) and (y, x) are not the same. We identify G with the pair (V(G),E(G)).

Recently, some results have been presented in the setting of metric spaces endowed with a graph. The
first result in this direction was given by Jachymski [10]. Recall that the mapping T : X → X, where X
is endowed with a graph G, is said to preserve edges, if for each x,y ∈ X with (x,y) ∈ E(G), we have
(Tx, Ty) ∈ E(G).
Definition 3.1. Let (X, rb) be a rectangular b-metric space endowed with a graph and let T : X → X be a
mapping.

1. (X, rb) is said to be G-complete, if every Cauchy sequence {xn} in X with (xn, xn+1) ∈ E(G) or
(xn+1, xn) ∈ E(G) for all n ∈N, converges in X.

2. (X, rb) is said to be G-regular, if for each sequence {xn} in X, xn → x and (xn, xn+1) ∈ E(G) or
(xn+1, xn) ∈ E(G) imply that (xn, x) ∈ E(G) or (x, xn) ∈ E(G) for all n ∈N, respectively.

3. T is said to be G-continuous, if for given x ∈ X and sequence {xn} with (xn, xn+1) ∈ E(G) or
(xn+1, xn) ∈ E(G) for all n ∈N,

xn → x =⇒ Txn → Tx.
4. T is said to be a G-β-F-contraction, if for all x,y ∈ X with ((x,y) ∈ E(G) or (y, x) ∈ E(G)) and
rb(Tx, Ty) > 0 we have

β
(
rb(x,y)

)
+ F

(
s2 · rb(Tx, Ty)

)
6 F

(
α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx)

)
,

where β ∈ ∆β, F ∈ ∆F, αi > 0 for i ∈ {1, 2, 3, 4},
∑4
i=1 αi = 1 and α3 <

1
s .
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Let (X,d) be a rectangular b-metric space endowed with a graph and let

α(x,y) =

{
1, (x,y) ∈ E(G),
0, otherwise,

and η(x,y) =

{
1, (y, x) ∈ E(G),
2, otherwise.

With these assumptions, we see that the above definitions are special cases of the definition of (α,η)-
admissibility, (α,η)-completeness, (α,η)-regularity and (α,η)-continuity.

As a consequence of the results of previous section, we obtain:

Theorem 3.2. Let (X, rb) be a G-complete rectangular b-metric space such that for all (x,y) ∈ E(G) and (y, z) ∈
E(G), we have (x, z) ∈ E(G). Let T : X→ X be a self-mapping satisfying the following conditions

(i) T preserves edges;

(ii) T is a G-β-F-contraction;

(iii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) or (Tx0, x0) ∈ E(G);

and

(iv) T is G-continuous; or

(iv’) (X, rb) is a G-regular rectangular b-metric space.

Then T has a fixed point. Moreover, T has a unique fixed point when (x,y) ∈ E(G) or (y, x) ∈ E(G) for all
x,y ∈ Fix(T).

3.2. A result in ordered spaces
Fixed point theorems for monotone operators in ordered metric spaces have been widely investigated

and have had various applications in differential and integral equations and other branches (see, e.g.,
[7, 14, 16] and the references therein). From Theorems 2.10 and 2.12, we derive the following new results
in partially ordered rectangular b-metric spaces, i.e., spaces of the type (X, rb,�) where (X, rb) is a rect-
angular b-metric spaces and � is a partial order on X. Recall that T : X → X is nondecreasing if for all
x,y ∈ X, x � y implies T(x) � T(y).

Motivated by [14] we introduce the following concepts in an ordered rectangular b-metric space.

Definition 3.3. Let (X, rb,�) be an ordered rectangular b-metric space and let T : X→ X be a mapping.

1. (X, rb) is said to be O-complete, if every Cauchy sequence {xn} in X with xn � xn+1 for all n ∈ N

or xn � xn+1 for all n ∈N, converges in X.
2. (X, rb) is said to be O-regular, if for each sequence {xn} in X, xn → x and xn � xn+1 or xn+1 � xn

for all n ∈N imply that xn � x or x � xn for all n ∈N, respectively.
3. T is said to be O-continuous, if for given x ∈ X and sequence {xn} with xn � xn+1 or xn � xn+1 for

all n ∈N,
xn → x =⇒ Txn → Tx.

4. T is said to be an ordered β-F-contraction, if for all x,y ∈ X with (x � y or x � y) and rb(Tx, Ty) > 0
we have

β
(
rb(x,y)

)
+ F

(
s2 · rb(Tx, Ty)

)
6 F

(
α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx)

)
,

where β ∈ ∆β, F ∈ ∆F, αi > 0 for i ∈ {1, 2, 3, 4},
∑4
i=1 αi = 1 and α3 <

1
s .

Theorem 3.4. Let (X, rb,�) be an O-complete partially ordered rectangular b-metric space. Let T : X → X be a
self-mapping satisfying the following conditions
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(i) T is monotone and is an ordered β-F-contraction;

(ii) there exists x0 ∈ X such that x0 � Tx0 or x0 � Tx0;

(iii) either T is O-continuous; or

(iii’) (X, rb) is O-regular.

Then T has a fixed point.

Proof. This is obtained as a consequence of Theorems 2.10 and 2.12 if one takes

α(x,y) =

{
1, x � y,
0, otherwise,

and η(x,y) =

{
1, y � x,
2, otherwise.

Corollary 3.5. Let (X, rb,�) be an O-complete partially ordered rectangular b-metric space. Let T : X → X be a
self-mapping satisfying the following assertions:

(i) T is monotone and the following inequality holds for all x,y ∈ X with (x � y or x � y) and rb(Tx, Ty) > 0:

s2rb(Tx, Ty) 6 e−β(rb(x,y))[α1rb(x,y) +α2rb(x, Tx) +α3rb(y, Ty) +α4rb(y, Tx)],

where β ∈ ∆β, F ∈ ∆F, αi > 0 for i ∈ {1, 2, 3, 4},
∑4
i=1 αi = 1 and α3 <

1
s ;

(ii) there exists x0 ∈ X such that x0 � Tx0 or x0 � Tx0;

(iii) either T is O-continuous; or

(iii’) (X, rb) is O-regular.

Then T has a fixed point.
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boundary value problem, Fixed Point Theory Appl., 2015 (2015), 15 pages. 3.2
[15] V. La Rosa, P. Vetro, Common fixed points for α-ψ-φ-contractions in generalized metric spaces, Nonlinear Anal. Model.

Control, 19 (2014), 43–54. 2.1
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