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Abstract

The purpose of this paper is to present the concept of multivariate contraction mapping in a locally convex topological
vector spaces and to prove the multivariate contraction mapping principle in such spaces. The neighborhood-type error estimate
formulas are also established. The results of this paper improve and extend Banach contraction mapping principle in the new
idea. c©2017 All rights reserved.
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1. Introduction and preliminaries

Banach contraction mapping principle is one of the important tool (or method) in nonlinear analysis
and other mathematical field. Weak contractions are generalizations of Banach contraction mappings
which have been studied by several authors. Let (X,d) be a metric space and φ : [0,+∞) → [0,+∞) be a
function. We say that T : X→ X is a φ-contraction, if

d(Tx, Ty) 6 φ(d(x,y)), ∀ x,y ∈ X.

In 1968, Browder [3] proved that if φ is non-decreasing and right continuous and (X,d) is complete, then
T has a unique fixed point x∗ and lim

n→∞ Tnx0 = x∗ for any given x0 ∈ X. Subsequently, this result was
extended in 1969 by Boyd and Wong [2] by weakening the hypothesis on φ, in the sense that it is sufficient
to assume that φ is right upper semi-continuous. For a comprehensive study of relations between several
such contraction type conditions, see [4, 8, 9, 16].

In 1973, Geraghty [4] introduced the Geraghty-contraction and obtained the fixed point theorem. Let
(X,d) be a metric space. A mapping T : X → X is said to be a Geraghty-contraction, if there exists β ∈ Γ
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such that for any x,y ∈ X
d(Tx, Ty) 6 β(d(x,y))d(x,y),

where the class Γ denotes those functions β : [0,+∞)→ [0,+∞) satisfying the following condition:

β(tn)→ 1⇒ tn → 0.

On the other hand, in 2015, Su and Yao [18] proved the following generalized contraction mapping
principle.

Theorem 1.1. Let (X,d) be a complete metric space. Let T : X→ X be a mapping such that

ψ(d(Tx, Ty)) 6 φ(d(x,y)), ∀ x,y ∈ X,

where ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b)⇒ a 6 b;

(2)

{
ψ(an) 6 φ(bn)

an → ε, bn → ε
⇒ ε = 0.

Then, T has a unique fixed point and for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

In particular, the study of the fixed points for weak contractions and generalized contractions was
extended to partially ordered metric spaces in [1, 5–7, 11, 13–15, 20]. Among them, some results involve
altering distance functions. Such functions were introduced by Khan et al. in [10], where some fixed point
theorems are presented.

Recently [17], Su et al. presented the concept of multivariate fixed point and proved a multivariate
fixed point theorem for the N-variables contraction mappings which further generalizes Banach contrac-
tion principle.

Definition 1.2 ([17]). Let (X,d) be a metric space, T : XN → X be an N-variables mapping, an element
p ∈ X is called a multivariate fixed point (or a fixed point of order N, see [17]) of T , if

p = T(p,p, · · ·,p).

The following concept is presented and used in reference [17].

Definition 1.3 ([17]). A multiply metric function 4(a1,a2, · · ·,aN) is a continuous N variables non-
negative real function with the domain

{(a1,a2, · · ·,aN) ∈ RN : ai > 0, i ∈ {1, 2, 3, · · ·,N}},

which satisfies the following conditions:

(1) 4(a1,a2, · · ·,aN) is non-decreasing for each variable ai, i ∈ {1, 2, 3, · · ·,N};

(2) 4(a1 + b1,a2 + b2, · · ·,aN + bN) 6 4(a1,a2, · · ·,aN) +4(b1,b2, · · ·,bN);

(3) 4(a,a, · · ·,a) = a;

(4) 4(a1,a2, · · ·,aN)→ 0⇔ ai → 0, i ∈ {1, 2, 3, · · ·,N},

for all ai,bi,a ∈ R, i ∈ {1, 2, 3, · · ·,N}, where R denotes the set of all real numbers.

The following are some basic examples of multiply metric functions:
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Example 1.4.

(1) 41(a1,a2, · · ·,aN) = 1
N

N∑
i=1

ai.

(2) 42(a1,a2, · · ·,aN) =
N∑
i=1

qiai,

where qi ∈ [0, 1], i ∈ {1, · · · ,N} and
N∑
i=1

qi = 1.

Example 1.5. 43(a1,a2, · · ·,aN) =

√√√√ 1
N

N∑
i=1

a2
i.

Example 1.6. 44(a1,a2, · · ·,aN) = max{a1,a2, · · ·,aN}.

In reference [17], Su et al. proved the following multivariate fixed point theorem for the N-variables
contraction mappings which further generalizes Banach contraction mapping principle.

Theorem 1.7 ([17]). Let (X,d) be a complete metric space, T : XN → X be a N-variables mapping satisfies the
following condition:

d(Tx, Ty) 6 h4(d(x1,y1),d(x2,y2), · · ·,d(xN,yN)), ∀ x,y ∈ XN,

where 4 is a multiply metric function,

x = (x1, x2, · · ·, xN) ∈ XN, y = (y1,y2, · · ·,yN) ∈ XN,

and h ∈ (0, 1) is a constant. Then, T has a unique multivariate fixed point p ∈ X and for any p0 ∈ XN, the iterative
sequence {pn} ⊂ XN defined by:

p1 = (Tp0, Tp0, · · ·, Tp0),
p2 = (Tp1, Tp1, · · ·, Tp1),
p3 = (Tp2, Tp2, · · ·, Tp2),

...
pn+1 = (Tpn, Tpn, · · ·, Tpn),

...

converges, in the multiply metric 4, to (p,p, · · ·,p) ∈ XN and the iterative sequence {Tpn} ⊂ X converges, with
respect to d, to p ∈ X.

Very recently, Tang et al. [19] presented the concept of contraction mapping in a locally convex
topological vector spaces and proved the generalized contraction mapping principle in such spaces.

The purpose of this paper is to present the concept of multivariate contraction mapping in a locally
convex topological vector spaces and to prove the multivariate contraction mapping principle in such
spaces. The neighborhood-type error estimate formulas are also established. The results of this paper
improve and extend Banach contraction mapping principle in the new idea.

2. Generalized contraction mapping principle in locally convex spaces

Let us recall some concepts and results on the topological vector spaces.

Definition 2.1. A Hausdorff topology τ on a real vector space X over R is said to be a vector space topology
for X, if addition and scalar-multiplication are continuous, i.e., the mappings
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(x,y) 7→ x+ y from X×X into X,

and
(α, x) 7→ αx from R×X into X,

are continuous, where X× X and R× X are equipped with the respective product topologies. X itself or
more precisely (X, τ) is then called a topological vector space.

Remark 2.2. Continuity of addition means: For every neighborhood W of x0 + y0 there exist neighbor-
hood U of x0 and V of y0 such that U+ V ⊂ W. Continuity of scalar-multiplication means: For every
neighborhood W of α0x0 there exist a δ > 0 and a neighborhood U of x0 such that

αU ⊂W, ∀ |α−α0| < δ.

Definition 2.3. A topological vector space (X, τ) is said to be locally convex, if there exists a basis of
neighborhood of zero Ω such that every U ∈ Ω is convex set.

Conclusion 2.4. Let (X, τ) be a locally convex topological vector space. For any convex neighborhood of zero
U ∈ Ω, there exists a balanced convex neighborhood of zero V such that V ⊂ U.

Proof. For any convex neighborhood of zero U ∈ Ω, there exists a balanced neighborhood of zero W such
that W ⊂ U. Let

A =
⋂

|α|=1

αU,

then A and A0 are convex. Since W is balanced, we have

W = αW ⊂ αU, ∀ |α| = 1,

which implies
W ⊂ A, W ⊂ A0.

Hence A0 is a neighborhood of zero. Next, we show A0 is balanced. In fact that, for any |λ| 6 1, we have

λA =
⋂

|α|=1

λαU =
⋂

|α|=1

|λ|αU ⊂
⋂

|α|=1

αU = A,

which implies A is balanced, so is A0. Let V = A0, we have V is a balanced convex neighborhood of zero
such that V ⊂ U. This completes the proof.

From Conclusion 2.4, we can get the following result.

Conclusion 2.5. Let (X, τ) be a locally convex topological vector space. Then there exists a basis of balanced convex
neighborhood of zero Ω. Furthermore, each U ∈ Ω is absorbing, balanced and convex.

Definition 2.6 ([19]). Let (X, τ) be a locally convex topological vector space with a basis of balanced convex
neighborhood of zero Ω.

(1) A mapping T : X → X is said to be contractive, if there exists a constant h ∈ (0, 1) such that for any
U ∈ Ω and any x,y ∈ X

x− y ∈ tU implies Tx− Ty ∈ htU,

for any t > 0.

(2) A mapping T : X → X is said to be (ψ,φ)- contractive, if there exist two functions ψ : [0,+∞) →
[0,+∞), φ : [0,+∞)→ [0,+∞) such that for any U ∈ Ω and any x,y ∈ X

x− y ∈ φ(t)U implies Tx− Ty ∈ ψ(t)U,

for any t > 0.
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Definition 2.7. Let (X, τ) be a topological vector space with a basis of balanced convex neighborhood of
zero Ω, a net {xλ}λ∈I ⊂ X is said to be Cauchy, if for any U ∈ Ω, there exists a λ0 ∈ I such that

xλ1 − yλ2 ∈ U, ∀ λ1, λ2 > λ0.

The topological vector space (X, τ) is said to be complete, if every Cauchy net is convergent.

The following results are well-known in the theory of topological vector space.

Conclusion 2.8. Let (X, τ) be a locally convex topological vector space with a basis of balanced convex neighborhood
of zero Ω. For any U ∈ Ω, the Minkowski functional of U is defined by

MU(x) = inf{t > 0 : x ∈ tU}, ∀ x ∈ X.

Then the following hold:

(1) MU(x) > 0, for any x ∈ X and x = 0 implies MU(x) = 0.

(2) MU(λx) = |λ|MU(x) for any x ∈ X, λ ∈ R.

(3) MU(x+ y) 6MU(x) +MU(y) for any x,y ∈ X.

(4) net {xλ}λ∈I ⊂ X converges to x0 ∈ X, if and only if limλ∈IMU(xλ − x0) = 0.

(5) net {xλ}λ∈I ⊂ X is a Cauchy net, if and only if for any U ∈ Ω

lim
λ1,λ2∈I

MU(xλ1 − xλ2) = 0.

Remark 2.9. In fact that, for any U ∈ Ω, the Minkowski functional MU(·) is a semi-norm on the X.
The following results have been proved in reference [19] by Tang et al.

Theorem 2.10 ([19] Generalized contraction mapping principle). Let (X, τ) be a complete locally convex topo-
logical vector space with a basis of balanced convex neighborhood of zero Ω. Let T : X→ X be a (ψ,φ)-contractive
mapping satisfying the following conditions:

(1) ψ(t),φ(t) are continuous and strictly increasing;

(2) ψ(0) = φ(0) and ψ(t) < φ(t) for all t > 0.

Then T has a unique fixed point and for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

Theorem 2.11 ([19] Contraction mapping principle and the error estimate formula). Let (X, τ) be a complete
locally convex topological vector space with a basis of balanced convex neighborhood of zero Ω. Let T : X → X be a
contractive mapping. Then

(1) T has a unique fixed point x∗ and for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed
point;

(2) the following error estimate formula holds: for any U ∈ Ω, if take sufficiently large n such that x1 − x0 ∈
1−h
hn U, then xn − x∗ ∈ U.

3. Multivariate contraction mapping principle in locally convex spaces

Definition 3.1. Let (X, τ) be a locally convex topological vector space with a basis of balanced convex
neighborhood of zero Ω. An N-variables mapping T : XN → X is said to be ∆-contractive, if for any
U ∈ Ω and any

t1, t2, t3, · · · , tN > 0, xi − yi ∈ tiU, i = 1, 2, 3, · · · ,N

where xi,yi ∈ X, there exists a real number t0 such that

0 < t0 6 h∆(t1, t2, t3, · · · , tN),
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and
Tx− Ty ∈ t0U,

where ∆ is a multiply metric function, 0 < h < 1 is a constant and

x = (x1, x2, x3, · · · , xN), y = (y1,y2,y3, · · · ,yN) ∈ XN.

Lemma 3.2. Let (X, τ) be a locally convex topological vector space with a basis of balanced convex neighborhood of
zero Ω. Let T : XN → X be a ∆-contractive mapping. Then for any U ∈ Ω, the following inequality holds:

MU(Tx− Ty) 6 h∆(MU(x1 − y1),MU(x2 − y2), · · · ,MU(xN − yN)),

for all
x = (x1, x2, x3, · · · , xN), y = (y1,y2,y3, · · · ,yN) ∈ XN,

where MU(x) is Minkowski functional of U defined by

MU(x) = inf{t > 0 : x ∈ tU}, ∀ x ∈ X.

Proof. From the definition of ∆-contraction mapping, we have that

inf{t > 0 : Tx− Ty ∈ tU} 6 h∆(t1, t2, t3, · · · , tN), xi − yi ∈ tiU,

for all i = 1, 2, 3, · · · ,N. Since ∆(t1, t2, t3, · · · , tN) is continuous, the above inequality implies that

MU(Tx− Ty) 6 h∆(MU(x1 − y1),MU(x2 − y2), · · · ,MU(xN − yN)),

for all
x = (x1, x2, x3, · · · , xN), y = (y1,y2,y3, · · · ,yN) ∈ XN.

This completes the proof.

Lemma 3.3. Let (X, τ) be a locally convex topological vector space with a basis of balanced convex neighborhood of
zero Ω. For any U ∈ Ω, let

M∗U(x) = ∆(MU(x1),MU(x2),MU(x3), · · · ,MU(xN)),

where
x = (x1, x2, x3, · · · , xN) ∈ XN.

Then M∗U is a semi-norm on the linear space XN.

Proof. From the definition of ∆, we have that
(1) x = (x1, x2, x3, · · · , xN) = 0⇒M∗U(x) = ∆(MU(x1),MU(x2),MU(x3), · · · ,MU(xN)) = 0;

(2)M∗U(λx) = ∆(MU(λx1),MU(λx2),MU(λx3), · · · ,MU(λxN))
= ∆(|λ|MU(x1), |λ|MU(x2), |λ|MU(x3), · · · , |λ|MU(xN))
= |λ|∆(MU(x1),MU(x2),MU(x3), · · · ,MU(xN))
= |λ|M∗U(x);

(3)M∗U(x+ y) = ∆(MU(x1 + y1),MU(x2 + y2),MU(x3 + y3), · · · ,MU(xN + yN))
6 ∆(MU(x1) +MU(y1),MU(x2) +MU(y2), · · · ,MU(xN) +MU(yN))
6 ∆(MU(x1),MU(x2), · · · ,MU(xN)) +∆(MU(y1),MU(y2), · · · ,MU(yN))
=M∗U(x) +M

∗
U(y),

where
x = (x1, x2, x3, · · · , xN), y = (y1,y2,y3, · · · ,yN) ∈ XN,

and λ is a real number. From above (1)-(3), we see that, M∗U is a semi-norm on the linear space XN. This
completes the proof.

Let (X, τ) be a locally convex topological vector space with a basis of balanced convex neighborhood
of zero Ω. It is easy to see that, {M∗U : U ∈ Ω} is a family of semi-norms satisfying the following condition:
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for any nonzero element x ∈ XN, there exists a semi-normM∗U such thatM∗U(x) 6= 0. On the other hand, if
(X, τ) is a complete locally convex topological vector space with a basis of balanced convex neighborhood
of zero Ω, then (XN, {M∗U}U∈Ω) is also a complete locally convex topological vector space with a basis of
balanced convex neighborhood of zero {UN : U ∈ Ω}. Let T : XN → X be a ∆-contractive mapping, we
define a mapping T∗ : XN → XN as follows:

T∗ : x 7−→ (Tx, Tx, Tx, · · · , Tx).

Then T∗ is a contraction mapping from (XN, {M∗U}U∈Ω) into itself, that is,

M∗U(T
∗x− T∗y) 6 hM∗U(x− y), ∀ U ∈ Ω, ∀ x,y ∈ XN.

In fact, for any U ∈ Ω, x,y ∈ XN, we have

M∗U(T
∗x− T∗y) = ∆(MU(Tx− Ty),MU(Tx− Ty), · · · ,MU(Tx− Ty))

=MU(Tx− Ty)

6 h∆(MU(x1 − y1),MU(x2 − y2), · · · ,MU(xN − yN))

= hM∗U(x− y).

Theorem 3.4 (Multivariate contraction mapping principle). Let (X, τ) be a complete locally convex topological
vector space with a basis of balanced convex neighborhood of zero Ω. Let T : XN → X be a ∆-contractive mapping.
Then, T has a unique multivariate fixed point p ∈ X and for any p0 ∈ XN, the iterative sequence {pn} ⊂ XN defined
by:

p1 = (Tp0, Tp0, · · ·, Tp0),
p2 = (Tp1, Tp1, · · ·, Tp1),
p3 = (Tp2, Tp2, · · ·, Tp2),

...
pn+1 = (Tpn, Tpn, · · ·, Tpn),

...

converges, in the topological space (XN, τN) to (p,p, · · ·,p) ∈ XN and the iterative sequence {Tpn} ⊂ X converges,
in the topological space (X, τ), to p ∈ X.

Proof. For any p0 ∈ XN, we define an iterative sequence {pn} by the following scheme:

pn+1 = T∗pn, n = 0, 1, 2, · · · .

For any U ∈ Ω, we get the following inequalities

M∗U(pn+1 − pn) 6 h
nM∗U(p1 − p0), n = 0, 1, 2, · · · .

Therefore

M∗U(pn+m − pn) 6
m+n−1∑
i=n

M∗U(pi+1 − pi)

6
m+n−1∑
i=n

hiM∗U(p1 − p0)

6M∗U(p1 − p0)

m+n−1∑
i=n

hi
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6M∗U(p1 − p0)

∞∑
i=n

hi

6M∗U(p1 − p0)
hn

1 − h
,

which implies that
lim
n→∞M∗U(pn+m − xn) = 0.

From the arbitrariness of U ∈ Ω, we know that the iterative sequence {pn} is a Cauchy sequence. The
completeness of (X, τ) implies the completeness of (XN, τN) and hence there exists a point p∗ ∈ XN such
that pn → p∗ in the topology τN. That is

lim
n→∞M∗U(pn − p∗) = 0.

By the triangle inequality, we have that

M∗U(T
∗p− p∗) 6M∗U(T

∗p− xn+1) +M
∗
U(xn+1 − p

∗)

=M∗U(T
∗p∗ − T∗xn) +M

∗
U(xn+1 − p

∗)

= hM∗U(
∗p− xn) +M

∗
U(xn+1 − p

∗)→ 0,

as n → ∞, so that M∗U(T
∗p∗ − p∗) = 0. From the arbitrariness of U ∈ Ω, we know that, T∗p∗ = p∗. Let

p∗ = (p1,p2,p3, · · · ,pN), from the definition of T∗, we have that

(p1,p2,p3, · · · ,pN) = T∗(p1,p2,p3, · · · ,pN)
= (T(p1,p2,p3, · · · ,pN), T(p1,p2,p3, · · · ,pN), · · · , T(p1,p2,p3, · · · ,pN)),

which implies that
p1 = p2 = p3 = · · · = pN = T(p1,p2,p3, · · · ,pN).

Therefore, there exists a point p ∈ X such that

p = T(p,p,p, · · · ,p).

The element p is namely the multivariate fixed point of T . Next we prove the uniqueness of the multi-
variate fixed point of T . Assume there exists a point q ∈ X such that

q = T(q,q,q, · · · ,q).

Then we have
MU(q− p) 6 h∆(MU(q− p),MU(q− p), · · · ,MU(q− p))

= hMU(q− p)

= 0,

which implies q = p.
From the definition of iterative sequence {pn}, we know that

p1 = T∗p0 = (Tp0, Tp0, · · ·, Tp0),
p2 = T∗p1 = (Tp1, Tp1, · · ·, Tp1),
p3 = T∗p2 = (Tp2, Tp2, · · ·, Tp2),

...
pn+1 = T∗pn = (Tpn, Tpn, · · ·, Tpn),

...

converges, in the topological space (XN, τN) to p∗ = (p,p, · · ·,p) ∈ XN and the iterative sequence {Tpn} ⊂
X converges, in the topological space (X, τ), to p ∈ X. This completes the proof.
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4. The error estimate formulas

Under the condition of Theorem 3.4, we can get the following error estimate formulas. Let m→∞ in
the following inequality

M∗U(pn+m − pn) 6
m+n−1∑
i=n

M∗U(pi+1 − pi)

6
m+n−1∑
i=n

hiM∗U(p1 − p0)

6M∗U(p1 − p0)

m+n−1∑
i=n

hi

6M∗U(p1 − p0)

∞∑
i=n

hi

6M∗U(p1 − p0)
hn

1 − h
,

we can get

M∗U(pn − p∗) 6M∗U(p1 − p0)
hn

1 − h
.

That is

∆(MU(Tpn−1 − p),MU(Tpn−1 − p), · · · ,MU(Tpn−1 − p))

6 ∆(MU(Tp0 − p0,1),MU(Tp0 − p0,2), · · · ,MU(Tp0 − p0,N))
hn

1 − h
,

where p0 = (p0,1,p0,2, · · · ,p0,N) ∈ XN. From the definition of the multiply function ∆ and above inequal-
ity, we have

MU(Tpn−1 − p) 6 ∆(MU(Tp0 − p0,1), · · · ,MU(Tp0 − p0,N))
hn

1 − h
.

From the definition of Minkowski functional MU(x), above inequality can be rewritten as

inf{t > 0 : Tpn−1 − p ∈ tU} 6 ∆(inf{t > 0 : Tp0 − p0,1 ∈ tU}, · · · , inf{t > 0 : Tp0 − p0,N ∈ tU})
hn

1 − h
.

We can take positive real numbers t1, t2, t3, · · · , tN such that Tp0 − p0,i ∈ tiU, i = 1, 2, 3, · · · ,N. It
follows from the above inequality that

inf{t > 0 : Tpn−1 − p ∈ tU} 6
hn

1 − h
∆(t1, t2, t3, · · · , tN).

Hence

Tpn−1 − p ∈
hn−1

1 − h
∆(t1, t2, t3, · · · , tN)U.

From above inequality, we can get the following error estimate formulas.

Error estimate formula 4.1. For any U ∈ Ω, we take positive real numbers t1, t2, t3, · · · , tN such that
Tp0 − p0,i ∈ tiU, i = 1, 2, 3, · · · ,N. If

hn−1

1 − h
∆(t1, t2, t3, · · · , tN) 6 1,

then
Tpn−1 − p ∈ U,

where p is the multivariate fixed point of T . Let ti =
1 − h

hn−1 , i = 1, 2, 3, · · · ,N, the error estimate formula
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4.1 reduce to the following result.

Error estimate formula 4.2. For any U ∈ Ω, we take n such that

Tp0 − p0,i ∈
1 − h

hn−1U, i = 1, 2, 3, · · · ,N,

then
Tpn−1 − p ∈ U,

where p is the multivariate fixed point of T .

5. Application for equation of functions

Let Ω ⊂ Rm be a nonempty open set, let Kn ⊂ Ω, n = 1, 2, 3, · · · be compact sets such that Kn ⊂
K0
n+1,

⋃∞
n=1 Kn = Ω, for all n > 1. Let C(Ω) denote the linear space of all real continuous functions

defined on Ω. Let
pn(f) = sup

x∈Kn
|f(x)|, ∀ f ∈ C(Ω), n = 1, 2, 3, · · · ,

it is easy to show that {pn}∞n=1 is a family of semi-norms such that pn(f) = 0, for all n = 1, 2, 3, · · · implies
f(x) ≡ 0. Hence {pn}

∞
n=1 generates a locally convex topology on the linear vector space C(Ω). Therefore

C(Ω) is a complete metrizable topological vector space with the following basis of convex neighborhood
of zero:

Vn = {f ∈ C(Ω) : pn(x) <
1
n
}, n = 1, 2, 3, · · · .

In addition, the convergence in topology is equivalent to the inner-closed uniformly convergence (see
[12]).

We have the following conclusion.

Theorem 5.1. Let T : C(Ω)N −→ C(Ω) be an N-variables mapping satisfying the following condition:

sup
x∈Kn

|fi(x) − gi(x)| <
ti
n

,

implies there exists a real number t0 such that

0 < t0 < h4(t1, t2, t3, · · · , tN),

and
sup
x∈Kn

|Tf(x) − Tg(x)| <
t0h

n
,

for all f = (f1, f2, f3, · · · , fN),g = (g1,g2,g3, · · · ,gN) ∈ C(Ω)N,n = 1, 2, 3, · · · and all ti > 0, i = 1, 2, 3,· · · ,N,
where 0 < h < 1 is a constant and ∆ is a multiply metric function. Then T has a unique multivariate fixed point
f∗(x), that is, the equation of function T(f(x), f(x), · · · , f(x)) = f(x) has a unique solution f∗(x). In addition, for
any f0 ∈ XN, the iterative sequence {fn} ⊂ XN defined by

f1 = (Tf0, Tf0, · · ·, Tf0),
f2 = (Tf1, Tf1, · · ·, Tf1),
f3 = (Tf2, Tf2, · · ·, Tf2),

...
fn+1 = (Tfn, Tfn, · · ·, Tfn),

...

converges, in the topological space (C(Ω)N, τN) to (f, f, · · ·, f) ∈ XN and the iterative sequence {Tfn} ⊂ C(Ω)
inner-closed uniformly converges to f∗ ∈ C(Ω).
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Proof. From the conditions of Theorem 5.1, we have that,

fi − gi ∈ tiVn,

implies there exists a real number t0 such that

0 < t0 6 h∆(t1, t2, t3, · · · , tN),

and
Tf− Tg ∈ t0hVn,

for all f = (f1, f2, f3, · · · , fN), g = (g1,g2,g3, · · · ,gN) ∈ C(Ω)N,n = 1, 2, 3, · · · and all ti > 0, i =
1, 2, 3, · · · ,N. By using Theorem 3.4, we get the conclusion of Theorem 5.1. This completes the proof.
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