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Abstract

In this paper, we give a negative answer to the open question raised by Radenovic et al. [S. Radenović, T. Došenović, T.
A. Lampert, Z. Golubovı́ć, Appl. Math. Comput., 273 (2016), 155–164]. Namely, we give two examples which show that the set
of fixed points for cyclic quasi-contractive mappings of Ćirić type may be empty. Then, by using a new lemma, we give some
sufficient conditions for the existence of fixed point for cyclic and non-cyclic quasi-contractive mappings of Ćirić type in b-metric
spaces. In particular, we show that the condition of Fatou property in the result of Amini-Harandi [A. Amini-Harandi, Fixed
Point Theory, 15 (2014), 351–358] may be omitted. c©2017 All rights reserved.
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1. Introduction and preliminaries

In [4], Ćirić established a fixed point theorem for quasi-contractive mappings, which is one of the most
general results in generalizations of classical Banach’s contraction principle. Since then, many authors
discussed and generalized Ćirić type fixed point theorem in various directions, see, for instance, [1, 7–
10, 13, 18, 19].

The concept of b-metric was introduced by Czerwik [6] (see also Bakhtin [3]) as a generalization
of metric. Following this paper, a number of fixed point results in b-metric spaces were given, see
[1, 2, 11, 12, 14–17] and references therein. In particular, Amini-Harandi [1] established a Ćirić type fixed
point result in b-metric spaces with Fatou property.

Definition 1.1 ([6]). Let X be a nonempty set and s > 1, a given real number. A mapping d : X×X→ [0,∞)
is called a b-metric on X, if it satisfies the following conditions:

(b1) d(x,y) = 0, if and only if x = y;

(b2) d(x,y) = d(y, x);
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(b3) d(x, z) 6 s[d(x,y) + d(y, z)], for all x,y, z ∈ X.

In this case, the pair (X,d) is called a b-metric space.

For more notions such as b-convergence, b-Cauchy sequence and b-completeness in b-metric spaces,
the reader can refer to [6, 12].

Very recently, Radenović et al. [16] obtained some equivalences between cyclic contractions and non-
cyclic contractions in b-metric spaces. Moreover, they proposed an open question as follows.

Question 1.2. Prove or disprove the following:
Let {Ai}

p
i=1, where p is a positive integer, be nonempty closed subsets of a b-complete b-metric space (X,d) with

s > 1 and T : ∪pi=1Ai → ∪
p
i=1Ai satisfies the following conditions (where Ap+1 = A1)

(i) T(Ai) ⊆ Ai+1 for 1 6 i 6 p;

(ii) there exists λ ∈ [0, 1
s) such that

d(Tx, Ty) 6 λmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)},

for all x ∈ Ai, y ∈ Ai+1, 1 6 i 6 p.

If (X,d) has a Fatou’s property, then T has a unique fixed point.

In this paper, inspired by the counterexample given by Ćirić in [5, Example 4], we give two examples
which show that the set of fixed points for cyclic mappings of Ćirić type may be empty in metric spaces,
as well as in b-metric spaces with Fatou property. From this, we give an negative answer to Question
1.2. Then, in order to consider the existence of fixed point for cyclic quasi-contractive mappings of Ćirić
type, we give a new lemma. Using this lemma, we establish some fixed point results for cyclic and non-
cyclic quasi-contractions of Ćirić type in b-metric spaces. Particularly, we see that the condition of Fatou
property in the result of Amini-Harandi [1] may be removed.

2. Main results

We begin with the following examples.

Example 2.1. Let X be the Euclidean space R3 with the usual metric,

A = {(0, 0, 0), (4, 0, 0)} and B = {(2, 2, 0), (2,−2, 1)}.

Set
x = (0, 0, 0), y = (4, 0, 0), u = (2, 2, 0), v = (2,−2, 1).

Then

d(x,y) = 4, d(x,u) = 2
√

2, d(x, v) = 3,

d(y,u) = 2
√

2, d(y, v) = 3, d(u, v) =
√

17.

Define T : A∪B→ A∪B by

Tx = u, Ty = v, Tu = y and Tv = x.

According to the definitions of the sets A,B and the mapping T , it follows that TA ⊆ B and TB ⊆ A.
Further, we have

d(Tx, Tu) = d(u,y) = 2
√

2 < d(x, Tu) = d(x,y) = 4,
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d(Tx, Tv) = d(u, x) = 2
√

2 < d(v, Tx) = d(v,u) =
√

17,

d(Ty, Tu) = d(v,y) = 3 < d(u, Ty) = d(u, v) =
√

17,
d(Ty, Tv) = d(v, x) = 3 < d(y, Tv) = d(y, x) = 4.

Thus T satisfies all conditions of Question 1.2, where s = 1 and λ = 3
4 , but T does not have any fixed point

in A∩B.

Example 2.2. Let X = R3 and ‖ · ‖ the usual norm on X. Define d : X×X→ [0,∞) by

d(x,y) = ‖x− y‖
3
2 .

We can deduce that (X,d) is a b-metric space with s =
√

2. In fact, since ϕ(t) = t
3
2 (t > 0) is a concave

function, we have, for all x,y, z ∈ X,

d(x,y) = ‖x− y‖
3
2 6 (‖x− z‖+ ‖z− y‖)

3
2

= 2
3
2 · (‖x− z‖+ ‖z− y‖

2
)

3
2

6 2
3
2 · ‖x− z‖

3
2 + ‖z− y‖ 3

2

2
=
√

2[d(x, z) + d(z,y)].

Let A = {x,y} and B = {u, v}, where

x = (0, 0, 0), y = (4, 0, 0), u = (2, 2, 0), v = (2,−2, 1).

Define T : A∪B→ A∪B by

Tx = u, Ty = v, Tu = y and Tv = x.

According to the definitions of the sets A,B and the mapping T , it follows that TA ⊆ B and TB ⊆ A.
Clearly, (X,d) has a Fatou property because d is a continuous mapping. Further, we have

d(Tx, Tu) = d(u,y) = (2
√

2)
3
2 6

1√
2
· 15

16
d(x, Tu) =

1√
2
· 15

16
· 4

3
2 ,

d(Tx, Tv) = d(u, x) = (2
√

2)
3
2 6

1√
2
· 15

16
d(v, Tx) =

1√
2
· 15

16
·
√

17
3
2 ,

d(Ty, Tu) = d(v,y) = 3
3
2 6

1√
2
· 15

16
d(u, Ty) =

1√
2
· 15

16
·
√

17
3
2 ,

d(Ty, Tv) = d(v, x) = 3
3
2 6

1√
2
· 15

16
d(y, Tv) =

1√
2
· 15

16
· 4

3
2 .

Thus T satisfies all conditions of Question 1.2, where s =
√

2 and λ = 15
16
√

2
, but T does not have any fixed

point in A∩B.

Remark 2.3. From Example 2.1 and Example 2.2, we see that the set of fixed points for cyclic quasi-
contractions of Ćirić type may be empty. This means that the open question raised by Radenović et al.
(that is, Question 1.2) has been answered.

Next we give some sufficient condition for the existence and uniqueness of fixed point for Ćirić type
cyclic quasi-contractive mappings. To this end, we need the following lemma.

Lemma 2.4. Let (X,d) be a b-complete b-metric space with s > 1 and {Ai}
p
i=1 nonempty closed subsets of X.

Suppose that T : ∪pi=1Ai → ∪
p
i=1Ai satisfies the following conditions (where Ap+1 = A1)
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(i) T(Ai) ⊆ Ai+1 for 1 6 i 6 p;

(ii) there exists λ ∈ [0, 1
s) such that

d(Tx, Ty) 6 λmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}, (2.1)

for all x ∈ Ai, y ∈ Ai+1, 1 6 i 6 p.

If the following condition (F) holds,

(F) there exists x0 ∈ ∪pi=1Ai such that
lim
n→∞d(xn, xn+1) = 0, (2.2)

where xn = Txn−1, n = 1, 2, · · · ,

then T has a unique fixed point.

Proof. By the condition (F), there exists x0 ∈ ∪pi=1Ai such that

lim
n→∞d(xn, xn+1) = 0,

where xn = Txn−1, n = 1, 2, · · · . Denote

Dn = max{d(xi, xj) : 0 6 i, j 6 n and i, j ∈N},
D∞ = sup{d(xi, xj) : i, j > 0 and i, j ∈N},
δn = sup{d(xi, xj) : i, j > n and i, j ∈N},

for all n ∈N. The proof will be broken into six steps.

Step 1. We prove
lim
n→∞d(xn, xn+k) = 0, k = 2, 3, · · · ,p.

Using (2.2) and the triangular inequality, for k = 2, 3, · · · ,p, we have

d(xn, xn+k) 6 sd(xn, xn+1) + s
2d(xn+1, xn+2) + · · ·+ skd(xn+k−1, xn+k),

implies
lim
n→∞d(xn, xn+k) = 0.

Further, we see the set {d(xn, xn+k) : k = 1, 2, · · · ,p and n = 0, 1, 2, · · · } is bounded, that is, there exists
M > 0 such that

d(xn, xn+k) 6M, (2.3)

for all k ∈ {1, 2, · · · ,p} and n ∈ {0, 1, 2, · · · }.
We put

ηn = max{d(xn, xn+k) : k = 1, 2, · · · ,p}, (2.4)

for n ∈N. Then we deduce that limn→∞ ηn = 0 and

lim
n→∞(sup{ηi : i > n}) = 0. (2.5)

Step 2. We prove {Dn} is bounded and D∞ <∞.
Let n ∈N be given. For any i, j ∈N with 0 6 i, j 6 n and i 6= j, we consider the following three cases.

Case i. If 1 6 i, j 6 n and |i− j| ≡ 1 mod p, then by using (2.1), we get

d(xi, xj) = d(Txi−1, Txj−1)

6 λmax{d(xi−1, xj−1),d(xi−1, Txi−1),d(xj−1, Txj−1),d(xi−1, Txj−1),d(xj−1, Txi−1)}

= λmax{d(xi−1, xj−1),d(xi−1, xi),d(xj−1, xj),d(xi−1, xj),d(xj−1, xi)}.

It follows that
d(xi, xj) 6 λDn. (2.6)
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Case ii. If i = 0 and j ≡ 1 mod p or j ≡ (p− 1) mod p, then |p− j| ≡ 1 mod p. Using (2.3) and (2.6), we
get

d(xi, xj) = d(x0, xj)
6 sd(x0, xp) + sd(xp, xj)
6 sM+ sλDn.

Case iii. If 0 6 i < j 6 n and j− i 6≡ 1 mod p, then there exists a natural number t ∈ {1, 2, · · · ,p− 1} such
that j− (i+ t) ≡ 1 mod p. Using (2.3) and (2.6), we have

d(xi, xj) 6 sd(xi, xi+t) + sd(xi+t, xj)
6 sM+ sλDn.

Thus we conclude that
d(xi, xj) 6 sM+ sλDn,

for all i, j ∈N with 0 6 i, j 6 n, which implies

Dn 6 sM+ sλDn.

Consequently, we see that

Dn 6
sM

1 − sλ
.

This means that {Dn} is bounded and D∞ 6 sM
1−sλ <∞.

Step 3. We prove
lim
n→∞ δn = 0. (2.7)

Since D∞ <∞, we have δn 6 δ0 = D∞ <∞, for all n ∈N. Let n > 1 be given. For any i, j > n with i < j,
we consider the following two cases.

Case i. If j− i ≡ 1 mod p, then by using (2.1), we get

d(xi, xj) = d(Txi−1, Txj−1)

6 λmax{d(xi−1, xj−1),d(xi−1, Txi−1),d(xj−1, Txj−1),d(xi−1, Txj−1),d(xj−1, Txi−1)}

= λmax{d(xi−1, xj−1),d(xi−1, xi),d(xj−1, xj),d(xi−1, xj),d(xj−1, xi)}.

It follows that
d(xi, xj) 6 λδn−1, (2.8)

for all i, j > n with j > i and j− i ≡ 1 mod p.
Observe that |j− (i+ p)| ≡ 1 mod p and j, i+ p > n+ 1. Then by using (2.8), we get

d(xi, xj) 6 sd(xi, xi+p) + sd(xi+p, xj)
6 sd(xi, xi+p) + sλδn.

From (2.4), we see that
d(xi, xj) 6 sηi + sλδn 6 s sup{ηi : i > n}+ sλδn.

Case ii. If j− i 6≡ 1 mod p, then there exists a natural number t ∈ {1, 2, · · · ,p− 1} such that j− (i+ t) ≡ 1
mod p. Using (2.4), (2.8) and j, i+ t > n+ 1, we get that

d(xi, xj) 6 sd(xi, xi+t) + sd(xi+t, xj)
6 sηi + sλδn
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6 s sup{ηi : i > n}+ sλδn.

Thus we obtain that
d(xi, xj) 6 s sup{ηi : i > n}+ sλδn,

for all i, j > n. This means that
δn 6 s sup{ηi : i > n}+ sλδn,

which implies
δn 6

s

1 − sλ
sup{ηi : i > n}.

Using (2.5), we get limn→∞ δn = 0.

Step 4. We prove {xn} is a b-Cauchy sequence.
For all n,m > 1 with n < m, we have d(xn, xm) 6 δn. From (2.7), it follows that {xn} is a b-Cauchy

sequence. Since X is b-complete, there exists x∗ ∈ X such that

lim
n→∞ xn = x∗. (2.9)

Using the cyclic character of T , there exists a subsequence of {xn} for which belongs to Ai for i ∈
{1, 2, , · · · ,p}. Hence, from the closedness of Ai, we see that x∗ ∈ ∩pi=1Ai.

Step 5. We prove x∗ is a fixed point of T .
We claim limn→∞ xn = Tx∗. In fact, by using (2.1), we have

d(xn+1, Tx∗) = d(Txn, Tx∗)
6 λmax{d(xn, x∗),d(xn, Txn),d(x∗, Tx∗),d(x∗, Txn),d(xn, Tx∗)}
= λmax{d(xn, x∗),d(xn, xn+1),d(x∗, Tx∗),d(x∗, xn+1),d(xn, Tx∗)}.

Notice the following two facts.

(1) If d(xn+1, Tx∗) 6 λd(x∗, Tx∗), then we have d(xn+1, Tx∗) 6 sλd(x∗, xn+1) + sλd(xn+1, Tx∗), which
implies

d(xn+1, Tx∗) 6
sλ

1 − sλ
d(x∗, xn+1).

(2) If d(xn+1, Tx∗) 6 λd(xn, Tx∗), then we have d(xn+1, Tx∗) 6 sλd(xn, xn+1) + sλd(xn+1, Tx∗), which
implies

d(xn+1, Tx∗) 6
sλ

1 − sλ
d(xn, xn+1).

Thus

d(xn+1, Tx∗) 6 max{λd(xn, x∗), λd(xn, xn+1),
sλ

1 − sλ
d(x∗, xn+1), λd(x∗, xn+1),

sλ

1 − sλ
d(xn, xn+1)}

6
sλ

1 − sλ
max{d(xn, x∗),d(xn, xn+1),d(x∗, xn+1)}.

Using (2.2) and (2.9), we see that limn→∞ xn = Tx∗. Since a b-convergent sequence has a unique limit in
b-metric spaces, we get Tx∗ = x∗, that is x∗ is a fixed point of T .

Step 6. We prove the fixed point of T is unique.
Suppose that y∗ is another fixed point of T . Then using (2.1), we have

d(x∗,y∗) = d(Tx∗, Ty∗)
6 λmax{d(x∗,y∗),d(x∗, Tx∗),d(y∗, Ty∗),d(x∗, Ty∗),d(y∗, Tx∗)}
= λd(x∗,y∗).

Since λ < 1
s 6 1, we deduce that d(x∗,y∗) = 0 and x∗ = y∗.
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Remark 2.5. If we take Ai = X, for all 1 6 i 6 p, in Lemma 2.4, we can get that the non-cyclic case of
Lemma 2.4.

Theorem 2.6. Let (X,d) be a b-complete b-metric space with s > 1 and {Ai}
p
i=1 nonempty closed subsets of X.

Suppose that T : ∪pi=1Ai → ∪
p
i=1Ai satisfies the following conditions (where Ap+1 = A1)

(i) T(Ai) ⊆ Ai+1, for 1 6 i 6 p;

(ii) there exists λ ∈ [0, 1
s) such that

d(Tx, Ty) 6 λmax{d(x,y),d(x, Tx),d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}, (2.10)

for all x ∈ Ai, y ∈ Ai+1, 1 6 i 6 p.

Then T has a unique fixed point.

Proof. Since the condition (2.10) implies the condition (2.1), it suffices to prove the condition (F) in Lemma
2.4 holds. Let x0 ∈ ∪pi=1Ai be given and let xn = Txn−1,n = 1, 2, · · · . Using (2.10),

d(xn, xn+1) 6 λmax{d(xn−1, xn),d(xn−1, xn),d(xn, xn+1),
d(xn−1, xn+1) + d(xn, xn)

2
}

= λmax{d(xn−1, xn),d(xn, xn+1),
d(xn−1, xn+1)

2
}.

We get the following three cases.

Case i. If max{d(xn−1, xn),d(xn, xn+1),
d(xn−1,xn+1)

2 } = d(xn−1, xn), then d(xn, xn+1) 6 λd(xn−1, xn).

Case ii. If max{d(xn−1, xn),d(xn, xn+1),
d(xn−1,xn+1)

2 } = d(xn, xn+1), then d(xn, xn+1) 6 λd(xn, xn+1).
From λ < 1, we see that d(xn, xn+1) = 0.

Case iii. If max{d(xn−1, xn),d(xn, xn+1),
d(xn−1,xn+1)

2 } =
d(xn−1,xn+1)

2 , then

d(xn, xn+1) 6 λ ·
d(xn−1, xn+1)

2

6
sλ

2
[d(xn−1, xn) + d(xn, xn+1)],

which implies

d(xn, xn+1) 6
sλ

2 − sλ
d(xn−1, xn).

Put β = max{ sλ2−sλ , λ}. Then we conclude that

d(xn, xn+1) 6 βd(xn−1, xn),

for all n ∈N. This leads to
d(xn, xn+1) 6 β

nd(x0, x1).

Since β < 1, we get limn→∞ d(xn, xn+1) = 0, that is the condition (F) holds.

Remark 2.7. If we replace the condition (2.10) in Theorem 2.6 by the following stronger condition

d(Tx, Ty) 6 λmax{d(x,y),d(x, Tx),d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}, (2.11)

then the proof of Theorem 2.6 will become straightforward because we can prove

d(xn, xn+1) 6 λ
nd(x0, x1),

which implies that {xn} is b-Cauchy. The following example shows that the condition (2.11) is strict
stronger than the condition (2.10).
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Example 2.8. Let X = R and let d(x,y) = (x− y)2 for each x,y ∈ X. Then (X,d) is a b-complete b-metric
space with s = 2. Set

A = {0, 1}, B = {0,
11
5
}.

Define T : A∪B→ A∪B by

T0 = T1 = 0, T
11
5

= 1.

We have TA ⊆ B and TB ⊆ A. Further, we have

d(T0, T0) = d(T0, T1) = 0,

d(T0, T
11
5
) = d(0, 1) = 1 <

1
2
d(0,

11
5
) =

121
50

,

d(T1, T
11
5
) = d(0, 1) = 1 <

1
2
d(1, T 11

5 ) + d(
11
5 , T1)

2
=

121
100

.

Thus T satisfies all conditions of Theorem 2.6. In fact, 0 is the unique fixed point of T . But T does not
satisfy the condition (2.11) because

d(T1, T
11
5
) = d(0, 1) = 1

>
1
2

max{d(1,
11
5
),d(1, T1),d(

11
5

, T
11
5
),
d(1, T 11

5 ) + d(
11
5 , T1)

2 · 2
}

=
1
2

max{
36
25

, 1,
36
25

,
121
100

} =
18
25

.

Theorem 2.9. Let (X,d) be a b-complete b-metric space with s > 1 and {Ai}
p
i=1 nonempty closed subsets of X.

Suppose that T : ∪pi=1Ai → ∪
p
i=1Ai satisfies the following conditions (where Ap+1 = A1)

(i) T(Ai) ⊆ Ai+1 for 1 6 i 6 p;

(ii) there exists λ ∈ [0, 1
s) such that

d(Tx, Ty) 6 λmax{d(x,y),d(x, Tx),d(y, Ty),
d(x, Ty)

2
,d(y, Tx)}, (2.12)

for all x ∈ Ai, y ∈ Ai+1, 1 6 i 6 p.

Then T has a unique fixed point.

Proof. Since the condition (2.12) implies the condition (2.1), it suffices to prove the condition (F) in Lemma
2.4 holds. Let x0 ∈ ∪pi=1Ai be given and let xn = Txn−1,n = 1, 2, · · · . Using (2.12),

d(xn, xn+1) = d(Txn−1, Txn)

6 λmax{d(xn−1, xn),d(xn−1, xn),d(xn, xn+1),
d(xn−1, xn+1)

2
,d(xn, xn)}

= λmax{d(xn−1, xn),d(xn, xn+1),
d(xn−1, xn+1)

2
}.

Similar to the proof in Theorem 2.6, we can get the condition (F) holds.

The next are two examples which show that Theorem 2.6 and Theorem 2.9 are independent of each
other.

Example 2.10. Let X = R and let d(x,y) = (x− y)2 for each x,y ∈ X. Then (X,d) is a b-complete b-metric
space with s = 2. Set

A = {0,−
1
5
}, B = {0, 1, 2}, C = {0,

9
10

,
4
5
}.
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Define T : A∪B∪C→ A∪B∪C by

T0 = T(−
1
5
) = T1 = T

9
10

= 0,

T2 =
9

10
, T

4
5
= −

1
5

.

We have TA ⊆ B, TB ⊆ C and TC ⊆ A. Further, we have

d(T0, T0) = d(T0, T1) = 0,

d(T0, T2) = d(0,
9
10

) =
81

100
<

1
2
d(0, 2) = 2,

d(T(−
1
5
), T0) = d(T(−

1
5
), T1) = 0,

d(T(−
1
5
), T2) = d(0,

9
10

) =
81

100
<

1
2
d((−

1
5
), 2) =

121
50

,

d(T0, T
9
10

) = d(T1, T
9
10

) = 0,

d(T0, T
4
5
) = d(0,−

1
5
) =

1
25
<

1
2
d(0,

4
5
) =

8
25

,

d(T1, T
4
5
) = d(0,−

1
5
) =

1
25
<

1
2
d(1, T1) =

1
2

,

d(T2, T0) = d(
9
10

, 0) =
81

100
<

1
2
d(2, 0) =

1
2

,

d(T2, T
9
10

) = d(
9
10

, 0) =
81

100
<

1
2
d(2, T 9

10) + d(
9
10 , T2)

2
= 1,

d(T2, T
4
5
) = d(

9
10

,−
1
5
) =

121
100

<
1
2
d(2, T 4

5) + d(
4
5 , T2)

2
=

485
400

,

d(T0, T(−
1
5
)) = d(T

9
10

, T0) = d(T
9

10
, T(−

1
5
)) = 0,

d(T
4
5

, T0) = d(−
1
5

, 0) =
1
25
<

1
2
d(

4
5

, 0) =
8
25

,

d(T
4
5

, T(−
1
5
)) = d(−

1
5

, 0) =
1
25
<

1
2
d(

4
5

,−
1
5
) =

1
2

.

Thus T satisfies all conditions of Theorem 2.6. In fact, 0 is the unique fixed point of T . But T does not
satisfy the condition (2.12) in Theorem 2.9 because

d(T2, T
4
5
) = d(

9
10

,−
1
5
) =

121
100

=
1
2

max{d(2,
4
5
),d(2, T2),d(

4
5

, T
4
5
),

1
2
d(2, T

4
5
),d(

4
5

, T2)}

=
1
2

max{
36
25

,
121
100

, 1,
121
50

,
1

100
}.

Example 2.11. Let X = R and let d(x,y) = (x− y)2 for each x,y ∈ X. Then (X,d) is a b-complete b-metric
space with s = 2. Set

A = {0,
9
20

, 2}, B = {0,
9
10

,
37
20

}, C = {0, 1}.

Define T : A∪B∪C→ A∪B∪C by

T0 = T
9

20
= T

9
10

= 0,
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T2 =
9

10
, T

37
20

= 1, T1 =
9

20
.

We have TA ⊆ B, TB ⊆ C and TC ⊆ A. Further, we have

d(T0, T0) = d(T0, T
9
10

) = 0,

d(T0, T
37
20

) = d(0, 1) = 1 <
1
2
d(0,

37
20

) =
1369
800

,

d(T
9

20
, T0) = d(T

9
20

, T
9

10
) = 0,

d(T
9
20

, T
37
20

) = d(0, 1) = 1 <
1
2
d(

37
20

, T
9
20

) =
1369
800

,

d(T2, T0) = d(
9
10

, 0) =
81
100

<
1
2
d(2, 0) = 2,

d(T2, T
9

10
) = d(

9
10

, 0) =
81
100

<
1
2
· 1

2
d(2, T

9
10

) = 1,

d(T2, T
37
20

) = d(
9
10

, 1) =
1

100
<

1
2
d(2,

37
20

) =
9

800
,

d(T0, T1) = d(0,
9
20

) =
81
400

<
1
2
d(0, 1) =

1
2

,

d(T
9

10
, T0) = 0,

d(T
9

10
, T1) = d(0,

9
20

) =
81
400

<
1
2
d(

9
10

, T
9

10
) =

81
200

,

d(T
37
20

, T0) = d(1, 0) = 1 <
1
2
d(

37
20

, 0) =
1369
800

,

d(T
37
20

, T1) = d(1,
9
20

) =
121
400

<
1
2
d(

37
20

, 1) =
289
800

,

d(T0, T
9

20
) = 0,

d(T0, T2) = d(0,
9
10

) =
81
100

<
1
2
d(0, 2) = 2,

d(T1, T0) = d(
9
20

, 0) =
81
400

<
1
2
d(1, 0) =

1
2

,

d(T1, T
9

20
) = d(

9
20

, 0) =
81
400

<
1
2
· 1

2
d(1, T

9
20

) =
1
4

,

d(T1, T2) = d(
9
20

,
9
10

) =
81
400

<
1
2
d(1, 2) =

1
2

.

Thus T satisfies all conditions of Theorem 2.9. In fact, 0 is the unique fixed point of T . But T does not
satisfy the condition (2.10) in Theorem 2.6 because

d(T
9
20

, T
37
20

) = d(0, 1) = 1

>
1
2

max{d(
9

20
,

37
20

),d(
9
20

, T
9

20
),d(

37
20

, T
37
20

),
d( 9

20 , T 37
20) + d(

37
20 , T 9

20)

2
}

=
1
2

max{
49
25

,
81

400
,

289
400

,
149
80

}

=
49
50

.

Now we give a result for non-cyclic quasi-contractive mappings of Ćirić type, which improves the
result of Amini-Harandi in [1].
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Theorem 2.12. Let (X,d) be a b-complete b-metric space with s > 1 and T : X→ X a self-mapping. Suppose that
there exists λ ∈ [0, 1

s) such that

d(Tx, Ty) 6 λmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}, (2.13)

for all x,y ∈ X. Then T has a unique fixed point.

Proof. Using the non-cyclic case of Lemma 2.4, we see that it suffices to prove the condition (F) holds. Let
x0 ∈ X be given and let xn = Txn−1, n = 1, 2, · · · . Denote

Dn = max{d(xi, xj) : 0 6 i, j 6 n},

ρn = max{d(x0, xj) : 1 6 j 6 n}.

Then we can prove Dn = ρn, for any n ∈N. Indeed, we easily see that ρn 6 Dn. Next we showDn 6 ρn.
Let n ∈N be given. If 1 6 i, j 6 n, then, using (2.13), we get

d(xi, xj) = d(Txi−1, Txj−1)

6 λmax{d(xi−1, xj−1),d(xi−1, Txi−1),d(xj−1, Txj−1),d(xi−1, Txj−1),d(xj−1, Txi−1)}

= λmax{d(xi−1, xj−1),d(xi−1, xi),d(xj−1, xj),d(xi−1, xj),d(xj−1, xi)}
6 λDn < Dn.

Hence Dn = d(x0, xl) for some 1 6 l 6 n. This leads to Dn 6 ρn.
Now we claim that {Dn} is bounded. In fact, for fixed n ∈N, by using (2.13), we have

d(x0, xj) 6 sd(x0, x1) + sd(x1, xj)
6 sd(x0, x1) + sλmax{d(x0, xj−1),d(x0, x1)d(xj−1, xj)d(x0, xj)d(xj−1, x1)}

6 sd(x0, x1) + sλDn,

for all j 6 n, which implies that
Dn = ρn 6 sd(x0, x1) + sλDn.

Thus
Dn 6

s

1 − sλ
d(x0, x1),

that is, {Dn} is bounded and

D∞ , sup{d(xi, xj) : i, j > 0} 6
s

1 − sλ
d(x0, x1).

We put δn = sup{d(xi, xj) : i, j > n} for n ∈ N. Then the condition (2.13) implies δn 6 λδn−1 for all
n > 1. Thus we get

d(xn, xn+1) 6 δn 6 λδn−1

6 · · · 6 λnδ0

= λnD∞ 6
sλn

1 − sλ
d(x0, x1).

Since λ < 1, we get limn→∞ d(xn, xn+1) = 0, that is the condition (F) holds.

Remark 2.13. From Theorem 2.12, we see that the condition of Fatou property in the result of Amini-
Harandi [1] may be omitted.

Following the ideas of Radenović et al. in [16], we see that in Question 1.2, if ∩pi=1Ai 6= ∅ then T must
have a fixed point. Now, we will consider that if the intersection of two sets in {Ai}

p
i=1 is non-empty then
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whether T have a fixed point. Similar to Example 2.1, we give the following example which shows that T
may not have a fixed point if the intersection of two sets in {Ai}

4
i=1 is non-empty. Meanwhile we find that

if p = 3 and the intersection of two sets in {Ai}
p
i=1 is non-empty then T must have a fixed point.

Example 2.14. Let X be the Euclidean space R3 with the usual metric. Let A1 = {x,y},A2 = {u, v,w},
A3 = {x,y, z} and A4 = {u, v}, where

x = (0, 0, 0), y = (4, 0, 0), z = (−4, 0, 0), u = (2, 2, 0), v = (2,−2, 1), w = (0, 4, 0).

Then

d(x,y) = 4, d(x,u) = 2
√

2, d(x, v) = 3, d(x,w) = 4,

d(y,u) = 2
√

2, d(y, v) = 3, d(u, v) =
√

17, d(y,w) = 4
√

2,

d(z,u) = 2
√

10, d(z, v) =
√

41, d(z,w) = 4
√

2.

Define T : ∪4
i=1Ai → ∪4

i=1Ai by

Tx = u, Ty = v, Tz = v, Tu = y, Tv = x and Tw = y.

According to the definitions of the sets Ai, 1 6 i 6 p and the mapping T , it follows that TAi ⊆ Ai+1 for
i = 1, 2, 3, 4, where A5 = A1. Further, we have

d(Tx, Tu) = d(Tu, Tx) = d(u,y) = 2
√

2 < d(x, Tu) = d(x,y) = 4,

d(Tx, Tv) = d(Tv, Tx) = d(u, x) = 2
√

2 < d(v, Tx) = d(v,u) =
√

17,

d(Tx, Tw) = d(Tw, Tx) = d(u,y) = 2
√

2 < d(x,w) = 4,

d(Ty, Tu) = d(Tu, Ty) = d(v,y) = 3 < d(u, Ty) = d(u, v) =
√

17,
d(Ty, Tv) = d(Tv, Ty) = d(v, x) = 3 < d(y, Tv) = d(y, x) = 4,

d(Ty, Tw) = d(Tw, Ty) = d(v,y) = 3 < d(y,w) = 4
√

2,

d(Tz, Tu) = d(Tu, Tz) = d(v,y) = 3 < d(z,u) = 2
√

10,

d(Tz, Tv) = d(Tv, Tz) = d(v, x) = 3 < d(z, v) =
√

41,

d(Tw, Tz) = d(y, v) = 3 < d(w, z) = 4
√

2.

Thus T satisfies all conditions of Question 1.2, where s = 1 and λ = 3
4 , but T does not have any fixed point

in ∩4
i=1Ai.

Theorem 2.15. Let (X,d) be a b-complete b-metric space with s > 1 and {Ai}
3
i=1 nonempty closed subsets of X.

Suppose that T : ∪3
i=1Ai → ∪3

i=1Ai satisfies the following conditions (where A4 = A1)

(i) T(Ai) ⊆ Ai+1 for 1 6 i 6 3;

(ii) there exists λ ∈ [0, 1
s) such that

d(Tx, Ty) 6 λmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}, (2.14)

for all x ∈ Ai, y ∈ Ai+1, 1 6 i 6 3.

Then the following statements are equivalent:

(1) ∩3
i=1Ai 6= ∅;

(2) Ak ∩Ak+1 6= ∅ for all k ∈ {1, 2, 3};
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(3) Ak ∩Ak+1 6= ∅ for some k ∈ {1, 2, 3};

(4) A1 ∩A2 6= ∅;

(5) T has a unique fixed point.

Proof. Using the cyclic character of T , it is easy to verify that the conditions (2), (3) and (4) are equivalent.
Following the ideas of Radenović et al. in [16], we see that the conditions (1) and (5) are equivalent. It is
clear that the condition (1) implies the condition (4). Thus we only need to prove the condition (4) implies
the condition (5).

Assume that A1 ∩A2 6= ∅. Let x0 ∈ A1 ∩A2 and xn = Txn−1, n = 1, 2, 3, · · · . Since T(A1 ∩A2) ⊆
A2 ∩A3, T(A2 ∩A3) ⊆ A2 ∩A3 and T(A3 ∩A1) ⊆ A1 ∩A2, we get that x3k ∈ A1 ∩A2, x3k+1 ∈ A2 ∩A3 and
x3k+2 ∈ A3 ∩A1 for all k = 0, 1, 2, · · · . This means that, for all i, j ∈ {0, 1, 2, · · · }, xi and xj lie in different
adjacently labeled sets Ak and Ak+1 for certain k ∈ {1, 2, 3}, and therefore they can apply the contractive
condition (2.14). In the same way as Theorem 2.12, we see that x0 satisfies the condition (F) in Lemma 2.4.
Thus T has a unique fixed point.

Remark 2.16. If we take A1 = A2 = A3 = X in Theorem 2.15, we see that Theorem 2.12 is a special case of
Theorem 2.15. Furthermore, it is easy to verify that Theorem 2.15 remains true, if p 6 5. Then a natural
question arises.

Question 2.17. Does Theorem 2.15 hold if p > 5?

Acknowledgment

The authors are thankful to the referees for their valuable comments and suggestions to improve
this paper. The authors are supported by the National Natural Science Foundation of China (11561049,
11471236).

References

[1] A. Amini-Harandi, Fixed point theory for quasi-contraction maps in b-metric spaces, Fixed Point Theory, 15 (2014),
351–358. 1, 1, 2, 2.13
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